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ABSTRACT
Invasive species represent a growing threat to global food security and biodiversity. Integrating species distribution modeling 
with economic impact assessment enables the development of targeted, evidence-based strategies to mitigate these threats. In 
this study, we estimate global habitat suitability and associated economic risks posed by the invasive fall armyworm (Spodoptera 
frugiperda) to key crops in Brazil. Habitat suitability was modeled under Shared Socioeconomic Pathways (SSPs 245, 370, and 
585) across three future timeframes (2030s, 2050s, and 2070s). The results indicate a consistent expansion of climatically suitable 
areas for S. frugiperda through the 2070s under all scenarios. The most important environmental variables shaping its distribu-
tion were the precipitation of the wettest quarter, mean temperature of the warmest quarter, elevation, and isothermality. Our 
economic risk mapping in Brazil identified soybean and corn production areas as the most vulnerable to S. frugiperda infestation, 
reflecting their extensive cultivation in regions with high climate suitability for S. frugiperda. These findings provide critical 
insights for developing adaptive strategies to reduce the future impact of S. frugiperda on agricultural productivity and food 
security.

1   |   Introduction

Insect pests pose a significant threat to global food security, 
biodiversity, and human well-being (Pyšek et al. 2020). Many 
have expanded beyond their native ranges by overcoming 
natural geographic barriers, largely due to human-mediated 

activities such as trade and land-use change (Pyke et al. 2008; 
Lehan et  al.  2013; Seebens et  al. 2015; Finch et  al.  2021; 
Bonnamour et  al.  2023). Climate change has further com-
pounded these threats. By the year 2100, global average sur-
face temperatures are projected to increase by 1.1°C–6.4°C 
relative to 1980–1999 levels (Masters and Norgrove 2010), with 
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major implications for pest population dynamics, geographic 
distribution, incidence, and severity (Harvey et  al.  2023). 
Climate shifts may also reduce the effectiveness of traditional 
pest management strategies, particularly for invasive species 
(Skendžić et  al.  2021). Therefore, understanding the habitat 
suitability of invasive pests under current and projected cli-
mate scenarios is critical for informing long-term manage-
ment and policy interventions.

The fall armyworm (Spodoptera frugiperda (J.E. Smith); 
Lepidoptera: Noctuidae) is a highly invasive pest with a broad 
host range, feeding on more than 350 plant species (FAO 2017; 
Montezano et  al.  2018). Native to the tropical and subtropi-
cal regions of the Americas, S. frugiperda has rapidly spread 
to over 100 countries, including those across sub-Saharan 
Africa, Asia, and Oceania (Brévault et al. 2018). The pest's life 
cycle duration varies with geography; in warmer climates, it 
can complete a generation in about 30 days, while in cooler re-
gions, such as parts of the United States, the cycle can extend 
to 60–90 days (Pogue 2002; Kumar et al. 2022). The number 
of generations per year depends on local climate and adult 
behavior (Pogue 2002; Baudron et al. 2019). Adult moths are 
nocturnal and typically emerge on warm, humid evenings 
(Cock et  al.  2017). In Africa alone, annual corn yield losses 
due to S. frugiperda are estimated at 8.3–20.6 million tonnes, 
translating to economic losses of $2.5 billion to $6.2 billion 
(Shylesha et  al.  2018; Day et  al.  2017). Across sub-Saharan 
Africa, combined losses in corn, sorghum, and sugarcane 
have been estimated at $13 billion, posing serious threats to 
food security and rural livelihoods (Abrahams et  al.  2017; 
Bannor et al. 2022).

Species distribution models (SDMs) have emerged as powerful 
tools to estimate the potential geographic range of invasive spe-
cies by correlating known occurrences with environmental vari-
ables (Booth et al. 2014; Aidoo et al. 2022; Amaro et al. 2023). 
The maximum entropy model (MaxEnt) has been applied to as-
sess the global and regional habitat suitability of S. frugiperda, 
including studies in Africa (Abdel-Rahman et al. 2023), China 
(Jiang et  al.  2022), and at the global scale (Ramasamy et  al. 
2022). The CLIMEX model has also been used to evaluate cli-
mate suitability projections for S. frugiperda under various 
scenarios (Paudel Timilsena et  al.  2022). However, significant 
knowledge gaps remain, particularly concerning distributional 
models and the corresponding economic impacts in vulnerable 
agricultural regions.

