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Abstract: Corn stunt (CS) and corn reddening (CR) are considered the main phytosanitary problems of corn crops in the Neotropical region, 
caused by Spiroplasma kunkelii and Candidatus Phytoplasma ssp., respectively. Models that evaluate the potential geographic distribution of 
CS and CR are important to know which regions and areas are suitable for formulating appropriate policies and preventive measures. This 
study aimed to identify highly suitable areas and assess the impact of climate change on the distribution of CS and CR. To do this, we 
developed two spatial distribution models for CS and CR. We found 193 points of occurrence for CS and 158 points for CR. Considering its 
biology and ecology, we used R-based analysis version 4.4.0 ‘Puppy Cup’ to predict potential global distribution of CS and CR using 
bioclimatic variables. We found that the most critical abiotic variables driving the global distribution of CS were: mean diurnal range, 
maximum temperature of the warmest month, and temperature seasonality. For the global distribution of CR, the most important variables 
were: isothermality, mean diurnal range, precipitation of the warmest quarter, and precipitation of the driest quarter. With regard to the 
validation of the forecast (2041–2060), the SSP2–4.5 models showed greater adaptability in the world’s main corn-producing countries: the 
United States, China and Brazil. On the other hand, for SSP5–8.5, Maxent predicted that suitable CS and CR habitat will decrease by 2060 in 
the United States, China and Brazil. These countries showed a significant reduction in the occurrence of CS and CR. Our modelling results 
will provide helpful information to determine the spatial distribution of CS and CR and outline implications for monitoring through the risks 
of these diseases based on climatic conditions worldwide, especially in SSP2–4.5 senarios.

Keywords: Climate change, crop protection, MaxEnt, species distribution

Résumé: Le syndrome du nanisme du maïs (CS) et le rougeoiement du maïs (CR) sont considérés comme les principaux problèmes 
phytosanitaires des cultures de maïs dans la région néotropicale, causés respectivement par Spiroplasma kunkelii et Candidatus Phytoplasma 
ssp. Des modèles évaluant la distribution géographique potentielle de CS et CR sont essentiels pour identifier les régions propices et ainsi 
mettre en place des politiques et des mesures préventives adéquates. Cette étude avait pour objectif d’identifier les zones fortement 
appropriées et d’évaluer l’impact du changement climatique sur la répartition de CS et CR. Pour cela, deux modèles spatiaux de distribution 
ont été développés, l’un pour CS et l’autre pour CR. Nous avons identifié 193 points d’occurrence pour le syndrome du nanisme du maïs 
(CS) et 158 points pour le rougeoiement du maïs (CR). En tenant compte de leur biologie et écologie, nous avons utilisé R version 4.4.0, 
également connu sous le nom de « Puppy Cup », pour prédire la distribution géographique globale potentielle de CS et CR en utilisant des 
variables bioclimatiques. Notre analyse a révélé que les variables abiotiques les plus cruciales influençant la distribution mondiale du 
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syndrome du nanisme du maïs (CS) étaient : l’amplitude thermique diurne moyenne, la température maximale du mois le plus chaud, et la 
saisonnalité thermique. Pour la distribution mondiale du rougeoiement du maïs (CR), les variables bioclimatiques les plus déterminantes 
identifiées étaient l’isothermicité, l’amplitude thermique diurne moyenne, les précipitations durant le trimestre le plus chaud et celles du 
trimestre le plus sec. En regard de la validation des projections climatiques pour la période 2041–2060, les modèles fondés sur le scénario 
SSP2–4.5 (émissions modérées) montrent une meilleure adéquation dans les principaux pays producteurs de maïs, à savoir les États-Unis, la 
Chine et le Brésil. À l’inverse, sous le scénario plus sévère SSP5–8.5 (émissions élevées), les modèles MaxEnt prévoient une réduction des 
zones climatiquement favorables à la présence de CS et CR d’ici 2060 dans ces trois pays. Ces pays ont montré une réduction significative de 
l’occurrence du syndrome du nanisme du maïs (CS) et du rougeoiement du maïs (CR). Nos résultats de modélisation offrent des informations 
précieuses pour déterminer la distribution spatiale potentielle de CS et CR, et pour formuler des implications pour la surveillance des risques 
de ces maladies en fonction des conditions climatiques mondiales, en particulier dans les scénarios du type SSP2–4.5.

Mots-clés: changement climatique, distribution des espèces selon MaxEnts, protection des cultures

Introduction

Climate change is a long-term transformation in tempera
ture and weather patterns (Ghanem 2024). These changes 
can be natural, due to changes in the Sun’s activity or 
volcanic eruptions. Human activities have been the main 
driver of climate change, mainly due to the burning of 
fossil fuels such as coal, oil, and gas. Climate change can 
be divided into different types of scenarios. Climate sce
narios are plausible descriptions of the risks of climate 
change and identify possible solutions with political mea
sures. Among the types of scenarios, there are optimistic 
and pessimistic scenarios. The optimistic scenario 
(SSP126) describes that, by 2100, the planet’s air tem
perature will increase by 2°C. The pessimistic scenario 
(SSP585) describes that, by 2100, the planet’s air tem
perature will increase by 4°C to 5.5°C. Climate change 
exacerbates outbreak risks by changing the way pathogens 
evolve and interact with hosts. The range of pathogens 
can shift, leading to the increased spread of plant diseases 
into previously unaffected regions (Singh et al. 2023). The 
main factors that limit the growth and development of 
diseases and their vectors are temperature and rain (Elad 
and Pertot 2014; Ramos et al. 2018; Picanco et al. 2024). 
As a result, global warming will cause significant impacts 
on the distribution patterns and the physiological and 
ecological characteristics of organisms (Bellard et al.  
2012; Elad and Pertot 2014). These alterations can 
adversely affect the productivity of food crops within 
agricultural systems (Wheeler and von Braun 2013; 
Crespo-Perez et al. 2015). Consequently, forecasting pest 
distribution under both current and future climatic condi
tions is crucial for making informed decisions and devel
oping effective strategies to mitigate risks in agricultural 
systems (Crespo-Perez et al. 2015; Ramos et al. 2018; 
Santana et al. 2019; Aidoo et al. 2022).

