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Bovine subclinical mastitis (SCM) is the costliest disease for the dairy industry. Technologies aimed at the early diagnosis of this
condition, such as infrared thermography (IRT), can be used to generate large amounts of data that provide valuable information when
analyzed using learning techniques. Te objective of this study was to evaluate and optimize the use of machine learning by applying
the Extreme Gradient Boosting (XGBoost) algorithm in the diagnosis of bovine SCM, based on udder thermogram analysis. Over
14months, a total of 1035 milk samples were collected from 97 dairy cows subjected to an automatic milking system. Somatic cell
counts were performed by fow cytometry, and the health status of the mammary gland was determined based on a cutof of
200,000 cells/mL ofmilk.Te attributes analyzed collectively included air temperature, relative humidity, temperature-humidity index,
breed, body temperature, teat dirtiness score, parity, days inmilk, mammary gland position, milk yield, electrical conductivity, milk fat,
coldest and hottest points in the mammary gland region of interest, average mammary gland temperature, thermal amplitude, and the
diference between the average temperature of the region of interest and the animal’s body temperature, as well as the microbiological
evaluation of the milk. Using the XGBoost algorithm, the most relevant variables for solving the classifcation problem were identifed
and selected to construct the fnal model with the best ft and performance. Te best area under the receiver operating characteristic
curve (AUC: 0.843) and specifcity (Sp: 93.3%)were obtainedwhen using all thermographic variables.Te coldest point in the region of
interest was considered the most important for decision making in mastitis diagnosis. Te use of XGBoost can enhance the diagnostic
capability for SCM when IRT is employed. Te developed optimized model can be used as a confrmatory mechanism for SCM.

Keywords: dairy cattle; Extreme Gradient Boosting; robotic milking system

1. Introduction

Mastitis is the costliest disease for the dairy industry due to
losses caused by decreased milk production and quality,

increased veterinary costs, reduced productive life, and
higher expenses for animal replacement. Te subclinical
form of the disease not only reduces production but also
impacts the nutritional quality of milk [1, 2]. Te subclinical
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mastitis (SCM) can be up to 40 times more common than
clinical mastitis, is more difcult to identify, and has
a greater economic impact [3].

Due to defciencies in the application of preventive
measures and the limited use of diagnostic techniques, most
subclinical diseases remain unidentifed until clinical
symptoms appear. Tis prolongs the negative efects on the
health and performance of dairy cows [4]. Terefore,
methods aiming for the rapid detection of SCM with high
diagnostic efciency are essential for disease control. Early
identifcation can help prevent the deterioration of udder
health and improve the efciency of dairy operations [5].

Te infrared thermography (IRT) is a technology with
the potential to be used as a screening method for detecting
animals with localized infammation. Objects with tem-
peratures above absolute zero emit infrared radiation in the
form of waves proportional to their body temperature. Te
thermal camera can capture the radiation emitted by the
target animals and the environment, generating a matrix of
thermal data represented by thermograms, which can be
interpreted to determine the thermal condition of an animal
or part of its body [6].

In addition to being a fast, efective, and noninvasive
tool, IRT has been described as a sensitive technique for
detecting small temperature variations on the surface of the
udder caused by SCM [1, 7]. However, its use in applications
aimed at diagnosing SCM has the potential for improve-
ment, although it still requires refnement and development
[8]. It is assumed that the diagnostic accuracy of IRT can be
enhanced when used in combination with other diagnostic
methods, taking into account factors that limit the use of
thermal cameras [1], such as direct sunlight, humidity, and
the dirtiness of the evaluated organ, as well as specifc
meteorological conditions [9].

When used in real time in the daily control of milking
systems, IRT can generate a large number of thermograms
for analysis and compose large databases. Analyzing this
information can aid the producer in decision making. De-
veloping techniques for processing thermal data would fa-
cilitate diagnostic interpretation through more precise
information [6], as well as advance control procedures and
management measures.

Currently, some health disorders in dairy cattle can be
identifed and predicted through the use of machine learning
algorithms, which integrate and analyze data from various
sources [4]. Machine learning techniques can be used to
translate large volumes of data (“Big Data”) into valuable
information [10]. In this context, machine learning tech-
niques can be applied to develop statistical models for
selecting the main predictive characteristics of SCM. Te
process of extracting information from datasets, previously
unknown and potentially useful, aims to identify regularities
and patterns, surpassing common multivariate statistical
methods in large-scale studies [3].

Supervised learning techniques include neural networks,
decision trees, Naive Bayes models, or support vector ma-
chines, in which the data used to develop the model are
labeled [10]. However, successful applications of machine
learning in various felds result from two important factors:

the use of efective statistical models that capture the
complex interdependencies of the data, and scalable learning
systems that learn the model of interest from large
datasets [11].

Te Extreme Gradient Boosting (XGBoost) algorithm is
a scalable decision tree boosting system widely used in data
science that provides state-of-the-art results for a variety of
problems [11]. It has built-in parameters capable of
addressing important optimization issues such as regulari-
zation and overftting-underftting. Its operation involves
evaluating efectiveness in classifcation problems by esti-
mating accuracy and determining the area under the receiver
operating characteristic curve (AUC) for a set of hyper-
parameter values that require adjustments [12].

Te analysis of databases from digital technologies such as
IRT using machine learning techniques is disruptive and
promising. It has the potential to generate information for
decision making, aiming at technical intervention and re-
ducing the negative efects of SCM in dairy cows. Terefore,
the objective of this study was to evaluate and improve the use
of machine learning by applying the XGBoost algorithm in the
diagnosis of bovine SCM through the development of image
analysis strategies for mammary glands generated by IRT.

