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ABSTRACT

Invasive species represent a growing threat to global food security and biodiversity. Integrating species distribution modeling
with economic impact assessment enables the development of targeted, evidence-based strategies to mitigate these threats. In
this study, we estimate global habitat suitability and associated economic risks posed by the invasive fall armyworm (Spodoptera
frugiperda) to key crops in Brazil. Habitat suitability was modeled under Shared Socioeconomic Pathways (SSPs 245, 370, and
585) across three future timeframes (2030s, 2050s, and 2070s). The results indicate a consistent expansion of climatically suitable
areas for S. frugiperda through the 2070s under all scenarios. The most important environmental variables shaping its distribu-
tion were the precipitation of the wettest quarter, mean temperature of the warmest quarter, elevation, and isothermality. Our
economic risk mapping in Brazil identified soybean and corn production areas as the most vulnerable to S. frugiperda infestation,
reflecting their extensive cultivation in regions with high climate suitability for S. frugiperda. These findings provide critical
insights for developing adaptive strategies to reduce the future impact of S. frugiperda on agricultural productivity and food
security.

1 | Introduction activities such as trade and land-use change (Pyke et al. 2008;

Lehan et al. 2013; Seebens et al. 2015; Finch et al. 2021;
Insect pests pose a significant threat to global food security, Bonnamour et al. 2023). Climate change has further com-
biodiversity, and human well-being (Pysek et al. 2020). Many pounded these threats. By the year 2100, global average sur-
have expanded beyond their native ranges by overcoming face temperatures are projected to increase by 1.1°C-6.4°C
natural geographic barriers, largely due to human-mediated relative to 1980-1999 levels (Masters and Norgrove 2010), with
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major implications for pest population dynamics, geographic
distribution, incidence, and severity (Harvey et al. 2023).
Climate shifts may also reduce the effectiveness of traditional
pest management strategies, particularly for invasive species
(Skendzi¢ et al. 2021). Therefore, understanding the habitat
suitability of invasive pests under current and projected cli-
mate scenarios is critical for informing long-term manage-
ment and policy interventions.

The fall armyworm (Spodoptera frugiperda (J.E. Smith);
Lepidoptera: Noctuidae) is a highly invasive pest with a broad
host range, feeding on more than 350 plant species (FAO 2017;
Montezano et al. 2018). Native to the tropical and subtropi-
cal regions of the Americas, S. frugiperda has rapidly spread
to over 100 countries, including those across sub-Saharan
Africa, Asia, and Oceania (Brévault et al. 2018). The pest's life
cycle duration varies with geography; in warmer climates, it
can complete a generation in about 30 days, while in cooler re-
gions, such as parts of the United States, the cycle can extend
to 60-90days (Pogue 2002; Kumar et al. 2022). The number
of generations per year depends on local climate and adult
behavior (Pogue 2002; Baudron et al. 2019). Adult moths are
nocturnal and typically emerge on warm, humid evenings
(Cock et al. 2017). In Africa alone, annual corn yield losses
due to S. frugiperda are estimated at 8.3-20.6 million tonnes,
translating to economic losses of $2.5 billion to $6.2 billion
(Shylesha et al. 2018; Day et al. 2017). Across sub-Saharan
Africa, combined losses in corn, sorghum, and sugarcane
have been estimated at $13 billion, posing serious threats to
food security and rural livelihoods (Abrahams et al. 2017;
Bannor et al. 2022).

Species distribution models (SDMs) have emerged as powerful
tools to estimate the potential geographic range of invasive spe-
cies by correlating known occurrences with environmental vari-
ables (Booth et al. 2014; Aidoo et al. 2022; Amaro et al. 2023).
The maximum entropy model (MaxEnt) has been applied to as-
sess the global and regional habitat suitability of S. frugiperda,
including studies in Africa (Abdel-Rahman et al. 2023), China
(Jiang et al. 2022), and at the global scale (Ramasamy et al.
2022). The CLIMEX model has also been used to evaluate cli-
mate suitability projections for S. frugiperda under various
scenarios (Paudel Timilsena et al. 2022). However, significant
knowledge gaps remain, particularly concerning distributional
models and the corresponding economic impacts in vulnerable
agricultural regions.

