Qualidade física do solo sob agricultura conservacionista em experimento de longa duração: densidade global

Adson Souza do Nascimento⁽¹⁾, Falberni de Souza Costa⁽²⁾, Kamilly Cavalcante Silva⁽¹⁾ e Charles Rodrigues da Costa⁽³⁾

(1) Bolsistas, Embrapa Acre, Rio Branco, AC. (2) Pesquisador, Embrapa Acre, Rio Branco, AC. (3) Analista, Embrapa Acre, Rio Branco, AC.

Resumo – O efeito da agricultura conservacionista (AC) sobre a qualidade física de solo arenoso do Juruá não é conhecido. O objetivo deste trabalho foi avaliar esse efeito em experimento de longa duração de 17 anos de condução. A compactação foi avaliada pela densidade do solo no experimento instalado em 2006, no delineamento de blocos ao acaso com três blocos em esquema de parcelas subdivididas. Nas parcelas principais, estão o preparo convencional (PC) e o plantio direto (PD), e nas secundárias, os sistemas de cultivos: tradicional (corte e queima) ou testemunha (T), plantas de cobertura (leguminosa-gramínea – LG), LG com fósforo – P (LGP), LG com calcário – C (LGC) e LG com P e C (LGPC). Somente a T tem seus resíduos queimados desde 2006. A densidade do solo foi determinada (anel volumétrico ~ 100 cm³) nas camadas de 0–5, 5–10, 10–15, 15–20, 20–30, 30–40, 40–50, 50–70, 70–90 e 90–110 cm. A densidade global do solo variou de 1,18 a 1,84 g cm³, com média de 1,36 g cm³ (camada de 0–5 cm). PC e PD não foram diferentes em todas as camadas. Houve diferença significativa entre os tratamentos secundários nas camadas de 0–5 e 5–10 cm.

Termos para indexação: solo arenoso, densidade do solo, compactação do solo.

Physical quality of soil under conservation agriculture in a long-term experiment: global density

Abstract – The effect of conservation agriculture (CA) on the physical quality of sandy soil in Juruá is not known. Our goal was to evaluate this effect in the ongoing 17-year long-term experiment. Compaction was assessed by soil bulk density in the experiment set up in 2006, using a randomized block design with three blocks and a split plot scheme. The main plots include conventional tillage (CT) and no-till (NT), while the secondary plots include the cropping systems: traditional (slash and burn) or control (C), cover crops (leguminous-grass – LG), LG with phosphorus – P (LGP), LG with limestone – L (LGCL) and LG with P and L (LGPCL). Only T has had its waste burned since 2006. Soil density was determined (volumetric rings ~ 100 cm³) in the 0–5, 5–10, 10–15, 15–20, 20–30, 30–40, 40–50, 50–70, 70–90 and 90–110 layers (cm). Overall soil density varied from 1.18 to 1.84 g cm³, with an average of 1.36 g cm³ (0–5 cm layer). CT and NT were not different in all layers. There was a significant difference between the treatments in the 0–5 and 5–10 cm layers.

Index terms: toxicity, sandy soil, soil bulk density, soil compaction.