2. Materials and Methods

2.1. Experiment Location, Period, and Animals. Te experi-
ment was conducted at Embrapa Southeastern Livestock in
São Carlos, Brazil (22°01′S 47°53′W, altitude 856m above sea
level), from October 2021 to December 2022. Ninety-seven
dairy cows, Holstein and Holstein vs. Jersey crossbreeds,
with varying degrees of lineage, between 15 and 275 days in
lactation, were voluntarily milked using the DeLaval VMS
V300 automatic milking system. Te animals were raised on
a Megathyrsus (syn. Panicum) maximum Jacques cv. BRS
Tamani pasture, maintained under irrigation and over-
seeded with oats (Avena byzantinaKoch, cv. IPR Esmeralda)
in the fall, and on a Urochloa (syn. Brachiaria) brizantha
(Hochst ex A. Rich.) Stapf cv. BRS Paiaguas pasture, in-
terspersed with Corymbia citriodora trees. Tey received
concentrate automatically during milking according to milk
production. During the winter, they were supplemented
with corn silage in troughs. Mineral mix and water were
provided ad libitum.

2.2. Milking Environment. Te environmental conditions of
air temperature (AT) and relative humidity (RH) were
continuously monitored. Data were collected using a Hobo
U12-013 sensor installed in the milking cabin, positioned
20 cm above the cows’ backs.Te sensor was programmed to
record readings every 10 s and provide average outputs every
5min [13, 14]. Te AT and RH were associated through
modeling by applying the temperature-humidity index
(THI), as described by Tom [15]. Te environmental in-
dicators were used to evaluate their infuence on the di-
agnosis of SCM using IRT, providing an accurate
understanding of the efect of the robotic milking
microclimate.
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2.3. Acquisition of Termograms and Data Extraction.
Termographic images were acquired immediately before
collecting milk samples for microbiological testing from the
lactating cows and prior to milking. A thermal camera with
a 640× 480-pixel detector, equipped with a 25-degree fxed
lens and an 11° × 9° telephoto lens, thermal sensitivity <
40mK (< 0.04°C at 30°C AT), and a temperature range from
−30°C to 350°C was used, adopting the manual focus
function. Images of the mammary quarters were taken from
a lateral approach, always from the right antimer. Te
emissivity was set to 0.98 [16].

For each mammary gland sample unit, at least three
thermal images were acquired during the evaluation of each
animal. As the images were generated while the animal was
not restrained and was in the milking parlor of the voluntary
system, not all images had the minimum attributes required
for subsequent analysis (e.g., perfect orthogonality between
the thermal sensor and the mammary gland). For this reason,
the 4756 images included in the image database were sub-
jected to a preliminary assessment of whether they met the
requirements (orthogonality, focus adjustment, absence of
intrusions or moisture on the mammary gland, etc.). A single
thermogram was then selected for each analyzed mammary
gland, again based on the largest feld of view that allowed the
region of interest (ROI) to be perfectly defned. Tis resulted
in a total of 1031 thermograms, of which 40 records with
partially missing data were removed during the data cleaning
process to reduce bias and increase the accuracy of the
analysis, resulting in 991 thermograms for machine learning.

Te thermograms were analyzed using the software IRSoft,
Version 4.8 SP1 (Testo AG; Lenzkirch, Germany), available at
https://www.testo.com/pt-BR/produtos/termografa-irsoft. To
this end, a circular-shaped ROI was delimited in the mammary
quarter, immediately above the teat of the gland under analysis
(Figure 1), as recommended by Hovinen [17]. Te variables of
interest included the temperatures of the coldest point (cold
spot), of the hottest point (hot spot), and the average tem-
perature of the ROI (°C). Te average surface temperature of
the analyzedmammary quarters was calculated by averaging all
the pixels within the defned area, while the minimum and
maximum temperatures were determined by automatically
identifying the points with lowest temperature (cold spot) and
highest temperature (hot spot), respectively.

2.4. Collection of Milk Samples and Measurement of Body
Temperature. Milk sample collection occurred between 07:
45 a.m. and 06:00 p.m. on a monthly basis over 14months,
totaling 1035 samples. Dirtiness scores were assigned to the
mammary glands [18] before any procedures. Pre- and post-
milking sanitizations were performed individually, with the
automatic attachment and removal of teat cups. Sanitization
was conducted using an iodine-based disinfectant, followed
by backfushing and air drying. Te electrical conductivity
(EC) of the milk was measured using sensors in the milk line
of each teat cup. A 60mL sample was collected from each
mammary quarter for somatic cell count (SCC) and fat
content measurement by fow cytometry (CombiFoss 7,
Foss, Hillerod, Denmark) and Fourier-transform infrared
spectroscopy, respectively.

Prior to the collection of milk samples to investigate the
infectious etiology of mastitis, automatic pre-milking teat
sanitization was performed, the frst three milk jets from
each mammary quarter were discarded, and the front and
rear right-side teats were sanitized with cotton soaked in
70% ethanol (v/v) until they were visually clean [19]. Clinical
mastitis cases were investigated in all mammary quarters
using a dark-bottomed strip cup immediately after dis-
carding the frst jets. Samples for microbiological diagnosis
were collected in duplicate in sterilized test tubes and sent
for laboratory analysis.

After milking, the cows were guided to a restraint alley to
measure body temperature by inserting a digital clinical
thermometer with an audible alarm indicating temperature
stability into the rectum.