Corn (Zea mays L.) holds a significant role as a staple 
food globally, with the highest consumption rate com
pared to other grain crops (FAO 2022). This crop is 

suitable for all growing seasons in almost all agro- 
climatic zones. Corn faces a series of threats and dis
eases throughout its phenological phases and is a host of 
130 different pests and about 110 diseases caused by 
fungi, bacteria, and viruses worldwide. Control of dis
eases is essential to maintain reasonable production rates 
in this crop. Major corn diseases include corn stunt (CS; 
Spiroplasma kunkelii) and corn reddening (CR; 
Candidatus Phytoplasma ssp.) (Nault 1980; Oliveira 
and Frizzas 2022; Canale Nesi et al. 2023).

Corn stunt and corn reddening are diseases caused by 
microorganisms known as mollicutes, belonging to 
Spiroplasma (Entomoplasmatales: Spiroplasmataceae), and 
Phytoplasma (Acholeplasmatales: Acholeplasmataceae), 
respectively (Nault 1980). These microorganisms are trans
mitted exclusively by the leafhopper Dalbulus maidis 
(DeLong and Wolcott 1923) (Hemiptera: Cicadellidae) 
(Waquil et al. 1999; Oliveira and Frizzas 2022). Mollicutes 
invade systemically and multiply in the phloem tissues of the 
corn plant. Plants infected with these pathogens have shorter 
internodes, fewer roots, and produce fewer grains than 
healthy plants. Both CS and CR cause damage to grain 
production in corn-producing regions. For example, in one 
region in Brazil, the potential loss caused by stunting 
exceeded $16.5 million in losses for corn producers, with 
damage levels up to 100% (Virla et al. 2021; Neves et al.  
2022; Oliveira and Frizzas 2022).

Ecological niche models are utilized to identify suita
ble areas or periods for a particular species (Elith and 
Leathwick 2009; Kumar et al. 2014; Nguyen and Leung  
2022). Climate change can impact the way pathogens 
interact with their environment by affecting their growth 
and survival. Due to their quick reproductive rates, the 
ability to move easily, and sensitivity to temperature 
changes, pathogens are likely to be significantly 
impacted by even small shifts in climate, leading to 
rapid changes in their distribution and numbers (Raza 
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and Bebber 2022; Singh et al. 2023). The models can 
predict current locations suitable for pathogens and 
where they are not yet present and make predictions 
for the future under climate change (Hill et al. 2024). 
Ecological niche models are models that determine sui
table areas or times for one or more species. These 
models can be divided into mechanistic models, which 
use the species climatic thresholds, e.g., Climex, and 
machine learning models, which are artificial intelli
gence tools that develop models capable of learning 
patterns from real data, e.g., MaxEnt (Kumar et al.  
2014; Ramos et al. 2018; da Silva et al. 2020; Aidoo 
et al. 2022). However, to date, we have found very few 
papers with relation to the potential effects of climate 
change on the geographic distribution of CS and CR 
using ecological niche modelling. This study aimed to 
assess the impact of climate change on the distribution of 
CS and CR using correlative modelling.

Materials and methods

Species occurrence data

To identify the highly suitable areas and the effects of 
climate change on the distribution of CS and CR, we 
developed two spatial distribution models. The occurrence 
of corn stunt and corn reddening worldwide were down
loaded from the Centre for Agriculture and Bioscience 
International (CABI: https://www.cabi.org), and the 
Global Biodiversity Information Facility (GBIF: https:// 
www.gbif.org/). These data were complemented by pub
lished journal articles from Semantic Scholar (seman
ticscholar.org), Google Scholar (https://scholar.google. 
com.), and Web of Science (https://www.webofknow 
ledge.com). To better represent the occurrence of the 
species worldwide, peer-reviewed articles in any year 
were considered for this study (Supplementary Tables S1 
and S2). The keywords used were ‘Corn Stunt + occur
rence world’, ‘Corn reddening + occurrence world’, ‘CS 
in the corn/maize’, ‘Maize Bushy Stunt + occurences, 
Maize Bushy Stunt + maps’, ‘Corn Reddening in corn/ 
maize’, ‘CR in corn/maize’, ‘Corn stunt disease’ and 
‘CS in corn/maize’. A total of 193 and 158 records were 
found for CS and CR, respectively. For performing the 
analysis, we obtained the location (region with infected 
corn plants), latitude, longitude, disease type (CS or CR), 
and references (Supplementary Tables S1 and S2) where 
these diseases were reported in the data where we found 
their occurrence. Various procedures for cleaning occur
rence data were adopted: (a) only records with a spatial 
resolution ≤1 km were retained for analysis; (b) occur
rence records with a radius of 10 km around the centers of 

capital cities and 5 km around the centers of countries, 
states, and provinces/municipalities were removed; (c) 
those with the same absolute longitude and latitude, 
a radius of 0.5 degrees around the GBIF headquarters, 
duplicate coordinates, and zero values were also removed; 
and (d) records located in water or that had not been 
associated with all the selected environmental variables 
were removed (Ramos et al. 2018; Santana et al. 2019; 
Aidoo et al. 2022; Wang et al. 2023).

Accounting for sampling bias is the biggest challenge 
faced by presence-only and presence-background species 
distribution models; no matter what type of model is cho
sen, the use of biased data will mask the true relationship 
between occurrences and predictor variables (Barber et al.  
2022; Schartel and Cao 2024).