In this study, we modeled global  climate suitability and as-
sessed the potential economic impacts of S. frugiperda in 
Brazil's major host crops. Specifically, we addressed the fol-
lowing questions: (i) Which global regions currently offer 
suitable habitat for S. frugiperda? (ii) How does the ecological 
niche differ between the pest's native and invasive regions? 
(iii) Which regions require intensified monitoring to track fu-
ture spread? (iv) What are the projected economic impacts of 
S. frugiperda on major crops in Brazil? and (v) How is habitat 
suitability expected to shift under future climate change sce-
narios? The results of this study provide critical insights for 
early warning systems, guiding phytosanitary policies, and 
prioritizing intervention strategies. Moreover, they highlight 
Brazilian crop production areas that are most vulnerable to 

future S. frugiperda establishment, showing the importance 
of climate-informed pest risk assessments.

2   |   Materials and Methods

2.1   |   Species Data

Occurrence records for S. frugiperda were obtained from the 
Global Biodiversity Information Facility (GBIF) database 
using the rgbif R package (Chamberlain et  al.  2023) and sup-
plemented with additional records from peer-reviewed litera-
ture (Figure  S1). The initial search retrieved 8884 occurrence 
points. To ensure data quality, we followed established data-
cleaning protocols (Hijmans and Elith 2013; Zizka et al. 2019). 
Specifically, we retained only records with a spatial resolution 
of ≤ 1 km and excluded those located near capital city centers, 
country centroids, and GBIF headquarters. Duplicate entries, 
erroneous records (e.g., zero coordinates), and records lacking 
associated environmental variables were also removed. After 
filtering, 7110 georeferenced occurrences remained. To further 
reduce sampling bias and spatial autocorrelation, we applied en-
vironmental filtering following Velazco et al. (2022). The final 
dataset comprised 6793 unique records, including 3092 from the 
pest's native range and 3701 from its invasive range.

2.2   |   Environmental Data

To characterize the environmental conditions influencing S. 
frugiperda distribution, we obtained global climate data for the 
period 2000–2023 from WorldClim version 2.1 (https://​world​
clim.​org/​data/​month​lywth.​html), at a spatial resolution of 2.5 
arc-minutes. These data included monthly average maximum 
and minimum temperatures, as well as total monthly precip-
itation. From this dataset, we derived 19 bioclimatic variables 
using the biovars function from the dismo package (Hijmans 
et  al.  2017), following the methodology outlined by Hijmans 
et  al.  (2017). These variables are commonly used to represent 
long-term climatic conditions, as they reflect interannual vari-
ability and key environmental constraints known to influence 
species' geographic distributions (O'Donnel and Ignizio 2012).

To complement the climate data, an elevation variable was added 
to the dataset, based on data from the Global Multi-resolution 
Terrain Elevation Data 2010 (GMTED2010) (https://​www.​usgs.​
gov/​cente​rs/​eros/​scien​ce/​usgs-​eros-​archi​ve-​digit​al-​eleva​tion-​
globa​l-​multi​-​resol​ution​-​terra​in-​eleva​tion) for variables with 
2.5-arc-min resolution, and from the Shuttle Radar Topography 
Mission (SRTM) for variables with 30-s resolution (https://​www.​
usgs.​gov/​cente​rs/​eros/​scien​ce/​usgs-​eros-​archi​ve-​digit​al-​eleva​
tion-​shutt​le-​radar​-​topog​raphy​-​missi​on-​srtm). For model projec-
tions specific to Brazil under current climate conditions, a cor-
responding set of 19 bioclimatic variables was generated from 
the Brazilian Daily Weather Gridded Data (BR-DWGD) for the 
period 1994–2023 (Xavier et al. 2022). These data were resam-
pled to a finer spatial resolution of 30 arc-seconds and integrated 
with the other environmental layers used in modeling.

Variable selection for model input was performed through an 
iterative process during Maxent model calibration, guided 
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by both statistical contribution and biological relevance 
(Vignali et  al.  2020). The final model retained eight  ecolog-
ically meaningful predictors: Bio02—Mean diurnal range; 
Bio03—Isothermality; Bio10—Mean temperature of the warm-
est quarter; Bio14—Precipitation of driest month; Bio15—
Precipitation seasonality; Bio16—Precipitation of wettest 
quarter; Bio19—Precipitation of coldest quarter, and elevation.