2.5. Laboratory Analyses and Defnition of Mammary Gland
Health Status. Microorganisms were identifed based on the
macroscopic observation of colonies, according to their
morphotinctorial, biochemical, and culture characteristics
[20]. Te samples were plated on Petri dishes containing 5%
defbrinated sheep blood agar, incubated under aerobic
conditions at 37°C, and maintained for up to 72 h, with plate
readings conducted at 24-hour intervals.

A mammary quarter was classifed as “positive” for the
presence of microorganisms when one or more identical
colonies with the same morphology, pigmentation, and type
of hemolysis were isolated. If three or more types of colonies
were isolated, the sample was classifed as contaminated [19].
Following isolation, the microorganisms were cryopreserved
in BHI broth with glycerol and sent for analysis using
matrix-assisted laser desorption ionization time-of-fight
mass spectrometry (MALDI-TOF MS) [21]. Escherichia
coli was used as a positive control in the analyses. After
extraction procedures, the samples were analyzed using
MicroFlex 3.4 equipment (Bruker Daltonik, Bremen, Ger-
many), and mass spectrum processing was performed with
the MALDI Biotyper software, Version 4.1.70 (Bruker
Daltonik, Bremen, Germany), for microorganism identif-
cation (MBT Version 7311 MPS Library).

Te obtained results were expressed in scores, with ≥ 1.7
considered reliable for genus identifcation and ≥ 2.0 reliable
for both genus and species identifcation [21]. If a micro-
organism was not identifed in the frst MALDI-TOF MS
reading, the protocol was repeated. Isolated microorganisms
were grouped according to their capacity to induce an in-
crease in SCC (Table 1).

Given the possibility of obtaining SCC results auto-
matically through robotic milking, the health status of the
mammary quarter was defned exclusively based on SCC,
where values equal to or below 200,000 cells/mL were
considered as healthy mammary glands, while values above
this threshold were classifed as SCM [3, 23, 24].

Microbiological isolation was used to develop an ana-
lytical attribute with the aim of assessing its impact on the
predictive characteristics of SCM and determining the best
way to incorporate it into the execution of the XGBoost
algorithm. To this end, the isolation results were grouped
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into negative vs. positive and compared with the grouping
based on Table 1 (negative vs. major pathogens, minor
pathogens, and others). Tis analysis was conducted to fa-
cilitate decision making regarding the optimal strategy for
algorithm optimization.

2.6. Statistical Analysis

2.6.1. Data Preparation for Analysis. Initially, the data were
prepared for analysis through a pre-selection process that
involved removing missing data gaps to optimize and ensure
the quality and accuracy of subsequent analyses. Incomplete
or erroneous records were identifed and removed from the
dataset to be subjected to analysis. A total of 744 datasets
related to SCM diagnostic observations (75%) were ran-
domly reserved for the “training” phase to build prediction

models, and 247 sets (25%) were allocated for the “testing”
phase to evaluate model performance and ensure sample
representativeness, totaling 991 datasets. In this phase,
quantitative and qualitative value transformations and data
normalization were also performed since the attribute value
scales varied in some decimal places, necessitating numerical
values to be assigned to categorical variable data. Te
“dummy_columns” and “scale” functions were utilized for
the appropriate corrections and adaptations of observations.

2.6.2. Hyperparameter Adjustment for Model Optimization.
Te XGBoost algorithm was selected for data analysis due to
its high scalability, as it is based on a tree boosting
framework that uses signifcantly fewer resources. Te
computational efciency of XGBoost allows for the
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30.0
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Figure 1: Termographic image of the mammary gland of a lactating cow generated with the IRSoft software, evidencing the region of
interest (circular delimitation). Image parametrized to a thermal scale of 20.4°C–42.4°C and using the greyscale color palette.

Table 1: Classifcation of isolated microorganisms (adapted from Kirkeby et al. [22]).

Major pathogens Minor pathogens Other pathogens
Escherichia coli Corynebacterium spp. Streptococcus spp.
Staphylococcus aureus Corynebacterium bovis Staphylococcus hyicus
Streptococcus dysgalactiae Staphylococcus auricularis Streptococcus penaeicida
Streptococcus uberis Staphylococcus capitis Bacillus megaterium

Staphylococcus chromogenes Bacillus pumilus
Staphylococcus epidermidis Catalase-negative cocci
Staphylococcus saprophyticus Deinococcus f́ıcus
Staphylococcus simulans Enterobacter cloacae
Staphylococcus warneri Enterococcus faecalis
Staphylococcus xylosus Gram-negative bacilli

Other CNS Lactococcus lactis
Lysinibacillus fusiformis

Micrococcus luteus
Nocardia farcinica
Rothia endophytica

Yeast
Abbreviations: CNS�Coagulase-negative staphylococci SCC� somatic cell count.

4 Veterinary Medicine International
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construction of highly accurate models within a reduced
time frame and under limited computational capacity [11].
Te algorithm exhibits great fexibility by enabling adjust-
ments across a wide range of hyperparameters [12], which
allows for the optimization of model accuracy for the
classifcation problem addressed in this work. Compared to
other algorithms, XGBoost ofers notable advantages, such
as internal regularization capability that minimizes the risk
of overftting, making it more robust in the presence of
heterogeneous variables, and it has a proven track record of
success in solving problems in the medical feld, surpassing
other decision tree–based algorithms [12].

Te calculations were performed on a computer running
Windows 11 Professional 64 bit, equipped with an Intel i7
processor with hyper-threading of 8 cores operating at
4.9GHz and 32GB of RAM.Te XGBoost machine learning
algorithm was selected for generating the predictive model.
Te R software, Version 4.2.1 (R Core Team, 2022, https://
www.r-project.org/), was used in conjunction with the
RStudio development interface, Version 2023.09.0 build 463,
for algorithm development and execution.