A filter in environmental space was applied to 
reduce sampling bias. As environmental filters are 
sensitive to bin size, four bin sizes were tested (4, 6, 
8, and 10). For each of them, the spatial autocorrela
tion between the filtered records was calculated based 
on Moran’s I and the number of filtered records. Next, 
the number of bins with the lowest quartile of Moran’s 
I was selected and, of these, the one with the highest 
number of records (Velazco et al. 2022). A regular 
multidimensional grid was then created in the envir
onmental space determined by the predictor variables. 
The cell size of this grid was defined by the number of 
bins selected to divide the range of variable values 
into interval classes (Varela et al. 2014; Castellanos 
et al. 2019). Then, a single occurrence was randomly 
selected within each grid cell.

Occurrence data was partitioned to assess the model’s 
performance using spatial block cross-validation since this 
method allows the potential spatial autocorrelation between 
the model’s training and test data to be controlled and its 
transferability to be assessed more adequately than other 
partitioning methods (Roberts et al. 2017; Valavi et al.  
2019). Geographically structured data partitioning methods 
are especially useful for assessing the transferability of 
models to different regions or periods (Roberts et al.  
2017; Santini et al. 2021). To select the best grid size 
(square blocks, similar to the checkboard scheme), 30 
grids were generated with resolutions ranging from 0.5 
(~56 km) to 5 degrees (~557 km), in four partitions, with 
a minimum of five occurrences per partition, using 80% of 
the presences for the autocorrelation test, and the one with: 
(a) the lowest spatial autocorrelation, by Moran’s I; (b) the 
maximum environmental similarity, considering the 
Euclidean distance; and (c) the minimum difference in the 
number of records between training and test data, given by 
the standard deviation (Velazco et al. 2019).
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Climate variables

In this study, a total of 19 bioclimatic parameters were 
utilized from the WorldClim version 2.1 (Fick and 
Hijmans 2017) dataset for both present-day and future 
scenarios, with an average spatial resolution of 2.5  
minutes (~4.6 km at the equator), obtained with the 
{geodata} package version 0.6–2, to assess current cli
matic conditions, since they capture the annual variations 
and limiting factors that are known to influence the 
geographical distribution of species (Fick and Hijmans  
2017). An elevation variable was added, the main source 
of which was the Shuttle Radar Topography Mission 
(SRTM), whose data are available between −60° and 
60° latitude, supplemented with GTOP30 data for the 
higher latitudes (> 60°).

The selection of variables for the model was carried 
out through an iterative (data-driven) process based on 
adjustments and refinements of Maxent models during 
the modelling procedure, with the resulting variables 
being evaluated and complemented about their biological 
relevance.

Calibration area and background selection

The calibration area (CA) was considered to be equiva
lent to the species movement (M) region of the BAM 
diagram (Soberon and Peterson 2005; Phillips et al.  
2006). The accessible area approach of the BAM frame
work was used, i.e., the CA was the theoretical target for 
defining the area accessible to the species. These areas 
depend on opportunities and restrictions to M, including 
areas where species could potentially be present 
(Soberon 2010; Barve et al. 2011; Mendes et al. 2020).

The size of the calibration area affects the model’s 
performance metrics. The discrimination capacity of 
models (i.e., the ability to correctly distinguish presence 
and absence locations), for example, usually increases 
with the size of the calibration area (Anderson and Raza  
2010; Barbet-Massin et al. 2012). This is mainly because 
larger areas tend to include more ecologically distant 
absences from presences, which are easier to distinguish 
(Lobo et al. 2008; VanDerwal et al. 2009). The model’s 
ability to predict the probability of occurrence decreases 
with the size of the calibration area, since larger surfaces 
tend to include areas far from presence sites, which are 
not relevant for inferring the interaction between the 
species and the environment (Acevedo et al. 2012).

In some cases, different calibration areas, taking into 
account the characteristics of the occurrences, can be 
useful for exploring the different dynamics of 
a phenomenon, i.e., areas other than those delimited by 

the occurrences can be included (Elith et al. 2011). If the 
aim is to capture the potential distribution, the location 
data used to develop the model should ideally be 
extracted from the widest possible geographical and 
environmental range, provided that scientific criteria are 
used to define the extent and limits of the CA (Jarnevich 
et al. 2015; Sillero and Barbosa 2021).

Considering the method of biogeographic entities, the 
Köppen-Geiger climate zones with at least one occur
rence record were used to delimit the CA as biotic 
regions, i.e., climatic and geographic units that share 
the environmental and historical adaptations of the 
species.

Presence-background-based distribution models, such 
as Maxent, estimate the relative probability of presence 
by comparing the sites of occurrence with a background 
(an environmental context), which consists of all the 
sites in the calibration area, i.e., sites where the species 
is present, as well as those without presence information, 
where its occurrence is unknown (Phillips et al. 2006; 
Elith et al. 2011; Aidoo et al. 2022).

The background sample should be chosen to reflect 
the environmental conditions that one is interested in 
contrasting with the occurrences, based on the spatial 
scale of the ecological issues of interest (Saupe et al.  
2012). Thus, 10 000 points were selected, and randomly 
distributed throughout the calibration area, equally stra
tified to the presence points in each partition (Phillips 
and Dudík 2008; Barbet-Massin et al. 2012).

MaxEnt modeling

All procedures relating to data processing, model develop
ment and maps and graphs were carried out using the 
R environment, version 4.4.0 ‘Puppy Cup’ (R Core Team, 
R 2023), in a fully automated framework, developed based 
on best practices and recommendations relating to species 
distribution modelling with Maxent (Sillero 2011; Merow 
et al. 2013; Santini et al. 2021). We used the following 
packages: {terra} version 1.7–78 and {sf} version 1.0–16, 
for the analysis and transformation of spatial data; 
{ENMeval} 2.0.4, for the selection of variables; {flexsdm} 
version 1.3.4, for all procedures, for all the species distri
bution modelling procedures, with features from {maxnet} 
version 0.1.4; {pROC} version 1.18.5, for graphs and ROC 
curve estimates; {tmap} version 3.3–4, to plot all the 
resulting maps; and {ggplot2} 3.5.1, to visualize the var
ious results (Phillips et al. 2006; Wickham 2018).