2.3   |   Calibration Area, Background Selection 
and Validation

The calibration area (CA) was defined following the Biotic–
Abiotic–Movement (BAM) framework, which considers regions 
accessible to a species based on its dispersal capacity, biotic 
interactions, and environmental conditions (Elith et  al.  2011; 
Owens et  al.  2013; Phillips et  al.  2009). The CA was delin-
eated using Köppen–Geiger climate classifications (Kottek 
et al. 2006; Brunel et al. 2010; Beck et al. 2018), encompassing 
both native and invaded regions to capture the full environ-
mental niche of S. frugiperda. This area covered approximately 
130,769,872.885 km2.

To evaluate model performance, occurrence data were parti-
tioned using a spatial block cross-validation approach. This 
method helps control spatial autocorrelation between train-
ing and test datasets and is widely recommended for assessing 
model transferability across space and time (Roberts et al. 2017; 
Valavi et al. 2018, 2019; Santini et al. 2021). A total of 30 spa-
tial grids were generated with resolutions ranging from 0.5° 
(~56 km) to 5° (~557 km), divided into five spatial blocks, each 
containing a minimum of 20 occurrence records.

Sixty percent of the occurrence records were used to test for 
spatial autocorrelation and optimize grid selection. The final 
grid size was chosen based on the following criteria: (i) lowest 
spatial autocorrelation, as measured by Moran's I; (ii) highest 
environmental similarity, based on Euclidean distance; and (iii) 
smallest standard deviation in the number of records between 
training and test sets (Velazco et al. 2019). These analyses were 
conducted using the part_sblock function in the flexsdm R pack-
age (Velazco et al. 2022).

2.4   |   Model Development

We developed SDMs for S. frugiperda using MaxEnt under 
a non-homogeneous Poisson point framework (Phillips 
et  al.  2017) in R (R Core Team  2023). Model calibration in-
volved testing 171 combinations of feature classes (FC) (linear, 
quadratic, hinge, and product) and regularization multipliers 
(RM) to optimize the trade-off between model performance and 
complexity (Merow et al. 2013; Moreno-Amat et al. 2015). The 
best-performing configuration, based on Akaike Information 
Criterion corrected (AICc), was RM = 0.5 with linear, quadratic, 
and hinge features only. We generated 10,000 background 
points randomly within the calibration area (CA). Spatial par-
titioning was performed using an environmental grid with a 
cell size of 522.05 km2, Moran's I value of 0.672, and an environ-
mental similarity index of 1356.436. We assessed the niche of S. 

frugiperda using the ecospat package (Broennimann et al. 2012, 
2015; Di Cola et al. 2017). Habitat suitability was classified using 
the following thresholds, adapted from Pearson et  al.  (2007), 
Neven et  al.  (2018), and Suárez-Seoane et  al.  (2020): 0—MTP 
(MTP = Minimum Training Presence threshold): unsuitable, 
MTP—10MTP/2: marginal, 10MTP/2–10MTP: moderate, 
10MTP–50%: optimal > 50%: highly suitable.

2.5   |   Model Performance Assessment

Model performance was evaluated using multiple metrics, in-
cluding the Area under the curve of the Receiver Operating 
Characteristic Curve (AUC-ROC)—(AUC), True Skill Statistic 
(TSS), and permutation importance. Validation was conducted 
through spatial block cross-validation to ensure robustness and 
avoid spatial autocorrelation biases (Roberts et al. 2017).

2.6   |   Future Projections

To assess potential changes in habitat suitability under climate 
change, we generated projections using three Global Climate 
Models (GCMs) from CMIP6: MRI-ESM2-0, MIROC6, and MPI-
ESM1-2-HR (Yukimoto et  al.  2019; Shiogama et  al.  2019; Von 
Storch et al. 2017). These models were run under three Shared 
Socioeconomic Pathways (SSPs: 245, 370, and 585) across three 
timeframes: 2030s (2021–2040), 2050s (2041–2060), and 2070s 
(2061–2080). Model outputs were presented in both continuous 
(probabilistic) and binary formats. Binary maps were generated 
using a threshold that maximized sensitivity and specificity, en-
abling more reliable interpretation for environmental manage-
ment and policy decision-making (Liu et al. 2016).