Te “xgboost” package, Version 1.7.5.1, was adopted,
and through the “expand.grid” and “train()” functions, the
hyperparameters Learning Rate (“eta”), Minimum Sum of
Weights (“min_child_weight”), Maximum Depth of a Tree
(“max_depth”), Control the Sample’s Proportion (“sub-
sample”), Column Sample by Tree (“colsample_bytree”),
andMinimum Loss Reduction (“gamma”) were tuned as per
Table 1 of the supporting information. Te other hyper-
parameters were kept at their default values. A maximum
number of 1000 trees has been set, and the number of
unbiased variables is based on “ncol(x)− 1.” Te k-fold
cross-validation technique was used to evaluate the per-
formance of the generated models and improve their gen-
eralization capability, with the number of resampling
iterations (“numbers”) set to 10 and the number of repeats
(“repeats”) set to 5.

In order to ensure result repeatability, the command
“set.seed(123)” was defned for the algorithm. For each
model, the data were randomly divided according to the
dependent variable “mastitis” (binary variable “0” repre-
senting “healthy mammary glands” vs. “1” representing
“mammary glands with SCM”) using the “crea-
teDataPartition” function. Te “confusionMatrix” function
was set to “everything” to generate maximum predictive
characteristics for evaluating the model’s performance, as
depicted in Figure 2.

2.6.3. Attributes Used for Predictive Model Optimization.
Te used attributes were grouped as follows to adjust the
algorithm:

i. Environment-related attributes: AT, RH, and THI.
ii. Animal-related attributes: “Breed” (“Breed Hol” for

pure Holstein animals vs. “Breed mixed” for Holstein
vs. Jersey crossbred animals), “Body temperature,”
teat cleanliness (“Dirtiness score”); “Parity”; lactation
stage (“Days in milk”), which was divided into three

phases: 0–90 days postpartum (early lactation),
91–245 days (mid), and after 246 days postpartum
(late); and position of the mammary gland of the
right antimer (“Mammary gland position”), where
“Mammary gland_A” corresponded to the anterior
mammary gland and “Mammary gland_P” to the
posterior mammary gland;

iii. Milk-related attributes: milk yield of the mammary
gland (“Milk yield”), “EC,” and milk fat content
(“Milk fat”).

iv. Termographic attributes: coldest point in the
mammary gland ROI (“Cold”), hottest point in the
ROI (“Hot”), average temperature of the ROI
(“Average”), thermal amplitude of the ROI (“Hot-
Cold”), and the diference between the average
temperature of the mammary gland ROI and the
animal’s body temperature (“AvgBT”).

v. “Microbiological evaluation.” Tis latter attribute
was used in two diferent forms of grouping:
1st—positive microbiological isolation (“Patho-
gen_P”) vs. negative (“Pathogen_N”); and
2nd—negative isolation (“Pathogen_N”) vs. group of
Major Pathogens (“Pathogens_Major”) vs. group of
Minor Pathogens (“Pathogens_Minor”) vs. Other
Pathogens (“Pathogens_Other”).

Te most relevant variables for solving the classifcation
problem were identifed and selected for constructing the
fnal model with the best ft and performance. Te best
predictors were then subjected to the test set.

2.6.4. Evaluation of the Predictive Model. Te model’s
performance was assessed through calculations of the fol-
lowing predictive characteristics of bovine SCM: accuracy
(ACU), sensitivity (Se), specifcity (Sp), precision, F1-Score,
and AUC [4]. ACU corresponded to the probability of
mammary quarters being correctly classifed out of the total
quarters, as described in the equation: ACU� (TP+TN)/
(TP +TN+FP+FN). Te Se, also known as “recall,” cor-
responded to the probability of true positives (TP) out of the
total mammary quarters actually diagnosed with SCM, as

Predective value

True

Tr
ue

Re
al

False

Fa
lse

22

18213

30

Figure 2: Confusion matrix obtained with the optimized XGBoost
algorithm using all of the thermographic data.
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described in the equation: Se�TP/(TP+ FN). Te Sp, on the
other hand, corresponded to the probability of true negatives
(TN) out of the total healthy mammary quarters, as de-
scribed in the equation: Sp�TN/(TN+FP). Precision cor-
responded to the probability of TP out of the total mammary
quarters classifed with SCM and is described in the fol-
lowing equation: Precision�TP/(TP+ FP), while the F1-
Score combined precision and Se as per the equation: F1-
Score� (2×Precision× Se)/(Precision + Se).

Te model’s performance was primarily evaluated using
AUC scores (95% confdence interval) in combination with
Se and Sp values to understand overall performance and
choose attributes that, when combined or excluded, showed
higher values in these characteristics, ranging from 0 to 1.

Correlation analysis between variables was conducted
through determination of the Pearson r coefcient, where
values from 0 to 0.3 were considered negligible, 0.31 to 0.5
were considered weak, 0.51 to 0.7 moderate, 0.71 to 0.9 strong,
and greater than 0.9 were considered very strong [25].

Cohen’s kappa index was used to analyze the perfor-
mance of the models by assessing the degree of agreement
between the predicted and actual classifcations derived from
the confusion matrices generated by the attribute combi-
nations. Tis index aimed to evaluate the model’s accuracy,
considering the chance of correct predictions occurring by
random chance, and to determine which combinations
provide more reliable predictions and improve performance.
To achieve this, the programming function “kappa2()” was
used, with results expressed on a scale from 1 (perfect
agreement) to −1 (complete disagreement), where 0 repre-
sents agreement equivalent to chance [26].