The maximum entropy model (Maxent) was used 
through an inhomogeneous Poisson point process, since 
this method is among the most widely used to model 
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species distribution and has shown good performance 
compared to others (Phillips et al. 2006; Elith and 
Leathwick 2009; Elith et al. 2011; Valavi et al. 2019).

Presence-background models, such as Maxent, com
pare the environmental conditions available in the cali
bration area (defined by the background points) with the 
conditions used by the species as represented by their 
occurrences (Hirzel et al. 2006; Phillips et al. 2006). All 
the background locations where there is no record of the 
species occurring are considered to be available and 
unused conditions. In theory, these models can distin
guish between suitable and unsuitable habitats, not 
directly providing the probability of finding the species 
in a given location, but rather an index of habitat suit
ability, i.e. the quality of the habitat for the survival and 
persistence of the species, which is specific to each 
modelling method (Sillero 2011; Acevedo et al. 2012). 
In general terms, the suitability of the habitat does not 
guarantee the presence of the species, nor does the 
unsuitability of the habitat guarantee its absence. To 
identify habitat suitability for a particular species, i.e. 
those sites that meet the environmental requirements of 
that species in the study area, presence-background or 
presence-only methods are preferable (Sillero and 
Barbosa 2021).

For Maxent models, the two main parameters to be 
adjusted are: (1) the regularization multiplier; and (2) the 
combinations of feature classes (Elith et al. 2011; Merow 
et al. 2013). The regularization multiplier (RM) deter
mines the penalty associated with including variables or 
their transformations (features) in the model. Higher RM 
values impose a stronger penalty on model complexity 
and therefore result in simpler (flatter) forecasts (projec
tions). The features determine the potential shape of the 
marginal response curves. A model that can only include 
linear classes is likely to be simpler than a model that 
can include all possible features.

Features are transformations of the original predictor 
variables used to build the model and can be linear, quad
ratic, threshold, hinge, product and categorical (Merow 
et al. 2013). Hinge features tend to make linear and thresh
old features redundant. One way to obtain a relatively 
smoother fitted model, similar to a generalized additive 
model, is to use only hinge features (Elith et al. 2011). 
Excluding product features creates an additive model that is 
easier to interpret, although less capable of representing 
complex interactions (Elith et al. 2011).

A first Maxent model (base model) was fitted 
(Maxent’s default settings) using a data set with the 
coordinates of the presence and background points and 
the values of all the predictor variables at these points to 

evaluate and select the most important variables for the 
final model using 4-fold cross-validation.

A selection of data-driven variables was carried out: 
from the base model, iterate through all the variables, 
starting with the one with the greatest contribution (impor
tance of the permutation); if the variable is correlated with 
other variables, considering the Spearman rank coefficient 
> |0.7|, a Jackknife test is carried out and, among the 
correlated variables, the one that decreases the model’s 
performance the least when removed is removed, accord
ing to the True Skill Statistic (TSS) metric (Allouche et al.  
2006; Brown and Anderson 2014). The process is repeated 
until the remaining variables are no longer correlated at the 
set level (Vignali et al. 2020).

Subsequently, to optimize the parsimony of the model, 
as many variables as possible were removed while pre
serving their performance, evaluated based on a single- 
exclusion Jackknife test and according to the TSS 
metric, considering a cut-off that keeps only those 
whose permutation percentage importance is greater 
than 3%. Reducing the number of predictors can limit 
overfitting and thus result in a model that generalizes 
better and therefore produces more accurate predictions 
for data not used during training (Vignali et al. 2020).

The final model was designed on a global scale. 
A probability of occurrence map was generated, given 
the local environmental conditions, with values between 
0 and 1, with a resolution of 2.5 minutes. The result of 
the projection was divided into five fixed probability 
classes, dividing the probability of occurrence into: (a) 
inadequate (0–10%); (b) marginal (10–20%); (c) moder
ate (20–50%); (d) optimal (50–80%); and (e) high (80–
100%). The area of each class is estimated and becomes 
the reference for assessing the effect of climate change.

The AUC, which is the area under the ROC (Receiver 
Operating Characteristic) curve, indicates the model’s ability 
to distinguish between presences and absences (or pseudo- 
absences, or background) and, despite its limitations, is 
a statistic widely used to characterize the performance of 
SDMs (Allouche et al. 2006; Lobo et al. 2008; Schartel and 
Cao 2024). Graphs for evaluating the AUC and partial AUC, 
together with a presence only calibration graph, allow the 
evaluation of the models by the metrics to be complemented 
visually (Elith et al. 2011). While the AUC provides 
a general measure of performance, the partial AUC 
(pAUC) with a 10% threshold allows a more specific region 
of the ROC curve to be identified for decision-making.

Projections for future scenarios were made using down
scaled global climate models (GCMs) from Coupled 
Model Intercomparison Projections (CMIP) 6, with data 
obtained from Worldclim 2.1. Three GCMs were used 
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(MRI-ESM2-0, MIROC6 and MPI-ESM1-2-HR) to calcu
late the average of three SSPs, which refer to the last 
iteration of scenarios used for the CMIP6 (SSP1–2.6: low 
greenhouse gas emissions (GHGs); SSP2–4.5: medium 
GHG emissions; and SSP5–8.5: high GHG emissions) 
and two time periods (2021–2040 and 2041–2060) 
because, despite using identical functions, the various 
GCMs differ greatly in their forecasts for the 21st century 
(von Storch et al. 2016; Yukimoto et al. 2019).