In this study, we modeled global climate suitability and as-
sessed the potential economic impacts of S. frugiperda in
Brazil's major host crops. Specifically, we addressed the fol-
lowing questions: (i) Which global regions currently offer
suitable habitat for S. frugiperda? (ii) How does the ecological
niche differ between the pest's native and invasive regions?
(iii) Which regions require intensified monitoring to track fu-
ture spread? (iv) What are the projected economic impacts of
S. frugiperda on major crops in Brazil? and (v) How is habitat
suitability expected to shift under future climate change sce-
narios? The results of this study provide critical insights for
early warning systems, guiding phytosanitary policies, and
prioritizing intervention strategies. Moreover, they highlight
Brazilian crop production areas that are most vulnerable to

future S. frugiperda establishment, showing the importance
of climate-informed pest risk assessments.

2 | Materials and Methods
2.1 | Species Data

Occurrence records for S. frugiperda were obtained from the
Global Biodiversity Information Facility (GBIF) database
using the rgbif R package (Chamberlain et al. 2023) and sup-
plemented with additional records from peer-reviewed litera-
ture (Figure S1). The initial search retrieved 8884 occurrence
points. To ensure data quality, we followed established data-
cleaning protocols (Hijmans and Elith 2013; Zizka et al. 2019).
Specifically, we retained only records with a spatial resolution
of <1km and excluded those located near capital city centers,
country centroids, and GBIF headquarters. Duplicate entries,
erroneous records (e.g., zero coordinates), and records lacking
associated environmental variables were also removed. After
filtering, 7110 georeferenced occurrences remained. To further
reduce sampling bias and spatial autocorrelation, we applied en-
vironmental filtering following Velazco et al. (2022). The final
dataset comprised 6793 unique records, including 3092 from the
pest's native range and 3701 from its invasive range.

2.2 | Environmental Data

To characterize the environmental conditions influencing S.
frugiperda distribution, we obtained global climate data for the
period 2000-2023 from WorldClim version 2.1 (https://world
clim.org/data/monthlywth.html), at a spatial resolution of 2.5
arc-minutes. These data included monthly average maximum
and minimum temperatures, as well as total monthly precip-
itation. From this dataset, we derived 19 bioclimatic variables
using the biovars function from the dismo package (Hijmans
et al. 2017), following the methodology outlined by Hijmans
et al. (2017). These variables are commonly used to represent
long-term climatic conditions, as they reflect interannual vari-
ability and key environmental constraints known to influence
species' geographic distributions (O'Donnel and Ignizio 2012).

To complement the climate data, an elevation variable was added
to the dataset, based on data from the Global Multi-resolution
Terrain Elevation Data 2010 (GMTED2010) (https://www.usgs.
gov/centers/eros/science/usgs-eros-archive-digital-elevation-
global-multi-resolution-terrain-elevation) for variables with
2.5-arc-min resolution, and from the Shuttle Radar Topography
Mission (SRTM) for variables with 30-s resolution (https://www.
usgs.gov/centers/eros/science/usgs-eros-archive-digital-eleva
tion-shuttle-radar-topography-mission-srtm). For model projec-
tions specific to Brazil under current climate conditions, a cor-
responding set of 19 bioclimatic variables was generated from
the Brazilian Daily Weather Gridded Data (BR-DWGD) for the
period 1994-2023 (Xavier et al. 2022). These data were resam-
pled to a finer spatial resolution of 30 arc-seconds and integrated
with the other environmental layers used in modeling.

Variable selection for model input was performed through an
iterative process during Maxent model calibration, guided
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by both statistical contribution and biological relevance
(Vignali et al. 2020). The final model retained eight ecolog-
ically meaningful predictors: Bio02—Mean diurnal range;
Bio03—Isothermality; Biol0—Mean temperature of the warm-
est quarter; Biol4—Precipitation of driest month; Biol5—
Precipitation seasonality; Biol6—Precipitation of wettest
quarter; Biol9—Precipitation of coldest quarter, and elevation.

2.3 | Calibration Area, Background Selection
and Validation

The calibration area (CA) was defined following the Biotic-
Abiotic-Movement (BAM) framework, which considers regions
accessible to a species based on its dispersal capacity, biotic
interactions, and environmental conditions (Elith et al. 2011;
Owens et al. 2013; Phillips et al. 2009). The CA was delin-
eated using Koppen-Geiger climate classifications (Kottek
et al. 2006; Brunel et al. 2010; Beck et al. 2018), encompassing
both native and invaded regions to capture the full environ-
mental niche of S. frugiperda. This area covered approximately
130,769,872.885km?.