3. Results and Discussion

During the study, the AT varied between 13.0°C and 33.1°C,
with an average of 25.3°C, and the RH ranged from 24.3% to
90.6%, with an average of 64.0%. Te THI varied between
58.0 and 80.5, with an average of 73.2.Te SCMwas detected
in 21.7% of the analyzed udders.

Te most common microorganisms were S. aureus and
S. chromogenes (30.4% and 24.5%, respectively), highlighting
the relevance of these agents in the epidemiology of the
disease. In order of importance, the following were isolated:
S. dysgalactiae (8.0%), S. epidermidis (4.5%), S. saprophyticus
(4.0%), S. uberis (3.0%), Other CNS (3.0%), S. warneri
(2.7%), L. lactis (2.7%), S. hyicus (1.8%), Corynebacterium
spp. (1.8%), S. simulans (1.3%), and E. cloacae (1.3%). Te
remaining microorganisms had isolation rates below one
percentage point.

Adjustments to prediction models by appropriately
weighting the variables can improve predictive performance
and maximize data usage, as some variables may not be
informative [5, 23]. Tus, initially, attributes were selected
that, when executed together, yielded the best performance
for decision making with XGBoost. Tis selection was based
on the values of predictive characteristics and importance
graphs generated by the model. Subsequently, the impor-
tance of thermographic data for the algorithm’s performance
in diagnosing SCM was analyzed.

Given the numerous possibilities of combinations using
the available attributes, the decision was made to study their
individual contribution within the groups, starting with the
environment-related variables. To this end, all variables were
used during algorithm execution, and initially, within the
environment-related attribute group, fve diferent combi-
nations were adopted (Table 2).

Te AUC is a widely used metric for evaluating binary
data classifcation problems and has the beneft of being
independent of result rates [23]. However, in the present
study, a balance between Se and Sp results was also sought.
Tis aimed to ensure that prioritizing one predictive metric
would not compromise the performance of another. It was
observed that the use of the THI presented the highest AUC
value among the combinations of environment-related
attributes.

Environmental characteristics can interfere with the ef-
fciency of IRT. Te infuence of the THI on IRT results has
been documented previously, highlighting the relationship
between high THI values and increased body temperature in
dairy cows, as well as a positive correlation with surface
temperatures measured by IRT, including the udder [27].
Similarly, in the present study, the highest correlations of
udder surface temperatures recorded by IRT were associated
with AT and THI (classifed as moderate to strong; Table 3).
All Pearson correlations between the attributes and the health
status of the mammary gland can be observed in Figure 3.

Te environment-related attributes were relevant for
decision making, although they did not comprise the main
group of importance (Figure 4). Among these, both the THI
and AT can be prioritized in optimizing the algorithm.

Due to the better AUC result observed with the use of the
THI and its relative importance (Figure 4), it was decided to
prioritize the use of this attribute over the others associated
with the environment to advance in optimizing the algo-
rithm. Subsequently, combinations with animal-related at-
tributes were adopted (Table 4).

Te relevance of the animal-related attributes in
XGBoost execution for SCM diagnosis became evident
when, upon excluding all of them in the analysis, the lowest
values of predictive characteristics were obtained. Te im-
portance of parity and lactation stage has been previously
reported using neural networks [23].

When variables were excluded in the analyses, there was
no improvement in AUC values compared tomaintaining all
animal-related attributes. However, excluding the attributes
related to “Parity,” “Body temperature,” and mammary
gland position resulted in losses in this predictive charac-
teristic. Te same was not observed with the exclusion of the
“Dirtiness score” attribute, where the highest AUC value
(0.835) was obtained, providing the best Se result (57.69%)
observed up to that point.

Body temperature showed a moderate correlation with
the “Cold” (0.507), “Hot” (0.666), and “Average” (0.647)
variables, while all other animal-related attributes showed
low-magnitude correlations (below 0.2) with the thermo-
graphic variables. Terefore, only the “Dirtiness score” at-
tribute was excluded to continue with the remaining
analyses.
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Next, the XGBoost algorithm was executed using dif-
ferent forms of classifcation of the attribute related to
microbiological isolation, obtaining the results shown in
Table 5.

It was noted that the incorporation of the microbio-
logical evaluation into the set of attributes executed with the
XGBoost algorithm was important to increase Se, although
there was also an improvement in all other predictive
characteristics. When classifying the microorganisms into
major, minor, and other pathogens, the best AUC result was
obtained (0.843), along with all other predictive charac-
teristics. Te relevance of major pathogens infuencing
techniques like IRT was also observed previously by
Velascos-Bolaños [24].Te authors studied Holstein cows in
tropical environments using IRTand found that the presence
of major pathogens was able to increase the surface tem-
perature of the udder by 1.16°C.

Subsequently, the analyses using the algorithm included
the following set of attributes: environment-related (“THI”);
animal-related (variable referring to mammary gland po-
sition, breed of the animal, “Parity,” “Days in milk,” and
“Body temperature”); microbiological evaluation, separating
into major pathogens, minor pathogens, and other patho-
gens; milk-related (“EC,” “Milk fat,” and “Milk yield”); and
thermographic (“Cold,” “Hot,” “HotCold,” “Average,” and
“AvgBT”). Afterward, the infuence of the milk-related
variables was studied by removing one of the following
attributes at a time: “Milk fat,” “Milk yield,” and “EC,” which
resulted in the outcomes presented in Table 6.

All milk-related attributes proved to be relevant for
optimizing the XGBoost algorithm. Removing any of them
resulted in a decrease in values for almost all measured

predictive characteristics. Diferent milk characteristics have
also been reported to infuence the efectiveness of machine
learning models for predicting SCM in dairy cows [3, 28].