Results

Model performance and variable contribution

A total of 375 points referring to the distribution of CS 
and CR were identified, with the application of the 

environmental filter (10 bins, with Moran’s I = 0.3555); 
these points were reduced to 193 points referring to 
CS (Fig. 1a) and another 158 to CR (Fig. 1b) for 
a total of 351 points. Both are centred mainly on 
South America, a region characterized by a tropical 
climate and of significant representation in the produc
tion of corn, the exclusive host of CS and CR. Corn 
reddening is present on four continents (America, 
Asia, Europe and Africa), which shows its great adapt
ability to climatic conditions and establishes a warning 
sign for corn-producing regions. For Brazilian states 
that produce the largest amount of corn, which are 
Mato Grosso (MT), Goias (GO) and Parana (PR), the 
model showed high suitability. Corn stunt is present 
only in the American continent, both in North and 
South America.

Fig. 1 Current global distribution for corn stunt (a) and corn reddening (b).
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Figure 2, obtained with the {corrplot} package version 
0.92, shows the covariates used, grouped according to the 
hierarchical cluster analysis, considering their correlation 
measured by the Spearman rank correlation coefficient (ρ), 
based on their values in the coordinates of occurrence.

The data-driven variable selection process, using 
Maxent itself with default parameters, resulted in seven 
variables for CS: ‘Bio02’, ‘Bio04’, ‘Bio05’, ‘Bio15’, 
‘Bio18’, ‘Bio19’ and ‘Elev’ and seven variables for CR: 
‘Bio02’, ‘Bio03’, ‘Bio10’, ‘Bio15’, ‘Bio17’, ‘Bio18’ and 
‘Bio19’. Descriptive statistics for these variables, consider
ing their values in the coordinates of occurrence of CS and 
CR, are presented in Table 1, along with the others.

The fine adjustment resulted in a Maxent model with FC  
= QHP and RM = 0.5. Considering some of the most com
monly used metrics (Table 2), such as the Boyce Index, 
which measures the sensitivity of the model and allowed it 
to identify 0.89% of the areas where the CS occurs and 
0.93% of the area where the CR occurs, and TPR, which 
measures the sensitivity of the model and allowed it to 
identify 84.2% (CS) and 81.4 (CR) of the species’ actual 
areas of occurrence, indicated whether the model tends to 
correctly predict suitable areas for the species. It can thus 
be inferred that the model developed was able to discrimi
nate between the occurrences of the test data set and the 
background points adequately to identify the potential glo
bal geographical distribution of CS and CR.

Based on the pAUC, among the 10% of predictions 
with the highest probability of occurrence, 71.2 (CS) and 
73.2% (CR) of unsuitable areas were correctly identified 
as such by the model (specificity), and 73.2% (CS) and 
68.7% (CR) of the sites where the species is present 
were correctly identified as suitable (sensitivity), indicat
ing that the model is reliable in identifying critical areas, 
with a slight inclination towards sensitivity, in agreement 
with the values observed in the metrics (Fig. 3).

Potential distribution under current climatic conditions

Considering the percentage importance of the permu
tation of variables in the final model (Fig. 4), of the 
seven variables used to fine-tune the Maxent model for 
CS and seven variables for CR, the four most impor
tant were, for CS: ‘Bio2’ (average diurnal variation), 
‘Bio5’ (max temperature of warmest month) ‘Bio4’ 
(temperature seasonality) and elevation; and for CR, 
they were: ‘Bio3’ (isothermality), ‘Bio2’ (average 
diurnal variation), ‘Bio18’ (precipitation of warmest 
quarter) and ‘Bio17’ (precipitation of driest quarter), 
respectively.

Individual marginal response curves (partial depen
dence plots), which show the relationship between the 
probability of occurrence and each of the covariates, 
whereby the response is modelled for one variable 
while the others are kept constant at their mean along 
with frequency histograms and density curves of the 
values of the variables at the species’ points of presence, 
are shown in Fig. 5 for the four variables with the high
est percentage permutation importance in the final 
model. Inspection of the response curves shows that 
there are no bimodal responses, as expected.

The response curves show that the probability of CS 
occurrence is higher within localities with moderate 
mean diurnal range (‘Bio2’) > 11°C, with max tempera
ture of the warmest month (‘Bio5’) varying between 24 
and 37°C, and temperature seasonality (‘Bio4’) ranges 
varying between 30 and 80%. The response curves show 
that the probability of CR occurring is higher in loca
tions with isothermality ranging between 60 and 80% 
(‘Bio3’), with an average daytime temperature range 
between 13 and 17°C (‘Bio2’) and precipitation in the 
hottest quarter > 50 mm (‘Bio18’). Additionally, the con
ditions identified suggest that CS can have a competitive 
advantage in temperate regions where the nights are cold 
and the days are warm, with relatively stable climates 
and moderate winter humidity, avoiding climatic 
extremes. Corn reddening occurs in areas mainly when 
there is a large variation within a month.

Figure 6 shows the potential geographical distribution 
of CS and CR for current climatic conditions. The high
est related probabilities are centred mainly in South 
America, a region characterized by a tropical climate 
and with significant representation in the production of 
maize, the exclusive host of CS and CR. Corn redenning 
is present on four continents (America, Asia, Europe and 
Africa), which demonstrates its greater adaptability to 
climatic conditions and sets off a warning signal for 
maize-producing regions. For the Brazilian states that 
produce the most corn (MT, GO and PR), the model 
showed high suitability. On the other hand, CS is only 
present on the American continent, both in North and 
South America. The model showed 100% agreement 
with the occurrence records within the validation area 
by combining the estimated areas suitable for CS 
(Fig. 6a) and CR (Fig. 6b).

The specified probability classes (inadequate (0–
10%), marginal (10–20%), moderate (20–50%), opti
mal (50–80%) and high (80–100%)) and the estimate 
of the corresponding areas, considering a resolution of 
2.5 minutes, are presented in Fig. 7. Environments 
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Fig. 2 Bioclimatic variable covariates and their correlation for corn stunt (CS; a, b) and corn reddening (CR; c, d). Correlation between 
bioclimatic variables: (a and c) the colour lilac with a slope to the right indicates a positive correlation, while orange with a slope to the left 
indicates a negative correlation. The intensity of the correlation coefficient increases as the shape changes from circle (ρ = 0) to ellipse (ρ =  
intermediate) to line (|ρ| = 1); correlated variables were grouped by Ward’s method (groups are more homogeneous internally, with the most 
heterogeneous among themselves) through hierarchical cluster analysis. Estimated values of the correlation coefficients between the 
variables, following the same colour pattern (b, d).
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with a high probability of occurrence of CS cover 
1,570,399 km2 and 2,176,929 km2 for CR; and envir
onments with an optimal probability cover 5,776,878  
km2 for CS and 3,296,249 km2 for CR.