To evaluate model performance, occurrence data were parti-
tioned using a spatial block cross-validation approach. This
method helps control spatial autocorrelation between train-
ing and test datasets and is widely recommended for assessing
model transferability across space and time (Roberts et al. 2017;
Valavi et al. 2018, 2019; Santini et al. 2021). A total of 30 spa-
tial grids were generated with resolutions ranging from 0.5°
(~56km) to 5° (~557km), divided into five spatial blocks, each
containing a minimum of 20 occurrence records.

Sixty percent of the occurrence records were used to test for
spatial autocorrelation and optimize grid selection. The final
grid size was chosen based on the following criteria: (i) lowest
spatial autocorrelation, as measured by Moran's I; (ii) highest
environmental similarity, based on Euclidean distance; and (iii)
smallest standard deviation in the number of records between
training and test sets (Velazco et al. 2019). These analyses were
conducted using the part_sblock function in the flexsdm R pack-
age (Velazco et al. 2022).

2.4 | Model Development

We developed SDMs for S. frugiperda using MaxEnt under
a non-homogeneous Poisson point framework (Phillips
et al. 2017) in R (R Core Team 2023). Model calibration in-
volved testing 171 combinations of feature classes (FC) (linear,
quadratic, hinge, and product) and regularization multipliers
(RM) to optimize the trade-off between model performance and
complexity (Merow et al. 2013; Moreno-Amat et al. 2015). The
best-performing configuration, based on Akaike Information
Criterion corrected (AICc), was RM = 0.5 with linear, quadratic,
and hinge features only. We generated 10,000 background
points randomly within the calibration area (CA). Spatial par-
titioning was performed using an environmental grid with a
cell size of 522.05km?, Moran's I value of 0.672, and an environ-
mental similarity index of 1356.436. We assessed the niche of S.

frugiperda using the ecospat package (Broennimann et al. 2012,
2015; Di Cola et al. 2017). Habitat suitability was classified using
the following thresholds, adapted from Pearson et al. (2007),
Neven et al. (2018), and Suarez-Seoane et al. (2020): 0—MTP
(MTP=Minimum Training Presence threshold): unsuitable,
MTP—10MTP/2: marginal, 10MTP/2-10MTP: moderate,
10MTP-50%: optimal > 50%: highly suitable.

2.5 | Model Performance Assessment

Model performance was evaluated using multiple metrics, in-
cluding the Area under the curve of the Receiver Operating
Characteristic Curve (AUC-ROC)—(AUC), True Skill Statistic
(TSS), and permutation importance. Validation was conducted
through spatial block cross-validation to ensure robustness and
avoid spatial autocorrelation biases (Roberts et al. 2017).

2.6 | Future Projections

To assess potential changes in habitat suitability under climate
change, we generated projections using three Global Climate
Models (GCMs) from CMIP6: MRI-ESM2-0, MIROC6, and MPI-
ESM1-2-HR (Yukimoto et al. 2019; Shiogama et al. 2019; Von
Storch et al. 2017). These models were run under three Shared
Socioeconomic Pathways (SSPs: 245, 370, and 585) across three
timeframes: 2030s (2021-2040), 2050s (2041-2060), and 2070s
(2061-2080). Model outputs were presented in both continuous
(probabilistic) and binary formats. Binary maps were generated
using a threshold that maximized sensitivity and specificity, en-
abling more reliable interpretation for environmental manage-
ment and policy decision-making (Liu et al. 2016).

2.7 | Economic Risk Zoning for Brazil

To estimate the economic vulnerability of Brazilian municipal-
ities to S. frugiperda, we conducted economic risk zoning using
the Municipal Agricultural Production (PAM) dataset from the
Brazilian Institute of Geography and Statistics (IBGE). The fol-
lowing steps were performed: (a) total production values calcu-
lation for Brazil and all municipalities based on major host crops
(herbaceous cotton (seed), rice (paddy), sugarcane, corn (grain),
soybeans, sorghum); (b) computation of specialization indices,
including the Location Quotient (QL), Relative Participation
Index (PR), and Hirschman-Herfindahl Index (IHH) (Crocco
et al. 2006); (c) Z-Score Standardization of all indicators
(mean=0 and standard deviation =1); (d) Principal Component
Analysis (PCA) to derive weights (9,, 8,, 6,) for indicators; and
(e) calculation of the Normalized Concentration Index (ICn).