For instance, EC is an important attribute as a predictive
factor for SCM, as it increases with changes in milk ion
composition due to elevated levels of Na+ and Cl−. Addi-
tionally, SCM signifcantly reduces milk volume, with an
apparent increase in fat percentage and EC elevation [3]. In
the present study, we observed that healthy mammary
glands showed averages of 3.29 L of milk production per
milking, 1.55% of fat, and 4.08mS/cm of EC, while those
with SCM produced 2.53 L of milk per milking, with 2.17%
of fat, and 4.45mS/cm of EC.

In this study, the EC consistently remained the main
criterion of importance for the algorithm’s decision making,
regardless of the combination of attributes. Other relevant
criteria were milk production and fat percentage, although
their correlations with SCM incidence (0.325; −0.228, and
0.197, respectively) can be classifed individually as weak.
Similar to the results obtained herein, milk EC was the frst
classifcation criterion between udders with SCM and
healthy ones in a thermographic study with Holstein cows in
Turkey, using a decision tree algorithm [1].

Cows with SCM showed a negative and high-magnitude
correlation (−0.96) between milk production and udder
surface temperature measured by IRT, although the same
was not observed in healthy udders (0.16) [29]. When we ran
the XGBoost algorithm without the “Milk yield” variable,
there was a reduction in values for all predictive charac-
teristics, especially Se.

With the algorithm’s attribute combination base already
defned after previous analyses and its known predictive

Table 2: XGBoost algorithm performance according to the use of environment-related attributes in six predictive characteristics of SCM in
lactating cows.

Combinations AUC Se Sp Precision F1-Score Accuracy
1 0.8280 0.5000 0.9282 0.6500 0.5652 0.8421
2 0.8230 0.5577 0.9282 0.6744 0.6105 0.8421
3 0.8270 0.5000 0.9333 0.6667 0.5714 0.8543
4 0.8340 0.5385 0.9282 0.6667 0.5957 0.8502
5 0.8230 0.5192 0.9333 0.6750 0.5870 0.8340
Note: Combinations: 1—only air temperature; 2—only relative humidity; 3—association between air temperature and relative humidity; 4—only the THI;
5—without the use of environment-related data; AUC—area under the receiver operating characteristic curve.

Table 3: Pearson correlations between environmental and thermographic variables in diagnostic evaluations of SCM in lactating cows.

Attributes AT RH THI Cold Hot Average HotCold AvgBT
AT 1.000 −0.660 0.970 0.656 0.698 0.747 −0.464 0.634
RH — 1.000 −0.463 −0.395 −0.400 −0.416 0.292 −0.345
THI — — 1.000 0.647 0.693 0.746 −0.455 0.638
Cold — — — 1.000 0.721 0.827 −0.911 0.769
Hot — — — — 1.000 0.940 −0.371 0.826
Average — — — — — 1.000 −0.549 0.911
HotCold — — — — — — 1.000 −0.539
AvgBT — — — — — — — 1.000
Note: Attributes: Cold� coldest point of the mammary gland; Hot� hottest point of the mammary gland; Average� average temperature of the mammary
gland; HotCold� thermal amplitude of the mammary gland; AvgBT�diference between the average temperature of the mammary gland and body
temperature. Te results of the correlations between all variables were statistically signifcant (p< 0.001).
Abbreviations: AT�air temperature, RH� relative humidity, and THI� temperature-humidity index.
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characteristics (0.843 of AUC; 57.7% of Se; 93.3% of Sp;
69.8% of precision; 63.2% of F1-Score; and 85.8% of ACU),
we proceeded to assess the infuence of the thermographic
attributes in the diagnosis of SCM. To this end, the XGBoost
algorithm was executed with the combinations shown in
Table 7.

Comparing prediction model performances between
studies that use very disparate datasets and diferent
frameworks for diagnosingmastitis proves to be challenging.
However, it is important to highlight the results achieved
and reported in dairy cows by other researchers and in
diferent locations [28].

It was observed that using only thermographic data for
diagnosing SCM, excluding all other attributes, was not
ideal. Te lowest results were obtained under this condition
for most of the predictive characteristics, notably with low
AUC (0.527) and Se (13.5%). In another study using IRT
alone and with SCC as a diagnostic screening technique, it
was pointed out that IRT is a method that does not satis-
factorily identify SCM, with Se results similar to those in the
present study, ranging from 19.0% to 64.4% depending on

the milking method and the cutof point for the average
udder surface temperature, while Sp ranged from 60.0% to
98.6% and the AUC between 58.8% and 62.2% [24].
However, there were increases in the values of the predictive
characteristics when using all or some thermographic
attributes.

In the importance plot generated from running the
XGBoost algorithm with all thermographic variables (Fig-
ure 5), the relevance of the “Cold” attribute can be noted,
which was considered the most important attribute obtained
by IRT for decision making.

Te selection of thermographic variables or the com-
bination of variables to be used is relevant to optimize the
performance results of the models. While our study iden-
tifed the coldest point in the mammary gland ROI as the
most important attribute, other authors have used the av-
erage udder temperature [24] or emphasized greater rele-
vance for the hottest point [29]. Tis variation can occur
according to environmental conditions (more intense cold,
mild temperatures, or warmer temperatures), as the coldest
point of the mammary gland, the hottest point, or the
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Figure 3: Heatmap of the Pearson correlation matrix for the attributes used in XGBoost optimization.
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average temperature can alternate their position in the
importance ranking. Te use of the combination of all
thermographic attributes provided a better AUC (0.843;
Figure 6) and greater Sp (93.3%).