Figure 8 shows where there are conditions for the 
establishment of the species, by applying the Minimum 
Training Presence value, which represents the mini
mum environmental suitability that is still considered 
sufficient for the presence of the species (marginal 

conditions); and the 10th Percentile Training Presence, 
which considers only the top 90% of the presence 
points as suitable, ignoring the bottom 10%, reducing 
the inclusion of environments with marginal 
conditions.

Figure 9 shows the global projection of the presence/ 
absence of CS and CR based on the application of 
a threshold that maximizes the sum of sensitivity and speci
ficity (estimated at 0.3312), identifying the areas with the 

Table 1. Descriptive statistics of the covariates used in the models, considering their values in the coordinates of occurrence of corn stunt 
(CS) and corn reddening (CR). Variables that contributed to the model are in bold.

Variable Variable Name Minimum Maximun Median Mean SD

CSa

Bio01 Annual Mean Temperature 4.82 27.84 20.10 20.55 3.82
Bio02 Mean Diurnal Range 8.65 18.31 12.48 12.42 1.55
Bio03 Isothermality 27.01 88.24 61.74 61.09 10.77
Bio04 Temperature Seasonality 27.64 1156.35 289.01 302.55 209.77
Bio05 Maximum Temperature of Warmest Month 23.13 37.39 30.51 30.63 2.48
Bio06 Minimum Temperature of Coldest Month −13.99 22.37 9.13 9.44 6.13
Bio07 Temperature Annual Range 10.93 43.61 20.06 21.20 5.68
Bio08 Mean Temperature of Wettest Quarter 8.67 28.34 23.13 22.61 3.51
Bio09 Mean Temperature of Driest Quarter −6.93 28.04 17.72 17.86 6.01
Bio10 Mean Temperature of Warmest Quarter 15.61 30.17 23.57 23.98 2.35
Bio11 Mean Temperature of Coldest Quarter −7.55 27.30 16.13 16.66 6.11
Bio12 Annual Precipitation 299.00 3789.00 1578.00 1492.34 494.63
Bio13 Precipitation of Wettest Month 91.00 598.00 209.00 225.00 78.71
Bio14 Precipitation of Driest Month 0.00 145.00 31.00 46.33 42.02
Bio15 Precipitation Seasonality 9.58 191.62 53.02 54.54 30.30
Bio16 Precipitation of Wettest Quarter 211.00 1350.00 548.00 601.06 211.69
Bio17 Precipitation of Driest Quarter 0.00 508.00 126.00 169.53 146.18
Bio18 Precipitation of Warmest Quarter 8.00 824.00 491.00 465.28 159.10
Bio19 Precipitation of Coldest Quarter 1.00 1024.00 161.00 218.70 187.19
Elevation Elevation 3.00 2214.00 481.00 514.10 368.51

CRa

Bio01 Annual Mean Temperature −4.15 27.24 19.10 17.91 6.45
Bio02 Mean Diurnal Range 6.08 17.87 12.79 12.45 1.88
Bio03 Isothermality 21.46 89.69 60.14 56.82 14.59
Bio04 Temperature Seasonality 40.42 1505.62 310.14 383.29 301.20
Bio05 Maximum Temperature of Warmest Month 13.86 42.25 29.62 29.30 4.30
Bio06 Minimum Temperature of Coldest Month −29.77 22.50 7.94 5.68 9.46
Bio07 Temperature Annual Range 9.10 51.88 21.27 23.62 7.75
Bio08 Mean Temperature of Wettest Quarter −3.48 28.97 22.29 20.46 5.18
Bio09 Mean Temperature of Driest Quarter −20.70 29.86 16.21 14.67 9.34
Bio10 Mean Temperature of Warmest Quarter 7.02 32.69 23.13 22.34 4.13
Bio11 Mean Temperature of Coldest Quarter −22.94 26.23 14.90 13.04 9.72
Bio12 Annual Precipitation 106.00 3502.00 1578.00 1380.25 566.91
Bio13 Precipitation of Wettest Month 19.00 460.00 209.00 208.03 87.80
Bio14 Precipitation of Driest Month 0.00 187.00 26.00 45.92 44.94
Bio15 Precipitation Seasonality 9.58 141.44 48.23 53.25 31.38
Bio16 Precipitation of Wettest Quarter 49.00 1266.00 539.00 552.63 241.67
Bio17 Precipitation of Driest Quarter 0.00 620.00 88.00 167.13 154.46
Bio18 Precipitation of Warmest Quarter 48.00 832.00 455.00 421.45 188.88
Bio19 Precipitation of Coldest Quarter 3.00 1227.00 114.00 202.35 189.91

aCS, corn stunt; CR, corn reddening. 
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highest probability of the species occurring based on the 
conditions established by the selected climatic variables.

Potential distribution under future climate conditions

The models predict the suitable distribution areas of CS 
and CR on a global scale in the future (2041–2060) in 
two different scenarios (SSP2–4.5 and SSP5–8.5). In 
the SSP2–4.5 scenario (2041–2060), the MaxEnt 
model predicted that CS would have a highly suitable 
habitat on the American continent. Concerning the vali
dation of the forecast (2041–2060), the models showed 
greater adaptability in the world’s main corn-producing 
countries: the United States, China and Brazil. On the 
other hand, for SSP5–8.5, Maxent predicted that suita
ble CS and CR habitat will decrease by 2060 in the 
United States and China, Brazil. These countries 
showed a significant reduction in the occurrence of CS 
and CR. A reduction in the extent of suitable habitat 
was observed across the entire area of suitable habitat in 
the climate change scenarios (Fig. 10).