2.7   |   Economic Risk Zoning for Brazil

To estimate the economic vulnerability of Brazilian municipal-
ities to S. frugiperda, we conducted economic risk zoning using 
the Municipal Agricultural Production (PAM) dataset from the 
Brazilian Institute of Geography and Statistics (IBGE). The fol-
lowing steps were performed: (a) total production values calcu-
lation for Brazil and all municipalities based on major host crops 
(herbaceous cotton (seed), rice (paddy), sugarcane, corn (grain), 
soybeans, sorghum); (b) computation of specialization indices, 
including the Location Quotient (QL), Relative Participation 
Index (PR), and Hirschman–Herfindahl Index (IHH) (Crocco 
et  al.  2006); (c) Z-Score Standardization of all indicators 
(mean = 0 and standard deviation = 1); (d) Principal Component 
Analysis (PCA) to derive weights (θ1, θ2, θ3) for indicators; and 
(e) calculation of the Normalized Concentration Index (ICn).

The Location Quotient (QL) measures the spatial concentra-
tion or dispersion of production across regions (municipalities) 
by comparing the proportion of a specific sector of the prod-
uct's production in a municipality to the national share of that 
product:

QLij =

(

V Pij

V Pj

)

∕

(

V PiBR
V PBR

)
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Where:

V Pij is the production value of product i in municipality j,

V Pj is the total agricultural production value of municipality j,

V PiBR VPiBR is the total production value of product i in Brazil, and

V PBR is the total agricultural production value in Brazil.

The IHH measures the weight of a specific product's production 
within a municipality's agricultural structure:

The PR captures the relative importance of a product's produc-
tion in a municipality compared to the national production:

A normalized Concentration Index (ICn) is derived as a linear 
combination of the previous indicators, accounting for their dif-
ferent capacities to represent agglomeration forces:

Where θi represents the weight of each indicator.

To classify economic vulnerability, ICn values were grouped 
into five classes using the Fisher-Jenks natural breaks algo-
rithm (Fisher 1958; Slocum et al. 2022), which optimizes class 
homogeneity. Higher ICn values indicate greater economic de-
pendence on crops susceptible to S. frugiperda, and therefore, 
greater risk. Finally, economic risk was estimated using the 
formula:

Where the probability of pest occurrence was derived from the 
Maxent habitat suitability model.

3   |   Results

3.1   |   Evaluation of Model Performance

The MaxEnt model demonstrated strong predictive accuracy for 
the potential distribution of S. frugiperda, with an Area Under 
the Curve (AUC) of 0.904 and a True Skill Statistic (TSS) of 
0.655. The model also achieved an Omission or False Negative 
or Underprediction Rate (10%) and a Continuous Boyce Index 
(CBI) of 0.967, indicating reliable performance in suitability 
ranking. Full evaluation metrics are presented in Table 1.

3.2   |   Contribution of Environmental Variables

The distribution of S. frugiperda was most strongly influenced 
by the precipitation of the wettest quarter, mean temperature of 

the warmest quarter, elevation, and isothermality (Figure 1A,B). 
Partial dependence plots illustrating the response curves of the 
most influential predictors are shown in Figure 2. Additionally, 
a histogram depicting the distribution density of S. frugiperda 
occurrences across environmental gradients is presented in 
Figure S2.

3.3   |   Current Prediction

Model projections under current climatic conditions indicate 
a substantial expansion of suitable habitat for S. frugiperda 
beyond its known occurrence range (Figure  3A; Figure  S3). 
The newly identified area at risk includes Poland, France, 
Hungary, Romania, Greece, North Macedonia, Norway, 
Serbia, Switzerland, Spain, and the United Kingdom, coun-
tries that cultivate economically important crops vulnerable to 
S. frugiperda infestations. Globally, the current suitable habi-
tat was estimated at approximately 1.10 × 108 km2 (Figure 3B). 
Suitability levels were classified into five categories: unsuit-
able, marginal, moderate, optimal, and high. The spatial dis-
tribution of these suitability classes is presented in Figure 3B. 

IHHij =

(

VPij

VPiBR

)

−

(

VPj

VPBR

)

PRij =
VPij

VPiBR

ICnij = �1QLij + �2PRij + �3IHHij

Risk = ICn × Probability of Occurrence

TABLE 1    |    Performance evaluation metrics for the MaxEnt model 
predicting the potential distribution of Spodoptera frugiperda.