In a similar study conducted by Bobbo [23], the Se
results ranged from 38.1% to 61.6%, classifed by the authors
as low to moderate. Te Sp rates, on the other hand, were
considered relatively high, exceeding 82%. In all attribute
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Figure 4: Relative importance of the attributes for decision making with XGBoost executed using all variables.

Table 4: XGBoost algorithm performance according to diferent combinations of animal-related attributes in six predictive characteristics
of SCM in lactating cows.

Combinations AUC Se Sp Precision F1-Score Accuracy
6 0.8340 0.5385 0.9282 0.6667 0.5957 0.8462
7 0.8320 0.5577 0.9179 0.6444 0.5979 0.8421
8 0.8080 0.5000 0.9179 0.6190 0.5532 0.8300
9 0.8350 0.5769 0.9231 0.6667 0.6186 0.8502
10 0.8220 0.5000 0.9231 0.6341 0.5591 0.8340
11 0.8340 0.5000 0.9333 0.6667 0.5714 0.8421
12 0.8200 0.5577 0.9385 0.7073 0.6237 0.8583
13 0.8290 0.5769 0.9179 0.6522 0.6122 0.8462
14 0.8040 0.4808 0.8974 0.5556 0.5155 0.8097
Note: Combinations: 6—using all animal-related attributes; 7—removing only the “Breed” attribute; 8—removing only the “Mammary gland position”
attribute; 9—removing only the “Dirtiness score” attribute; 10—removing only the “Parity” attribute; 11—removing only the “Days in milk” attribute;
12—removing only the “Body temperature” attribute; 13—using the attributes related to “Mammary gland position,” “Parity,” and “Body temperature”;
14—removing all animal-related attributes; AUC—area under the receiver operating characteristic curve.

Table 5: XGBoost algorithm performance according to the microbiological culture–based classifcation in six predictive characteristics of
SCM in lactating cows.

Combinations AUC Se Sp Precision F1-Score Accuracy
15 0.8350 0.5769 0.9231 0.6667 0.6186 0.8502
16 0.8430 0.5769 0.9333 0.6977 0.6316 0.8583
17 0.7720 0.5192 0.9231 0.6429 0.5745 0.8381
Note: Combinations: 15—using microbiological culture, grouping the results into positive isolation vs. negative isolation; 16—using microbiological culture,
grouping into: negative isolation, major pathogens group, minor pathogens group, and other pathogens group; 17—excluding microbiological culture from
the set of attributes to be executed; AUC—area under the receiver operating characteristic curve.
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Figure 5: Relative importance of attributes when running XGBoost after optimizing the model with all thermographic variables.

Table 6: XGBoost algorithm performance according to diferent combinations of milk-related attributes in six predictive characteristics of
SCM in lactating cows.

Combinations AUC Se Sp Precision F1-Score Accuracy
18 0.8430 0.5769 0.9333 0.6977 0.6316 0.8583
19 0.8090 0.4038 0.9385 0.6364 0.4941 0.8259
20 0.8220 0.4231 0.9231 0.5946 0.4944 0.8178
21 0.8400 0.5962 0.9179 0.6596 0.6263 0.8502
22 0.7260 0.3461 0.9333 0.5806 0.4337 0.8097
Note: Combinations: 18—using all milk-related attributes; 19—removing the “EC” attribute; 20—removing the “Milk yield” attribute; 21—removing the
“Milk fat” attribute; 22—removing all milk-related attributes; AUC—area under the receiver operating characteristic curve.

Table 7: XGBoost algorithm performance according to diferent combinations of thermographic attributes in six predictive characteristics
of SCM in lactating cows.

Combinations AUC Se Sp Precision F1-Score Accuracy
23 0.8430 0.5769 0.9333 0.6977 0.6316 0.8583
24 0.8260 0.5385 0.9282 0.6667 0.5957 0.8462
25 0.8220 0.5577 0.9179 0.6444 0.5979 0.8421
26 0.8330 0.5962 0.9333 0.7045 0.6458 0.8623
27 0.8400 0.5962 0.9282 0.6889 0.6392 0.8583
28 0.8400 0.5769 0.9231 0.6667 0.6186 0.8502
29 0.8270 0.5769 0.9231 0.6667 0.6186 0.8502
30 0.8370 0.5192 0.9282 0.6585 0.5806 0.8421
31 0.8350 0.5962 0.9179 0.6596 0.6263 0.8502
32 0.8280 0.5577 0.9282 0.6744 0.6105 0.8502
33 0.8190 0.5192 0.9333 0.6750 0.5870 0.8462
34 0.5270 0.1346 0.9282 0.3333 0.1918 0.7611
Note: Combinations: 23—using all thermographic attributes; 24—removing all thermographic attributes; 25—using only the thermographic attribute “Cold”;
26—using only “Cold” and “AvgBT”; 27—using only “Cold,” “AvgBT,” and “HotCold”; 28—using “Cold,” “AvgBT,” “HotCold,” and “Hot”; 29—using only
“Average”; 30—using only “HotCold”; 31—using only “AvgBT” and “HotCold”; 32—using only “Hot”; 33—using only “AvgBT”; 34—using only the
thermographic attributes and excluding others; AUC—area under the receiver operating characteristic curve.
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combinations with which XGBoost was executed in the
present study, the Sp rates remained high and varied rela-
tively little (from 89.74% to 93.5%), while the variations in Se
ranged from 13.46% to 59.62%.