Discussion

This work is the first that has been undertaken to assess 
suitable areas for CS and CR and the impact of climate 
change on these diseases worldwide, currently and in the 
future using R-based analysis version 4.4.0 ‘Puppy Cup’. 

The results were based on climatic requirements that 
combine the necessary environmental adequacy for CS 
and CR to survive in corn. Our model represented 100% 
of occurrence records within the validation area by com
bining the estimated suitable areas for point occurrences 
of CS and CR by modelling through MaxEnt in R-based 
analysis version 4.4.0 ‘Puppy Cup’. Our model high
lights favourable and unfavourable regions for the dis
tribution of CS and CR, highlighting the main factors 
limiting the climatic adequacy of the current time and 
future time.

Considering these assumptions, our model has a good 
fit with the current global distribution of CS and CR, 
including the areas used as validation, which provided 
data that were used to determine bioclimatic require
ments. The consistency of the validation statistic for 
CS and CR projections demonstrates the models’ relia
bility. Our results allow us to make reliable assumptions 
about suitable areas for the development of CS and CR 
around the world. In the proposed model, the bioclimatic 
variable related to annual precipitation played an impor
tant role in the projections of the spatial distribution of 
CS and CR.

Previous studies with polymerase chain reaction 
(PCR) tests indicated that CR was more tolerant to 
low temperatures than CS (Sabato et al. 2020). Nault 
(1980) found that the latent period of the CR patho
gen, Candidatus Phytoplasma ssp., in its insect vector, 

Table 2. Metrics for evaluating the final Maxent model of corn stunt (CS) and corn reddening (CR).

Metric Names (CS) Values Metric Names (CR) Values

True Positive Rate, Sensitivity or Recall (TPR) 0.84196 True Positive Rate, Sensitivity or Recall (TPR) 0.81394
True Negative Rate or Specificity (TNR) 0.82431 True Negative Rate or Specificity (TNR) 0.81164
True Skill Statistic (TSS) 0.66628 True Skill Statistic (TSS) 0.62558
Sorensen Index 0.15345 Sorensen Index 0.11056
Jaccard Index 0.08396 Jaccard Index 0.05870
F-measure on Presence-Background (FPB) 0.16792 F-measure on Presence-Background (FPB) 0.11741
Omission or False Negative Rate (OR) 0.15804 Omission or False Negative Rate (OR) 0.18606
Boyce Index 0.89161 Boyce Index 0.93303
Area Under ROC Curve (AUC) 0.88115 Area Under ROC Curve (AUC) 0.86926
Area Under Precision/Recall Curve (AUCPR) 0.21235 Area Under Precision/Recall Curve (AUCPR) 0.23340
Inverse Mean Absolute Error (IMAE) 0.87886 Inverse Mean Absolute Error (IMAE) 0.86945
False Positive Rate (FPR) 0.17569 False Positive Rate (FPR) 0.18836
Positive Predictive Value or Precision (PPV) 0.82736 Positive Predictive Value or Precision (PPV) 0.81208
Negative Predictive Value (NPV) 0.49470 Negative Predictive Value (NPV) 0.49929
Accuracy 0.83314 Accuracy 0.81279
F1 Score 0.83460 F1 Score 0.81301
Balanced Accuracy 0.83314 Balanced Accuracy 0.81279
Matthews Correlation Coefficient (MCC) 0.66638 Matthews Correlation Coefficient (MCC) 0.62559
Minimum Training Presence (MTP) 0.01052 Minimum Training Presence (MTP) 0.00028
10th Percentile Training Presence (10TP) 0.06402 10th Percentile Training Presence (10TP) 0.06555
Symmetric Extremal Dependence Index (SEDI) 0.81504 Symmetric Extremal Dependence Index (SEDI) 0.77982

CS, corn stunt; CR, corn reddening. 
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Fig. 3 Graphs of the area under the receiver operating characteristic (ROC) curve (AUC), partial AUC at 10% of the final Maxent model for 
corn stunt and corn reddening.

Fig. 4 Percentage importance of permutation of variables in the final Maxent model of corn stunt and corn reddening.
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Daubulus maidis, and the transmission rate were 
lower in temperatures of 15°C and 30°C, and higher 
at temperatures of 20°C and 25°C. Therefore, in this 
work, we considered climate variables that are similar 
to other studies of CS and CR. Many factors can 
affect the distribution of diseases, such as the patho
gen’s ability to reach and develop at a potential site 
and to compete with other organisms occupying the 
same habitat (Raza and Bebber 2022; Singh et al.  

2023). It is important to note that, in this study, we 
considered only the climatic suitability; and there are 
other factors that might limit the distribution of CS 
and CR in corn, such as geographic barriers, the 
characteristics of the insect vector, and natural ene
mies. In addition, spatial distribution studies have 
some uncertainties and, in general, there is consis
tency among the climate change projections of the 
different models. However, the magnitude of climate 

Fig. 5 Frequency histograms (in light blue) with density curves (considering only occurrences, in orange), and individual response curves 
(green lines) and and average values (dashed lines), from the final Maxent model of corn stunt (CS) (a) and corn reddening (CR) (b). Curves 
are presented for the important variables identified in the analyses presented earlier.
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change strongly depends on the mitigation policies 
that may be applied in the future (IPCC 2020). The 
model’s parameterization has to be performed in order 
to obtain results that are consistent. Therefore, the 
modler’s knowledge and experience about the species 
are essential.

