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INTRODUCTION

Climate change and biological invasions are interconnected global
concerns (Gentili et al., 2021). Projections indicate a global average

temperature increase between 1.8 and 4°C by the end of this century,

| Cesar Augusto Marchioro? |

Ricardo Siqueira da Silva3*>

Abstract

1. Biological invasions and climate change are key drivers of biodiversity redistribu-

tion, leading to severe environmental, economic, and public health consequences.
This issue is particularly problematic for insect pests, which often expand their dis-
tribution via transportation with commodities. The peach twig borer, Anarsia linea-
tella Zeller, exemplifies an agricultural pest with a primarily restricted distribution

that expanded its range to other regions.

. This study used species distribution modelling to predict the distribution of

A. lineatella under current and future climate conditions. The model was developed
using the Maxent algorithm, following best practices and recommendations for spe-

cies distribution modelling.

. The optimized model exhibited strong statistical performance, effectively identifying

suitable areas for the species (TSS = 0.76, AUC = 0.91; CBI = 0.89). It predicted suit-
able areas beyond the pest’s current distribution, encompassing countries in the Neo-
tropical region, northern and sub-Saharan Africa, northeastern Asia, and southeastern
and southwestern Australia. Under climate change scenarios, the model projected an
expansion of A. lineatella’s range, especially under the high greenhouse gas emissions
scenario (SSP5-8.5) for 2041 to 2060. In this scenario, the model estimated an increase
of up to 14% in areas classified as optimal and 52% in areas with a high probability of

occurrence, with the expansion primarily concentrated in eastern Europe.

. The results provide valuable insights into the potential distribution of A. lineatella,

aiding in the prioritisation of regions for monitoring and adopting preventive mea-

sures against this pest.
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alongside significant forecasted changes in precipitation patterns
worldwide (Skendzi¢ et al., 2021). Climate change and globalization
are causing the global redistribution of species, with severe conse-
quences for human well-being (Pecl et al., 2017). Similarly, biological

invasions profoundly affect biodiversity, ecosystem services, human
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health, and the economy (Klem & Zaspel, 2019; Mooney &
Cleland, 2001; Pejchar & Mooney, 2009; Vila et al., 2011). Over the
past 50 years, studies have revealed that invasive alien species have
caused damages totaling at least US$1.288 trillion, with costs steadily
increasing (Diagne et al, 2021). Moreover, these estimates likely
underestimate the true economic impact, as data are available for only
about 10 percent of known invasive species (Zenni et al., 2021). Given
this context, mapping the current suitable areas for invasive alien spe-
cies and projecting their future distribution is critical for developing
effective management strategies.

Insects are among the taxa that have undergone an increasing
number of invasions in recent centuries, often spreading beyond their
native continents (Seebens et al, 2017). Likewise, several species
have expanded their distribution in response to climate change
(Hulme, 2017; Taheri et al.,, 2021). Agricultural pests, in particular,
benefit from this phenomenon, as they can hitch rides with trade
commodities and exploit abundant food resources in cultivated areas
(Guillemaud et al., 2011). The peach twig borer, Anarsia lineatella Zel-
ler (Lepidoptera: Gelechiidae), is an example of an agricultural pest
that has successfully invaded continents beyond its native range.
Originating from the Mediterranean region, this species has spread to
most parts of Europe, Asia, and the United States (Jones, 1935). Its
larvae feed primarily on peaches and other cultivated stone fruits such
as almonds, apricots, apples, and nectarines (Sorenson &
Gunnel, 1955). During the larval stage, the peach twig borer feeds on
petals and causes significant damage by penetrating ovaries. When
fruits are available, larvae burrow into fruit, create internal galleries
that cause premature fruit drop, and render fruit unsuitable for con-
sumption or marketing (Mamay et al., 2014). Losses attributed to
A. lineatella can vary from 5% to 29%, depending on population levels
and the host plant (Damos & Savopoulou-Soultani, 2008; Mamay
et al., 2014). Furthermore, fruits showing signs of pest infestation may
encounter trade restrictions and rejections in export markets,
adversely impacting the agricultural economies of regions heavily reli-
ant on fresh produce exports.

Species distribution models (SDMs) are important tools for sup-
porting and guiding the development and implementation of environ-
mental and phytosanitary policies and management programmes
(Addison et al., 2013; Martin et al., 2020; Mukherjee et al., 2021;
Schuwirth et al., 2019). These models are typically classified as either
correlative or mechanistic. Correlative models relate data from the
geographic coordinates of a species’ presence/absence (or pseudo-
absence, or background samples) to environmental variables to iden-
tify habitats that may be suitable for the species (Elith et al., 2011).
When only presence records are available, the maximum entropy
algorithm (Maxent) is a widely used approach for identifying suitable
areas. This machine-learning algorithm is recognised for its strong sta-
tistical performance and its ability to outperform other presence-only
modelling methods (Elith et al., 2011, 2006; Venette, 2017). Further-
more, models developed based on current climate conditions can be
projected onto future climate conditions using different greenhouse
gas emissions scenarios from the Sixth Assessment Report of the

Intergovernmental Panel for Climate Change (IPCC).