Zhou et al. [4] reported Se rates that did not exceed 85%,
and the obtained Sp of 77.8% was considered poor by these
authors. Conversely, Coskun and Aytekin [1] described
higher Se (90.2%) than our study, similar AUC (0.853), and
lower Sp (80.4%).Tese authors observed that 77.6% of cows
with udder surface temperatures below 38.6°C were healthy,
and 58.6% with temperatures above this limit had SCM.

Te results obtained herein demonstrate that the use of
XGBoost was able to improve the diagnostic capacity of SCM
when IRT was employed. However, implementing IRT in the
routine of the farm involves other factors.Te choice of data to
be used in themodels should also consider the incorporation of
environmental monitoring techniques, zootechnical control,
and diagnostics in the production system [28]. Computerized
herd management systems have been implemented by modern
farms, allowing variables such as milk production and EC to be
automatically recorded during milking and used in mastitis
alarm systems [3]. On the other hand, data such as parity and
the lactation stage of cows, which are recorded in farm
management systems, are easy to use [28].

In a study with dairy cows monitored by automated
systems, eight algorithms were used to compare the gen-
erated data, and it was observed that XGBoost showed low
capacity in diferentiating healthy cows from cows with
health problems (metritis, clinical mastitis, hoof problems,
and digestive disorders) due to a Se of 58.8%, although the
model achieved the third-best performance (0.828 AUC).
Tis same study reported the following values for other
diagnostic characteristics: 80.6% Sp, 73.6% ACU, 58.8%
precision, and the same value for the F1-Score [4]. In our
work, aiming at the diagnosis of SCM, we achieved similar
values for diagnostic characteristics in the optimized model.
However, the variations in these metric results, particularly
Se, depending on the attribute set used, highlight the im-
portance of incorporating data from new technologies to
achieve better outcomes.

In our work, the Cohen’s kappa index results obtained
from the diferent attribute combinations showed agreement
ranging from 0.080 to 0.561, as observed in Figure 7. In
nearly all attribute combinations in our study, the quality of

the model predictions was similar to that observed by Bobbo
et al. [23], who reported values ranging from 0.362 to 0.502
across various prediction models used for diagnosing SCM.

Te lowest kappa value observed in our study (0.08) was
obtained when only thermographic attributes were used in
executing XGBoost, indicating a lower agreement between
the predicted and actual classifcations when using IRTalone
as a diagnostic tool associated with machine learning under
our experimental conditions. On the other hand, the second
lowest kappa value (0.328) was observed when all milk-
related attributes were excluded from the analysis, under-
scoring their importance for predicting SCM, as also evi-
denced by the analysis of other metrics.

Te high Sp of XGBoost, using all thermographic data,
makes it a promising confrmation mechanism for SCM. Its
high ability to identify mammary glands free from the
disease makes it a valuable tool for further evaluation of cows
previously selected as positive by more sensitive screening
methods. Te fate of false-positive animals can be reduced
through our optimized model, minimizing incorrect sani-
tary or zootechnical management decisions. XGBoost
presents itself as a promising tool to reduce false alerts in
automated milking systems when the goal is the early de-
tection of SCM. Its application avoids wasting time and
resources on healthy cows, allowing attention to be focused
on animals that truly need it.

To develop the capability for automated diagnosis of
SCM in robotic milking systems, it is essential to incorporate
data from various sources that contribute to quality attri-
butes. We highlighted the ability of IRT to produce relevant
attributes for algorithmic decisionmaking, which impacts its
predictive capacity. Although currently IRT requires time,
equipment costs, and a better understanding of how its
results interact with other variables, such as environmental
conditions (temperature and humidity) or the circadian
cycle of the dairy cow, this technique has signifcant po-
tential for automation.

Incorporating IRT into automatic milking systems can
be facilitated through the development of thermographic
sensors that lower the cost of the technique and accelerate
data acquisition. However, the complexity of interactions
between IRT data and other variable data will require on-
going advancements in machine learning for increasingly
accurate diagnosis of bovine SCM.
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Figure 6: AUC obtained with the optimized XGBoost algorithm using all of the thermographic data for the diagnosis of SCM in
lactating cows.
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For the use of IRT in other applications, such as clinical
diagnosis of human diseases, there is concern regarding the
standardization of conditions, especially environmental
ones.We understand that fully exploiting the potential of the
technique and its application in dairy cattle involves un-
derstanding IRT’s behavior under as many natural condi-
tions as possible. Consequently, this robust dataset
highlights that IRTandmachine learning algorithms, such as
XGBoost, are complementary and inseparable tools.

4. Conclusions

Te IRTproved to be a value-enhancing tool for diagnosing
bovine SCM through machine learning. However, the
XGBoost algorithm, when fed exclusively with data from the
studied thermographic attributes, was not able to satisfac-
torily diferentiate between diseased and healthy mammary
glands. On the other hand, data analysis by XGBoost
combined with other diagnostic tools yielded promising
results, increasing the efciency of mastitis diagnosis. Te
model adjusted using the combined results of IRT and the
XGBoost algorithm showed potential for confrming the
diagnosis of bovine SCM.

Te development of sensors for real-time acquisition of
thermographic images and the use of artifcial intelligence
for the automated interpretation of thermograms can help
make their use in robotic milking feasible. However, the use
of IRT for the diagnosis of bovine SCM should consider
other factors, such as specialized labor, equipment costs, and
available time for the technique to be performed.
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Figure 7: Cohen’s kappa index values according to the attribute combinations used in the execution of the XGBoost algorithm.
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Table 1 of the supporting information describes the
values of the hyperparameters used to obtain the best results
based on the attribute combination employed in the exe-
cution of the XGBoost algorithm.
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