Introdução

Os Argissolos do Juruá são, em geral, de granulometria média a arenosa, naturalmente de baixa fertilidade e alta densidade (Albuquerque et al., 2015), relevo de suave a ondulado, vulneráveis à erosão. O manejo desses solos no sistema de derruba e queima com preparo mecânico (grade aradora), mesmo que esporádico, caracterizando o sistema tradicional de manejo local, favorece a decomposição de remanescentes da matéria orgânica do solo (MOS), após derruba e queima da floresta nativa e/ou secundária, o que é agravado pela queima e não reposição de nutrientes, prática inexistente na região do Juruá (Costa et al., 2020), impedindo também o cultivo de plantas de cobertura. A agricultura conservacionista (AC), baseada no plantio direto, na cobertura contínua do solo e diversidade de espécies cultivadas (FAO, 2014), tanto de plantas de cobertura quanto de cultivos comerciais, em esquemas de rotação ou consórcio, além de alternativa ao manejo de derruba e queima, pode reduzir parte da adubação de reposição e eliminar totalmente o uso do fogo. Sempre em áreas já desmatadas, a agricultura conservacionista recupera e mantém essas áreas para cultivos, e, em especial e indiretamente, reduz a pressão sobre as florestas nativas. O adensamento natural dos solos arenosos pode ser agravado ou atenuado de acordo com o manejo adotado (Suzuki et al., 2023). Com derruba e queima, queimas sucessivas e pousio, o adensamento evolui para a compactação, sendo esses fenômenos de mesmas decorrências, entretanto de origens natural e antrópica, respectivamente (FAO, 2005). A compactação antrópica decorre do manejo inadequado desses solos arenosos, com preparo mecânico e redução dos teores de MOS, tanto pelas queimas sucessivas dos resíduos vegetais quanto pela decomposição microbiana da MOS remanescente no solo. Com a AC espera-se o aumento da MOS, o que, além de atenuar o efeito do adensamento natural do solo, potencializa a retenção de água (Carvalho et al., 2020). Isso, por si só, representa uma ação simultânea de mitigação e adaptação às mudanças climáticas, oriunda do manejo adequado do solo. O objetivo deste trabalho foi avaliar o efeito da AC sobre a qualidade física de solo arenoso do Juruá em experimento de longa duração.

Material e métodos

A compactação do solo foi avaliada pela sua densidade nos tratamentos do experimento de 17 anos de condução, área rural de Mâncio Lima, Juruá, Acre. O experimento foi instalado em 2006, no delineamento de blocos ao acaso, com três blocos e em esquema de parcelas subdivididas. Na parcela principal, estão o preparo convencional da região, com grade aradora, e o plantio direto. Nas parcelas secundárias, estão os sistemas de cultivos tradicional (corte e queima) ou testemunha (T), plantas de cobertura (leguminosa-gramínea - LG), LG com fósforo - P (LGP), LG com calcário - C (LGC) e LG com P e C (LGPC). Somente a T tem seus resíduos queimados desde 2006. Para a avaliação da densidade do solo, foram utilizados anéis volumétricos de aço inoxidável nas camadas de 0-5, 5-10, 10-15, 15-20, 20-30, 30-40, 40-50, 50-70, 70-90 e 90-110 cm. As amostras foram pesadas (peso úmido) e secas em estufa a 105 °C por 24 horas. A densidade do solo foi calculada pela relação massa/volume. A análise da variância foi aplicada aos resultados por camada, sendo as diferenças entre médias dos tratamentos (principais e secundários) testadas por Tukey a 5%.

As amostras de solo foram coletadas em agosto de 2023 (Figura 1).

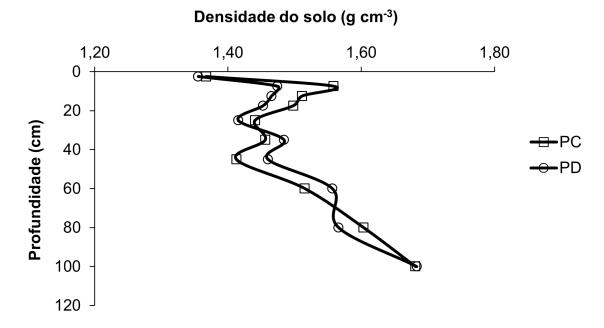
Resultados e discussão

A densidade global do solo (tratamentos/profundidades/repetições) variou de 1,18 a 1,84 g cm⁻³, com média de 1,36 g cm⁻³ (0–5 cm). Benites et al. (2007), Frozzi et al. (2020) e Panagos et al. (2024) encontraram valores semelhantes e característicos de solos arenosos. O comportamento da densidade com aumento da profundidade foi decrescente tanto em PC quanto em PD (Figura 2).