Metric names Values

True positive rate, sensitivity or recall (TPR) 0.89634

True negative rate or specificity (TNR) 0.75851

True skill statistic (TSS) 0.65484

Sorensen index 0.79730

Jaccard index 0.66344

F-measure on presence-background (FPB) 1.32687

Omission or false negative or underprediction 
rate (OR/UPR)

0.10366

Continuous Boyce Index (CBI) 0.96765

Area under ROC curve (AUC) 0.90478

Fractional predicted area (FPA) 0.19045

Area under precision/recall curve (AUCPR) 0.83669

Inverse mean absolute error (IMAE) 0.71673

False positive rate (FPR) 0.24149

Positive predictive value or precision (PPV) 0.78776

Negative predictive value (NPV) 0.45836

Accuracy 0.82742

F1 Score 0.83855

Balanced accuracy 0.82742

Matthews correlation coefficient (MCC) 0.66115

Minimum training presence (MTP) 0.02039

10% Minimum training presence (10MTP) 0.43083

Symmetric extremal dependence index (SEDI) 0.81055
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In Brazil, suitable habitats for S. frugiperda are predominantly 
concentrated in the southern, southeastern, and central-
western regions (Figure  4A). Detailed predictions at the 
national scale, including suitability estimates by state and mu-
nicipality, threshold-based binary maps, extrapolation zones, 
and habitat suitability classes, are shown in Figure 4B–F. The 
total area identified as suitable for the pest in Brazil is approx-
imately 8.49 × 106 km2.

3.4   |   Future Predictions

Future predictions suggest a continued expansion of habitat suit-
ability for S. frugiperda under all three SSPs: 245, 245, and 585 
(Figures  5 and 6). Key maize-producing countries, including 
Argentina, Brazil, China, India, Ukraine, and the United States, 
are expected to remain suitable habitats for S. frugiperda through 
the 2070s. Under SSP245, globally suitable habitat is projected to 
increase progressively from the 2030s (1.14 × 108 km2) to the 2050s 
(1.17 × 108 km2), and further by the 2070s (1.18 × 108 km2). A sim-
ilar trend is observed for SSP370, suitable habitat expanding from 
1.14 × 108 km2 in the 2030s to 1.17 × 108 km2 in the 2050s and 1.19 
× 108 km2 by the 2070s. Under SSP585, projections indicate an even 
greater increase, from 1.15 × 108 km2 in the 2030s to 1.18 × 108 km2 
in the 2050s, and 1.21 × 108 km2 by the 2070s (Figure 6).

In Brazil, regions with very high habitat suitability are also ex-
pected to increase. Under SSP245, these areas expand from 1.02 
× 106 km2 in the 2030s to 1.43 × 106 km2 by the 2070s (Figures 7 
and 8). Similarly, under SSP370, areas with very high suitabil-
ity are projected to expand, reaching 1.86 × 106 km2 by the 
2070s (Figures 7 and 8). Under SSP585, a comparable increase 

is projected with very high suitability areas expanding to 2.39 
× 106 km2 by the 2070s. These changes are predominantly con-
centrated in southern Brazil municipalities depicted, as detailed 
in Supplementary Figure S4.

3.5   |   Niche Analysis

The first two axes of the principal component analysis (PCA) ex-
plained approximately 55% of the total variance across the eight 
environmental variables (Figure  9A). Among these, precipi-
tation of the coldest quarter, precipitation of the driest month, 
and precipitation seasonality were the main contributors to PC1 
(Figure 9B). In contrast, isothermality, precipitation seasonality, 
and precipitation of the wettest quarter were more influential 
to PC2 (Figure 9C). The niche equivalency test revealed signif-
icant differences between native and invaded ranges (p = 0.009 
Figure  9D), indicating that the ecological niches occupied in 
these two regions are not identical. Moreover, the niche simi-
larity test comparing the native to the invaded range (N—I) 
showed significant differences (p < 0.05; Figure 9E). Similarly, 
the reverse comparison (I—N) also showed significant differ-
ences (p < 0.05; Figure 9F).

Niche overlap between native and invaded regions (Figure 9G) 
was moderate, with a Schöener's D and Hellinger's I values of 
0.49 and 0.67, respectively (Table S1), indicating overlap in en-
vironmental space. Niche expansion was estimated at 0.01, 
suggesting that S. frugiperda has colonized new areas with en-
vironmental conditions in the invaded range. The stability score 
of 0.99 indicates that a large portion of the niche remains con-
served (Table S1). Notably, 8% of the climatic niche occupied in 

FIGURE 1    |    Contribution of environmental variables to the MaxEnt model in predicting the distribution of Spodoptera frugiperda. Bio02—Mean 
diurnal range; Bio03—Isothermality; Bio10—Mean temperature of the warmest quarter; Bio14—Precipitation of Driest Month; Bio15—Precipitation 
Seasonality; Bio16—Precipitation of Wettest Quarter; Bio19- Precipitation of Coldest Quarter, Elevation. Each purple dot represents a predicted hab-
itat suitability value for a given environmental variable, with all other variables held at their mean values. (A) AUC, Area under the curve, and (B) 
TSS, true skilled statistics.
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the native range was not occupied in the invaded range, despite 
the presence of similar environmental conditions (Table S1). In 
Figure  S5, we show the niche occupancy profiles of the main 
bioclimatic variables in the native and invasive range.