The Location Quotient (QL) measures the spatial concentra-
tion or dispersion of production across regions (municipalities)
by comparing the proportion of a specific sector of the prod-
uct's production in a municipality to the national share of that

product:
QL. = VP ij / V Pigg
iT\vp V Ppe
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Where:

V Py is the production value of product i in municipality j,

V P;is the total agricultural production value of municipality j,
V Py VP, 5r is the total production value of product i in Brazil, and
V Py is the total agricultural production value in Brazil.

The IHH measures the weight of a specific product's production
within a municipality's agricultural structure:

VP, VP,
IHH = ( —— ) -
VP}BR VPBR

The PR captures the relative importance of a product’s produc-
tion in a municipality compared to the national production:

VP;
v VPiBR

PR

A normalized Concentration Index (ICn) is derived as a linear
combination of the previous indicators, accounting for their dif-
ferent capacities to represent agglomeration forces:

ICny; = 6, QL;; + 0,PR;; + 0,1HH;
Where 6, represents the weight of each indicator.

To classify economic vulnerability, ICn values were grouped
into five classes using the Fisher-Jenks natural breaks algo-
rithm (Fisher 1958; Slocum et al. 2022), which optimizes class
homogeneity. Higher ICn values indicate greater economic de-
pendence on crops susceptible to S. frugiperda, and therefore,
greater risk. Finally, economic risk was estimated using the
formula:

Risk = ICn X Probability of Occurrence

Where the probability of pest occurrence was derived from the
Maxent habitat suitability model.

3 | Results
3.1 | Evaluation of Model Performance

The MaxEnt model demonstrated strong predictive accuracy for
the potential distribution of S. frugiperda, with an Area Under
the Curve (AUC) of 0.904 and a True Skill Statistic (TSS) of
0.655. The model also achieved an Omission or False Negative
or Underprediction Rate (10%) and a Continuous Boyce Index
(CBI) of 0.967, indicating reliable performance in suitability
ranking. Full evaluation metrics are presented in Table 1.

3.2 | Contribution of Environmental Variables

The distribution of S. frugiperda was most strongly influenced
by the precipitation of the wettest quarter, mean temperature of

TABLE 1 | Performance evaluation metrics for the MaxEnt model
predicting the potential distribution of Spodoptera frugiperda.

Metric names Values
True positive rate, sensitivity or recall (TPR) 0.89634
True negative rate or specificity (TNR) 0.75851
True skill statistic (TSS) 0.65484
Sorensen index 0.79730
Jaccard index 0.66344
F-measure on presence-background (FPB) 1.32687
Omission or false negative or underprediction 0.10366
rate (OR/UPR)

Continuous Boyce Index (CBI) 0.96765
Area under ROC curve (AUC) 0.90478
Fractional predicted area (FPA) 0.19045
Area under precision/recall curve (AUCPR) 0.83669
Inverse mean absolute error (IMAE) 0.71673
False positive rate (FPR) 0.24149
Positive predictive value or precision (PPV) 0.78776
Negative predictive value (NPV) 0.45836
Accuracy 0.82742
F1 Score 0.83855
Balanced accuracy 0.82742
Matthews correlation coefficient (MCC) 0.66115
Minimum training presence (MTP) 0.02039
10% Minimum training presence (10MTP) 0.43083
Symmetric extremal dependence index (SEDI) 0.81055

the warmest quarter, elevation, and isothermality (Figure 1A,B).
Partial dependence plots illustrating the response curves of the
most influential predictors are shown in Figure 2. Additionally,
a histogram depicting the distribution density of S. frugiperda
occurrences across environmental gradients is presented in
Figure S2.