PC e PD não foram diferentes em todas as camadas avaliadas (p > 0,05). Houve diferença significativa entre os tratamentos nas parcelas secundárias nas camadas de 0–5 cm (p = 0,0224) e de 5–10 cm (p = 0,0045). LGC apresentou a maior densidade (0–5 cm = 1,47 g cm $^{-3}$ e 5–10 cm = 1,61 g cm $^{-3}$) e LGP a menor densidade (0–5 cm = 1,23 g cm $^{-3}$).

Os demais tratamentos (0–5 cm) não diferiram ou de LGC ou de LGP (5–10 cm) e não diferiram ou de LGC, exceto LGP e LG, ou de LGP, exceto LGPC e LGC (Tabela 1).

58 Eventos Técnicos & Científicos, 7


Abaixo da camada de 10–15 cm até 90–110 cm, PC e PD foram semelhantes, assim como os tratamentos secundários entre si.

Adensidade do solo, comparando os tratamentos secundários, seguiu a mesma tendência de decréscimo com a profundidade, com destaque para

os tratamentos LGC e LGP, que foram diferentes nas camadas de 0–5 cm e 5–10 cm (p < 0,05) (Figura 3). Mesmo com 17 anos de condução do experimento, o efeito do tratamento PC não foi detectado, como ocorre em experimentos de longa duração, onde o solo é preparado anualmente.

Figura 1. Coleta para determinação da densidade do solo em experimento de longa duração, Alto Pentecostes, Mâncio Lima, agosto de 2023.

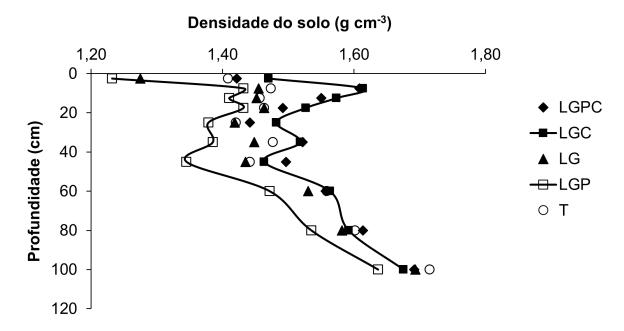

Figura 2. Densidade do solo no preparo convencional (PC) e plantio direto (PD) em experimento de longa duração, Mâncio Lima, 2023.

Tabela 1. Densidade do solo (g cm⁻³) nos tratamentos das parcelas secundárias⁽¹⁾: testemunha (T), leguminosa-gramínea (LG), leguminosa-gramínea+fósforo-P (LGP), leguminosa-gramínea+calcário-C (LGC) e leguminosa-gramínea+P+C (LGPC).

Tratamento	LGPC		LGC	LGC		LG			Т	
				0–5 cm						
Médias	1,42	AB	1,47	Α	1,28	AB	1,23	В	1,41 AB	
				0–10 cm						
Médias	1,61	AB	1,61	Α	1,46	ВС	1,43	С	1,47 ABC	

⁽¹⁾ Sem interação entre tratamentos nas parcelas principais e secundárias.

Letras iguais na linha indicam que não há diferença entre as médias – Tukey (5%). Médias dos tratamentos nas parcelas principais – PC e PD.

Figura 3. Densidade do solo nos tratamentos das parcelas secundárias: testemunha (T), leguminosa-gramínea (LG), leguminosa-gramínea+fósforo-P (LGP), leguminosa-gramínea+calcário-C (LGC) e leguminosa-gramínea+P+C (LGPC), em experimento de longa duração, Mâncio Lima, 2023.

Conclusão

 Após 17 anos de condução do experimento avaliado neste trabalho, a agricultura conservacionista não afetou com diferença estatística a qualidade física do solo entre o preparo convencional e o plantio direto em todas as camadas avaliadas. Entretanto, afetou com diferença estatística a qualidade física do solo, nos tratamentos das parcelas secundárias do experimento. O tratamento leguminosa-gramínea com calcário (LGC) teve maior densidade do que o tratamento leguminosa-gramínea com fósforo (LGP) nas camadas de 0–5 cm e 5–10 cm.