3.6   |   Potential Impacts on Key Crop Production 
in Brazil

In Brazil, sugarcane, soybeans, and corn are the most exten-
sively cultivated crops for economic purposes, particularly in the 

central-western region. In contrast, herbaceous cotton, rice, and 
sorghum are produced in more localized areas, although these 
crops remain economically significant (Figure 10A–E). Risk as-
sessments indicate that soybeans and corn production areas are 
highly vulnerable to S. frugiperda, with extensive zones of high 
to very high risk concentrated in the central and south-eastern 
regions of the country (Figure 11A–E). While sorghum and her-
baceous cotton exhibit more spatially restricted production, they 
are nonetheless exposed to considerable pest-related threats in 
specific municipalities. Quantitative risk zoning further empha-
sizes that corn and soybeans are the most severely threatened 

FIGURE 2    |    Partial dependence plots of environmental variables used in the MaxEnt model for Spodoptera frugiperda. (A) Bio02—Mean diur-
nal range; (B) Bio03—Isothermality; (C) Bio10—Mean temperature of the warmest quarter; (D) Bio14—Precipitation of Driest Month; (E) Bio15—
Precipitation Seasonality; (F) Bio16—Precipitation of Wettest Quarter; (G) Bio19—Precipitation of Coldest Quarter, (H) Elevation. Each purple dot 
represents a predicted habitat suitability value for a given environmental variable, with all other variables held at their mean values.
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crops, highlighting the need for geographically targeted and 
crop-specific pest management strategies. This information pro-
vides critical guidance for prioritizing intervention efforts and 
optimizing resource allocation to reduce the economic impact of 
S. frugiperda infestations in Brazil (Figure 12A–E).

4   |   Discussion

Species distribution models are increasingly used to assess suit-
ability for invasive species across spatial and temporal scales 
(Araújo et al. 2019; Ninsin et al. 2024). However, their predic-
tive reliability can be compromised by sampling bias in species 
occurrence data, which may reduce model accuracy and gen-
eralizability (Dubos et al. 2022; Lamboley and Fourcade 2024). 
To address this challenge, we incorporated recent, high-quality 
occurrence records of S. frugiperda from validated sources and 
field surveys, applying stringent data filtering prior to modeling. 

Evaluation across a suite of performance metrics confirmed that 
the model exhibited strong predictive ability, supporting its ap-
plication in pest risk assessment and spatial planning (Hosmer 
Jr. et al. 2013; Allouche et al. 2006).

Our predictions reveal that suitable habitats for S. frugiperda 
extend far beyond its currently reported distribution, including 
high-risk zones across several major maize-producing countries 
in Europe such as Romania, the United Kingdom, France, and 
Poland. Although S. frugiperda is highly polyphagous, feeding 
on more than 350 plant species (Montezano et al. 2018), maize 
remains its primary host. Its establishment in these regions 
could cause significant yield losses and economic disruption, 
posing a direct threat to food security and rural incomes.

The model also indicates sustained or emerging suitability for 
S. frugiperda in eight major maize-producing countries glob-
ally, including the United States, Brazil, Mexico, and Argentina 

FIGURE 3    |    Global potential habitat suitability of Spodoptera frugiperda under current conditions. (A) Continuous probability of occurrence. (B) 
Habitat suitability classified into five categories: unsuitable, marginal, moderate, optimal, and high.
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8 of 18 Food and Energy Security, 2025

FIGURE 4    |    Current habitat suitability of Spodoptera frugiperda in Brazil. (A) Suitability by state; (B) Habitat classified by suitability thresholds; 
(C) Probability of occurrence by municipality; (D) Binary threshold map; (E) Suitability range by state; (F) Areas of extrapolation.
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in the Americas; Ukraine in Europe; and China, India, and 
Indonesia in Asia (Erenstein et al. 2022). Ukraine has not yet 
reported infestations, highlighting the importance of proactive 
surveillance, early detection, and preemptive policy measures. 
Within Brazil, several municipalities cultivating economically 
vital crops such as rice, sugarcane, corn, soybeans, and sorghum 
were identified as highly vulnerable. These spatial risk maps 
provide actionable insights for targeted monitoring and man-
agement strategies.