3.3 | Current Prediction

Model projections under current climatic conditions indicate
a substantial expansion of suitable habitat for S. frugiperda
beyond its known occurrence range (Figure 3A; Figure S3).
The newly identified area at risk includes Poland, France,
Hungary, Romania, Greece, North Macedonia, Norway,
Serbia, Switzerland, Spain, and the United Kingdom, coun-
tries that cultivate economically important crops vulnerable to
S. frugiperda infestations. Globally, the current suitable habi-
tat was estimated at approximately 1.10 X 103km? (Figure 3B).
Suitability levels were classified into five categories: unsuit-
able, marginal, moderate, optimal, and high. The spatial dis-
tribution of these suitability classes is presented in Figure 3B.
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In Brazil, suitable habitats for S. frugiperda are predominantly
concentrated in the southern, southeastern, and central-
western regions (Figure 4A). Detailed predictions at the
national scale, including suitability estimates by state and mu-
nicipality, threshold-based binary maps, extrapolation zones,
and habitat suitability classes, are shown in Figure 4B-F. The
total area identified as suitable for the pest in Brazil is approx-
imately 8.49 X 10°km?.

3.4 | Future Predictions

Future predictions suggest a continued expansion of habitat suit-
ability for S. frugiperda under all three SSPs: 245, 245, and 585
(Figures 5 and 6). Key maize-producing countries, including
Argentina, Brazil, China, India, Ukraine, and the United States,
are expected to remain suitable habitats for S. frugiperda through
the 2070s. Under SSP245, globally suitable habitat is projected to
increase progressively from the 2030s (1.14 x 108km?) to the 2050s
(1.17 x 108km?), and further by the 2070s (1.18 x103km?). A sim-
ilar trend is observed for SSP370, suitable habitat expanding from
1.14 X 108km? in the 2030s to 1.17 X 108km? in the 2050s and 1.19
% 108km? by the 2070s. Under SSP585, projections indicate an even
greater increase, from 1.15 X 108km? in the 2030s to 1.18 X 103km?
in the 2050s, and 1.21 X 108km? by the 2070s (Figure 6).

In Brazil, regions with very high habitat suitability are also ex-
pected to increase. Under SSP245, these areas expand from 1.02
x10%km? in the 2030s to 1.43 X 10°km? by the 2070s (Figures 7
and 8). Similarly, under SSP370, areas with very high suitabil-
ity are projected to expand, reaching 1.86 x10°km? by the
2070s (Figures 7 and 8). Under SSP585, a comparable increase

is projected with very high suitability areas expanding to 2.39
X 10°km? by the 2070s. These changes are predominantly con-
centrated in southern Brazil municipalities depicted, as detailed
in Supplementary Figure S4.

3.5 | Niche Analysis

The first two axes of the principal component analysis (PCA) ex-
plained approximately 55% of the total variance across the eight
environmental variables (Figure 9A). Among these, precipi-
tation of the coldest quarter, precipitation of the driest month,
and precipitation seasonality were the main contributors to PC1
(Figure 9B). In contrast, isothermality, precipitation seasonality,
and precipitation of the wettest quarter were more influential
to PC2 (Figure 9C). The niche equivalency test revealed signif-
icant differences between native and invaded ranges (p=0.009
Figure 9D), indicating that the ecological niches occupied in
these two regions are not identical. Moreover, the niche simi-
larity test comparing the native to the invaded range (N—I)
showed significant differences (p <0.05; Figure 9E). Similarly,
the reverse comparison (I—N) also showed significant differ-
ences (p <0.05; Figure 9F).

Niche overlap between native and invaded regions (Figure 9G)
was moderate, with a Schoener's D and Hellinger's I values of
0.49 and 0.67, respectively (Table S1), indicating overlap in en-
vironmental space. Niche expansion was estimated at 0.01,
suggesting that S. frugiperda has colonized new areas with en-
vironmental conditions in the invaded range. The stability score
of 0.99 indicates that a large portion of the niche remains con-
served (Table S1). Notably, 8% of the climatic niche occupied in
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the native range was not occupied in the invaded range, despite
the presence of similar environmental conditions (Table S1). In
Figure S5, we show the niche occupancy profiles of the main
bioclimatic variables in the native and invasive range.