Agradecimentos

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela bolsa de iniciação científica e à Embrapa Acre pelo apoio no desenvolvimento das atividades da bolsa.

60 Eventos Técnicos & Científicos, 7

Referências

ALBUQUERQUE, J. A.; ALMEIDA, J. A.; GATIBONI, L. C.; ROVEDDER, A. P. M.; COSTA, F. S. Fragilidade de solos: uma análise conceitual, ocorrência e importância agrícola para o Brasil. In: CASTRO, S. S.; HERNANI, L. C. (ed.). **Solos frágeis**: caracterização, manejo e sustentabilidade. Brasília, DF: Embrapa, 2015. p. 25-50. Disponível em: https://www.alice.cnptia.embrapa.br/alice/handle/doc/1041987. Acesso em: 12 jul. 2024.

BENITES, V. M.; MACHADO, P. L. O. A.; FIDALGO, E. C. C.; COELHO, M. R.; MADARI, B. E. Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. **Geoderma**, v. 139, n. 1-2, p. 90–97, Apr. 2007. DOI: https://doi.org/10.1016/j. geoderma.2007.01.005.

CARVALHO, M. L.; MORAES, M. T.; CERRI, C. E. P.; CHERUBIN, M. R. Biochar amendment enhances water retention in a tropical sandy soil. **Agriculture**, v. 10, n. 3, article 62, p. 1-13, Mar. 2020. DOI: https://doi.org/10.3390/agriculture10030062.

COSTA, F. S.; CAMPOS FILHO, M. D.; SÁ, C. P.; LAMBERTUCCI, D. M.; TAVELLA, L. B.; BRITO, E. S.; KLEIN, M. A.; DICK, D. P. **Agricultura conservacionista**: solução de inovação tecnológica e econômica para a produção diversa em solos arenosos do Juruá, Acre, Sudoeste da Amazônia - resultados integrados de 13 anos. Rio Branco, AC: Embrapa Acre, 2020. 22 p. (Embrapa Acre. Comunicado técnico, 201). Disponível em: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1121607. Acesso em: 12 jul. 2024.

FAO. What is conservation agriculture? 2014.

Disponível em: https://www.fao.org/conservation-agriculture/overview/what-is-conservation-agriculture/en. Acesso em: 12 jul. 2024.

FAO. Management of tropical sandy soils for sustainable agriculture. 2005. Disponível em: https://www.fao.org/3/ag125e/AG125E00.htm#Contents. Acesso em: 12 jul. 2024.

FROZZI, J. C.; CUNHA, J. M.; CAMPOS, M. C. C.; BERGAMIN, A. C.; BRITO, W. B. M.; FRACISCON, U.; SILVA, D. M. P.; LIMA, A. F. L.; BRITO FILHO, E. G. Physical attributes and organic carbon in soils under natural and anthropogenic environments in the South Amazon region. **Environmental Earth Sciences**, v. 79, article 251, 2020. DOI: https://doi.org/10.1007/s12665-020-08948-x.

PANAGOS, P.; ROSA, D. de; LIAKOS, L.; LABOUYRIE, M.; BORRELLI, P.; BALLABIO, C. Soil bulk density assessment in Europe. **Agriculture, Ecosystems and Environment**, v. 364, article 108907, Apr. 2024. DOI: https://doi.org/10.1016/j.agee.2024.108907.

SUZUKI, L. A. S.; PERDON, F. A.; OLIVEIRA, R. B.; ROVEDDER, A. P. M. Challenges in the management of environmentally fragile sandy soils in Southern Brazil. **Soil Systems**, v. 7, n. 1, article 9, 2023. DOI: https://doi.org/10.3390/soilsystems7010009.