Future projections under Shared Socioeconomic Pathways 
(SSP245, SSP370, and SSP585) indicate a steady expansion of 

suitable habitats from the present through the 2030s, 2050s, and 
2070s. These results align with previous projections (Ramasamy 
et  al. 2022), which indicated heightened establishment poten-
tial under SSP585 in the 2050s and 2070s. Our findings support 
the view that tropical and subtropical regions, including large 
parts of Africa, Southeast Asia, Oceania, and the Americas, will 
continue to support the persistence and spread of S. frugiperda 
under future climate scenarios (Paudel Timilsena et al. 2022).

The most important predictors of global habitat suitability in 
our model were precipitation of the wettest quarter, mean tem-
perature of the warmest quarter, elevation, and isothermality. 

FIGURE 5    |    Global projected habitat suitability for Spodoptera frugiperda under future climate scenarios: (A–C) SSP245 for the 2030s, 2050s, and 
2070s; (D–F) SSP370 for the 2030s, 2050s, and 2070s; (G–I) SSP585 for the 2030s, 2050s, and 2070s.

FIGURE 6    |    Classified global habitat suitability for Spodoptera frugiperda under future scenarios: (A–C) SSP245 (2030s–2070s); (D–F) SSP370 
(2030s–2070s); (G–I) SSP585 (2030s–2070s).
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These environmental variables are essential for regulating S. 
frugiperda development, survival, and migration. Our findings 
are consistent with prior studies that emphasized the impor-
tance of temperature and precipitation in determining invasion 
potential (Ramasamy et  al. 2022). The broader range of pre-
dicted suitability in our study, relative to earlier models (Byeon 
et al. 2018; Wolmarans et al. 2010), is likely attributable to more 
comprehensive occurrence records and updated modeling 
techniques. Field studies further support these patterns: S. fru-
giperda is known to thrive under high temperatures and evapo-
transpiration (Cokola et al. 2021), and pupation and emergence 
are favored when soil moisture ranges between 6.8% and 47.6% 
(He et  al. 2021). Although CLIMEX-based models by Paudel 
Timilsena et al.  (2022) suggested that northern Africa may be 
unsuitable due to cold and arid conditions, our results also indi-
cate that these areas could still support S. frugiperda establish-
ment, possibly facilitated by irrigation and intensive cultivation.

In this study, we present two key contributions: 1) it is the first 
global quantification of the ecological niche of S. frugiperda 

in native and invaded ranges. The analysis revealed moderate 
niche overlaps and clear evidence of expansion into new cli-
matic spaces. Given the species' widespread impact on crop pro-
ductivity and food security (Bannor et al. 2022), these insights 
are essential for forecasting invasion trajectories and guiding 
early warning systems; and 2) the use of species distribution 
and ecological niche models in combination with productive 
concentration indicators to define the economic risk related to 
S. frugiperda. Although other zoning methods are widely used 
(Amaral et al. 2023; Gonçalves and Wrege 2018; Wollmann and 
Galvani 2013), the use of models that estimate the probability of 
a pest occurring, through the analysis of environments suitable 
for the species, together with the identification of productive 
clusters of crops susceptible to this pest, offers a robust method-
ological approach to define economic risk zoning.

Previous research has demonstrated the utility of SDMs in 
enhancing early detection, informing containment strate-
gies, and identifying introduction hotspots (Peterson  2006). 
The spatial predictions and niche metrics presented here can 

FIGURE 7    |    Projected habitat suitability for Spodoptera frugiperda in Brazil under future climate scenarios: (A–C) SSP245 for the 2030s, 2050s, 
and 2070s; (D–F) SSP370 for the 2030s, 2050s, and 2070s; (G–I) SSP585 for the 2030s, 2050s, and 2070s.
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support the development of robust surveillance frameworks 
in regions currently free from infestation. To strengthen pre-
paredness, we recommend prioritizing research on strain-
specific ecology, expanding farmer extension services, and 
supporting evidence-informed policy frameworks that pro-
mote integrated pest management at both national and inter-
national levels.