3.6 | Potential Impacts on Key Crop Production
in Brazil

In Brazil, sugarcane, soybeans, and corn are the most exten-
sively cultivated crops for economic purposes, particularly in the

central-western region. In contrast, herbaceous cotton, rice, and
sorghum are produced in more localized areas, although these
crops remain economically significant (Figure 10A-E). Risk as-
sessments indicate that soybeans and corn production areas are
highly vulnerable to S. frugiperda, with extensive zones of high
to very high risk concentrated in the central and south-eastern
regions of the country (Figure 11A-E). While sorghum and her-
baceous cotton exhibit more spatially restricted production, they
are nonetheless exposed to considerable pest-related threats in
specific municipalities. Quantitative risk zoning further empha-
sizes that corn and soybeans are the most severely threatened
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crops, highlighting the need for geographically targeted and
crop-specific pest management strategies. This information pro-
vides critical guidance for prioritizing intervention efforts and
optimizing resource allocation to reduce the economic impact of
S. frugiperda infestations in Brazil (Figure 12A-E).

4 | Discussion

Species distribution models are increasingly used to assess suit-
ability for invasive species across spatial and temporal scales
(Araujo et al. 2019; Ninsin et al. 2024). However, their predic-
tive reliability can be compromised by sampling bias in species
occurrence data, which may reduce model accuracy and gen-
eralizability (Dubos et al. 2022; Lamboley and Fourcade 2024).
To address this challenge, we incorporated recent, high-quality
occurrence records of S. frugiperda from validated sources and
field surveys, applying stringent data filtering prior to modeling.

Evaluation across a suite of performance metrics confirmed that
the model exhibited strong predictive ability, supporting its ap-
plication in pest risk assessment and spatial planning (Hosmer
Jr. et al. 2013; Allouche et al. 2006).

Our predictions reveal that suitable habitats for S. frugiperda
extend far beyond its currently reported distribution, including
high-risk zones across several major maize-producing countries
in Europe such as Romania, the United Kingdom, France, and
Poland. Although S. frugiperda is highly polyphagous, feeding
on more than 350 plant species (Montezano et al. 2018), maize
remains its primary host. Its establishment in these regions
could cause significant yield losses and economic disruption,
posing a direct threat to food security and rural incomes.

The model also indicates sustained or emerging suitability for
S. frugiperda in eight major maize-producing countries glob-
ally, including the United States, Brazil, Mexico, and Argentina
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FIGURES5 | Global projected habitat suitability for Spodoptera frugiperda under future climate scenarios: (A-C) SSP245 for the 2030s, 2050s, and
2070s; (D-F) SSP370 for the 2030s, 2050s, and 2070s; (G-I) SSP585 for the 2030s, 2050s, and 2070s.
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FIGURE 6 | Classified global habitat suitability for Spodoptera frugiperda under future scenarios: (A-C) SSP245 (2030s-2070s); (D-F) SSP370

(2030s-2070s); (G-I) SSP585 (2030s-2070s).

in the Americas; Ukraine in Europe; and China, India, and
Indonesia in Asia (Erenstein et al. 2022). Ukraine has not yet
reported infestations, highlighting the importance of proactive
surveillance, early detection, and preemptive policy measures.
Within Brazil, several municipalities cultivating economically
vital crops such as rice, sugarcane, corn, soybeans, and sorghum
were identified as highly vulnerable. These spatial risk maps
provide actionable insights for targeted monitoring and man-
agement strategies.

Future projections under Shared Socioeconomic Pathways
(SSP245, SSP370, and SSP585) indicate a steady expansion of

suitable habitats from the present through the 2030s, 2050s, and
2070s. These results align with previous projections (Ramasamy
et al. 2022), which indicated heightened establishment poten-
tial under SSP585 in the 2050s and 2070s. Our findings support
the view that tropical and subtropical regions, including large
parts of Africa, Southeast Asia, Oceania, and the Americas, will
continue to support the persistence and spread of S. frugiperda
under future climate scenarios (Paudel Timilsena et al. 2022).

The most important predictors of global habitat suitability in
our model were precipitation of the wettest quarter, mean tem-
perature of the warmest quarter, elevation, and isothermality.
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These environmental variables are essential for regulating S.
frugiperda development, survival, and migration. Our findings
are consistent with prior studies that emphasized the impor-
tance of temperature and precipitation in determining invasion
potential (Ramasamy et al. 2022). The broader range of pre-
dicted suitability in our study, relative to earlier models (Byeon
et al. 2018; Wolmarans et al. 2010), is likely attributable to more
comprehensive occurrence records and updated modeling
techniques. Field studies further support these patterns: S. fru-
giperda is known to thrive under high temperatures and evapo-
transpiration (Cokola et al. 2021), and pupation and emergence
are favored when soil moisture ranges between 6.8% and 47.6%
(He et al. 2021). Although CLIMEX-based models by Paudel
Timilsena et al. (2022) suggested that northern Africa may be
unsuitable due to cold and arid conditions, our results also indi-
cate that these areas could still support S. frugiperda establish-
ment, possibly facilitated by irrigation and intensive cultivation.