It is important to note that, in this study, we considered 
the climatic suitability for CS and CR. Pfordt and Paulus 
(2025) noted that accurate and early diagnosis of maize 
diseases is crucial for effective disease management, 

preventing infection and spread. Pozebon et al. (2022) 
pointed out that monitoring the incidence and severity 
of CS and CR in corn-producing regions, and relating 
this information to climatic data and characteristics, 
seems to be an important tool for determining the 
behaviour of these diseases over time. It is also useful 
for evaluating the effectiveness of adopting manage
ment measures at a regional level and allocating 
resources and prevention measures to the most proble
matic production areas.

Fig. 6 Potential geographical distribution of corn stunt (CS) and corn reddening (CR) under current climatic conditions and points of 
confirmed occurrence of CS (a) and CR (b).
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Currently, the digital transformation of agriculture is 
enabling the collection of vast amounts of georeferenced 
information about growing conditions within the field and 
facilitating the automated implementation of spatially 
varying input applications. This has the potential to 
increase production efficiency, reduce over- 
application of inputs, lower input waste and pollution 
and improve farm profitability with cost-effective 
adoption of digital technologies (Khanna 2021). Corn 
producers’ use of technological tools is gaining more 

and more prominence in the agricultural context. The 
results of our climate model can be helpful for the 
development of software that will facilitate the phyto
sanitary management of CS and CR occurrence in 
cornfields. Understanding the relationship between cli
mate and disease is essential for developing software 
to facilitate phytosanitary management (Liu et al.  
2015; Singh et al. 2023; Tonle et al. 2024).

The species distribution maps are of great importance for 
obtaining new information that can help improve a country’s 

Fig. 7 Probability classes for the potential geographical distribution of corn stunt (a) and corn reddening (b) under current climatic 
conditions and estimates of areas (based on 30-second resolution) and points of confirmed occurrence of the species.
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phytosanitary regulations and creating a strategic plan to 
avoid the dissemination of CS and CR. This study identified 
the most likely locations for the occurrence of both species 
and precisely determined the relationship between the envir
onmental preferences of each species and the probability of 
CS and CR occurrence. These areas corresponded to areas in 
South America, Africa and small areas in the south of the 
United States, China and Brazil. Another important point is 
that regions of the world such as southeastern Australia and 
the African continent (Mamibia, Botswana, southeastern 

South Africa, Madagascar, Mozambique and Tanzania) are 
regions where CS and CR have not yet occurred, but which 
are climatically suitable for the introduction of these 
diseases.

Comparing data from this work with data from CS and 
CR freely available online on the website of the 
Brazilian Ministry of Agriculture, Livestock and 
Supply (https://www.gov.br/agricultura/en-br/assuntos/ 
sanidade-animal-e-vegetable/vegetable-health/corn- 
stunts), it is evident that our model p finds similar data, 

Fig. 8 Potential geographical distribution of corn stunt (a) and corn reddening (b) considering the application of the threshold with minimum 
suitability for the species (marginal probability of occurrence) and the threshold that allows the identification of the most suitable areas 
(highest probability of occurrence, 10th Percentile Training presence) and points of confirmed occurrence of the species.
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since the CS and CR occurrence locations are exactly the 
same. In other research, Luedeling et al. (2011) reported 
the important effects of temperature on insect pests, and 
their results clearly indicate that generation numbers are 
going to rise for most pests, also using distribution maps. 
In addition, development and fitness of insect vector 
D. maidis vary with constant and threshold temperature, 
which may represent useful information for studies aim
ing to predict its potential distribution (Van 
Nieuwenhove et al. 2016).

This work considered climate variables in the cur
rent time period and 2041–2060 to determine suitabil
ity for CS and CR using MaxEnt model R-based 
analysis version 4.4.0 ‘Puppy Cup’. Thus, further stu
dies considering other variables are necessary, such as 
the presence of other host species, seed treatments and 
resistant cultivars, among others. Suitability maps are 
important tools for pest risk analysis. These maps can 
support monitoring programs in countries where the 
species already occurs and determine guidelines and 

Fig. 9 Points of confirmed occurrence of the species and potential geographical distribution of corn stunt (CS) and corn reddening (CR) and 
considering the application of the threshold that maximizes the sum of sensitivity and specificity for (a) CS, maxSSS = 0.2264 and (b) CR, 
maxSSS = 0.2322.
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Fig. 10 Potential geographical distribution for corn stunt (a) and corn reddening (b), considering the average of different climate scenarios, 
expressed by continuous probability (0 to 1) and by defined probability classes (2.5-minute resolution).
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measures to prevent the risk of invasion of CS and CR 
in other regions. These maps are also important tools 
for pest risk analysis, quarantine strategies and to 
support phytosanitary actions. These results can help 
develop strategies to suit CS and CR and support 
future research and supporting biosafety practices.

Conclusion

We assessed the impact of climate change on the dis
tribution of two corn diseases: corn stunt and corn red
dening. Locations with moderate mean diurnal range 
(‘Bio2’), > 11°C, with the maximum temperature of 
warmest month (‘Bio5’) varying between 24 and 
37°C, and temperature seasonality (‘Bio4’) varying 
between 100 and 750 mm, are climatically suitable for 
CS. The probability of CR occurring is higher in loca
tions with isothermality ranging between 60 and 80% 
(‘Bio3’), with the average daytime range varying 
between 13 and 17°C (‘Bio2’) and precipitation in the 
hottest quarter > 50 mm (‘Bio18’). For Brazilian states, 
for example, that produce the biggest amount of corn 
(MT, GO, and PR) the model showed high suitability to 
both diseases in current time and future. There will be 
an increase in areas in the world with high ecoclimatic 
suitability for the disease, especially in 2070 and in 
climate change scenario SSP2–4.5. The results pre
sented in this study show that, for future projections 
(2070), the American continent has greater climatic 
aptitude for CS, whereas for the African continent, the 
aptitude was smaller. Our models indicate that areas 
with a suitable climate for CS and CR occurrence will 
likely increase in corn-producing countries on the 
American continent and Western Europe. In contrast, 
corn-producing countries in Asia may have a reduced 
risk of CS and CR occurrence due to incompatible 
climate suitability.
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