Despite the utility of SDMs, it is important to recognize their 
limitations. While our model incorporated key abiotic variables, 
including climate parameters and elevation, it did not account 
for biotic interactions or anthropogenic factors such as pest con-
trol practices, landscape configuration, or trade flows. These 
can profoundly influence establishment success and should be 
considered in future assessments. Additionally, the model does 
not factor in behavioral plasticity, emergency response capacity, 
or policy dynamics that could alter future distribution outcomes.

Another critical consideration is the genetic complexity of S. fru-
giperda, which comprises at least two strains, the rice strain (R) 

and the corn strain (C), that may differ in host preference, eco-
logical adaptability, and migratory behavior (Miller et al. 2024; 
Nagoshi et al. 2023; Tessnow et al. 2022). Hypotheses such as 
allochronic activity, where strains differ in phenological timing, 
may also shape spatial distributions. However, in the absence of 
spatially resolved strain data, we modeled the species as a single 
ecological unit. While this approach provides a conservative es-
timate of invasion risk, future work should integrate molecular, 
behavioral, and ecological data to improve strain-specific pre-
dictions and enhance model precision.

5   |   Conclusions

This study quantifies the current and projected habitat suitabil-
ity of S. frugiperda, delineating climate risk zones that extend 
beyond its known distribution. The ecological niche analysis 
offers critical insights into regions at elevated risk of invasion, 
providing a valuable framework for proactive pest surveillance 
and risk assessment. With rising global temperatures, our 

FIGURE 8    |    Classified potential habitat suitability Spodoptera frugiperda in Brazil under future climate scenarios: (A–C) SSP245 (2030s–2070s); 
(D–F) SSP370 (2030s–2070s); (G–I) SSP585 (2030s–2070s).
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model predicts a consistent expansion of suitable habitats for S. 
frugiperda, particularly across major maize-producing regions. 
Several European countries are projected to remain highly suit-
able for the establishment of the pest, highlighting the press-
ing need for early detection and coordinated management 
strategies. We found soybean and corn as the most vulnerable 

crops at risk of S. frugiperda presence in Brazil. These findings 
serve as a resource for researchers, policymakers, agricultural 
stakeholders, environmental agencies, and non-governmental 
organizations in developing targeted and spatially informed in-
terventions to mitigate the agricultural and economic impacts of 
this invasive pest.

FIGURE 9    |    Niche analysis of Spodoptera frugiperda in native and invaded regions. (A) PCA, the first two principal components derived from the 
environmental variables used for modeling. (B) Contribution of variables to PC1; (C) contribution to PC2. (D) Histogram of the niche equivalency test 
results. (E) Similarity test from native to invaded range (N—1). (F) Similarity test from invaded to native range (1—N). (G) Visualization of climatic 
niche overlap. Blue indicates unfilled native niche space, orange shows areas of niche expansion in the invaded range, and yellow indicates niche 
stability. Solid contour lines represent the environmental space of native (light green) and invaded (red) areas; dotted lines represent 90% of the avail-
able background environment. Shading indicates occurrence density, with darker areas representing higher density. Solid and dotted arrows indicate 
shifts in environmental centroids between native and invaded niches.
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13 of 18

FIGURE 10    |    Spatial distribution of the economic importance (ICn) of major crops across Brazilian municipalities: (A) Herbaceous cotton (seed), 
(B) Rice (paddy), (C) Sugarcane, (D) Corn (grain), (E) Soybeans, (F) Sorghum (in husk). Color gradients range from red/orange (high crop concentra-
tion) to green/blue (lower crop concentration or absence of production).
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14 of 18 Food and Energy Security, 2025

FIGURE 11    |    Spodoptera frugiperda potential impacts on crop production in Brazilian municipalities for (A) Herbaceous cotton (seed), (B) Rice 
(paddy), (C) Sugarcane, (D) Corn (grain), (E) Soybeans, (F) Sorghum (in husk). Risk classes range from low (blue) to very high (red), reflecting re-
gional vulnerability to fall armyworm infestation.
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15 of 18

FIGURE 12    |    Quantitative risk zoning for Spodoptera frugiperda across Brazilian: (A) Herbaceous cotton (seed), (B) Rice (paddy), (C) Sugarcane, 
(D) Corn (grain), (E) Soybeans, (F) Sorghum (in husk). The color scale (blue to red) denotes increasing levels of economic risk associated with pest 
pressure, based on the integration of crop importance and predicted suitability.
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