In this study, we present two key contributions: 1) it is the first
global quantification of the ecological niche of S. frugiperda

in native and invaded ranges. The analysis revealed moderate
niche overlaps and clear evidence of expansion into new cli-
matic spaces. Given the species’ widespread impact on crop pro-
ductivity and food security (Bannor et al. 2022), these insights
are essential for forecasting invasion trajectories and guiding
early warning systems; and 2) the use of species distribution
and ecological niche models in combination with productive
concentration indicators to define the economic risk related to
S. frugiperda. Although other zoning methods are widely used
(Amaral et al. 2023; Goncalves and Wrege 2018; Wollmann and
Galvani 2013), the use of models that estimate the probability of
a pest occurring, through the analysis of environments suitable
for the species, together with the identification of productive
clusters of crops susceptible to this pest, offers a robust method-
ological approach to define economic risk zoning.

Previous research has demonstrated the utility of SDMs in
enhancing early detection, informing containment strate-
gies, and identifying introduction hotspots (Peterson 2006).
The spatial predictions and niche metrics presented here can
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support the development of robust surveillance frameworks
in regions currently free from infestation. To strengthen pre-
paredness, we recommend prioritizing research on strain-
specific ecology, expanding farmer extension services, and
supporting evidence-informed policy frameworks that pro-
mote integrated pest management at both national and inter-
national levels.

Despite the utility of SDMs, it is important to recognize their
limitations. While our model incorporated key abiotic variables,
including climate parameters and elevation, it did not account
for biotic interactions or anthropogenic factors such as pest con-
trol practices, landscape configuration, or trade flows. These
can profoundly influence establishment success and should be
considered in future assessments. Additionally, the model does
not factor in behavioral plasticity, emergency response capacity,
or policy dynamics that could alter future distribution outcomes.

Another critical consideration is the genetic complexity of S. fru-
giperda, which comprises at least two strains, the rice strain (R)

and the corn strain (C), that may differ in host preference, eco-
logical adaptability, and migratory behavior (Miller et al. 2024;
Nagoshi et al. 2023; Tessnow et al. 2022). Hypotheses such as
allochronic activity, where strains differ in phenological timing,
may also shape spatial distributions. However, in the absence of
spatially resolved strain data, we modeled the species as a single
ecological unit. While this approach provides a conservative es-
timate of invasion risk, future work should integrate molecular,
behavioral, and ecological data to improve strain-specific pre-
dictions and enhance model precision.

5 | Conclusions

This study quantifies the current and projected habitat suitabil-
ity of S. frugiperda, delineating climate risk zones that extend
beyond its known distribution. The ecological niche analysis
offers critical insights into regions at elevated risk of invasion,
providing a valuable framework for proactive pest surveillance
and risk assessment. With rising global temperatures, our
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model predicts a consistent expansion of suitable habitats for S. crops at risk of S. frugiperda presence in Brazil. These findings
frugiperda, particularly across major maize-producing regions. serve as a resource for researchers, policymakers, agricultural
Several European countries are projected to remain highly suit- stakeholders, environmental agencies, and non-governmental
able for the establishment of the pest, highlighting the press- organizations in developing targeted and spatially informed in-

ing need for early detection and coordinated management terventions to mitigate the agricultural and economic impacts of
strategies. We found soybean and corn as the most vulnerable this invasive pest.
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FIGURE 12 | Quantitative risk zoning for Spodoptera frugiperda across Brazilian: (A) Herbaceous cotton (seed), (B) Rice (paddy), (C) Sugarcane,
(D) Corn (grain), (E) Soybeans, (F) Sorghum (in husk). The color scale (blue to red) denotes increasing levels of economic risk associated with pest
pressure, based on the integration of crop importance and predicted suitability.
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