Entomological
tomological
Sociaty

AMARO ET AL.

A regional study conducted in California, USA, suggests that cli-
mate change is likely to significantly impact the population dynamics
and abundance of the peach twig borer in the future (Jha et al., 2024).
However, no research to date has assessed the potential effect of cli-
mate change on the global suitable range for A. lineatella. Given the crit-
ical role of climate in shaping species distributions, the increasing
occurrence of biological invasion events involving agricultural pests,
and the economic importance of A. lineatella as a pest of several cash
crops, this study aimed to identify climatically suitable areas for the
peach twig borer under current and future climate change scenarios.
The projections considered different climate change scenarios, ranging
from a sustainable pathway to a fossil fuel-dependent development.
The information generated by the study provides insights into potential
changes in suitable areas for the establishment of A. lineatella under cli-

mate change, thereby offering a basis for controlling its spread.

MATERIALS AND METHODS

Occurrence data

The occurrence data for A. lineatella was obtained from the Global
Biodiversity Information Facility (GBIF, 2024) database using the rgbif
R package version 3.8.0 (Chamberlain et al., 2023). The following pro-
cedures were used to clean the occurrence data (Hijmans &
Elith, 2013; Ribeiro et al., 2023; Zizka et al., 2019): (i) only records
with a spatial resolution <1km were retained for analysis;
(ii) occurrence records within a radius of 10 km around the centres of
capital cities and 5 km around the centres of countries, states, prov-
inces, or municipalities were removed; (i) occurrences with the same
absolute longitude and latitude, within a radius of 0.5° around the
GBIF headquarters, and duplicate coordinates were also removed; and
(iv) occurrence records located in water or not associated with envi-
ronmental variables were removed (Amaro et al., 2025).

Sampling bias is an important factor affecting the performance of
presence-background models such as Maxent (Barber et al, 2022;
Schartel & Cao, 2024). To address this issue, an environmental filter
(Velazco et al., 2022) was applied to reduce sampling bias. Recognising
that environmental filters are typically sensitive to bin size, four bin sizes
were tested (4, 6, 8, and 10). The process began with the construction of
a regular multidimensional grid in environmental space, defined by the
selected environmental variables. The grid’s cell size depended on the
number of bins, which partitioned the variable range into interval classes
(Castellanos et al., 2019; Varela et al., 2014). For each bin size, the
approach proposed by Velazco et al. (2021), selecting filtered occurrences
based on the number of records and spatial autocorrelation, was applied.
Finally, a single occurrence was randomly selected within each grid cell.

Occurrence data were partitioned to assess model performance
using a spatial block cross-validation approach, as this method allows
control for potential spatial autocorrelation between the model train-
ing and test data and is recommended for assessing its transferability
across space and time (Roberts et al., 2017; Santini et al., 2021; Valavi
et al., 2019). Thirty grids were generated with resolutions ranging
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from 0.5° (~56 km) to 5° (~557 km) to select the best grid size, in
four partitions, with at least five occurrence records per partition.
Eighty percent of the occurrences were used for the autocorrelation
test, selecting the grid size with (i) the lowest spatial
autocorrelation according to Moran'’s I; (ii) the maximum environmen-
tal similarity based on the Euclidean distance; and (iii) the minimum
difference in the number of records between training and test data,
indicated by the standard deviation (Velazco et al., 2019), using the
part_sblock function from the flexsdm R package (Velazco
et al., 2022).

Environmental data

To represent current climate conditions, a set of 19 bioclimatic vari-
ables derived from monthly temperature and precipitation data for
the years 1970 to 2000 was obtained from the Worldclim database
version 2.1 (Fick & Hijmans, 2017), with an average spatial resolution
of 2.5 min (~4.6 km at the equator) (Hijmans et al., 2023). This climate
dataset was chosen because it captures the annual variability and lim-
iting factors that are known to influence the geographic distribution
of species (O’Donnel & Ignizio, 2012). In addition to the bioclimate
variables, an elevation variable derived from the Shuttle Radar Topog-
raphy Mission (SRTM) and supplemented with USGS 30 arc-second
Global Elevation Data (GTOPOZ30) data was used.

The same bioclimate variables were obtained for the periods
2021-2040 and 2041-2060 and for different climate change scenar-
ios representing low (SSP1-2.6), medium (SSP2-4.5), and high
(SSP5-8.5) greenhouse gas emissions from Coupled Model Intercom-
parison Projections (CMIP) 6 in the Worldclim 2.1 database. Three
General Circulation Models (GCM) were used: (i) MRI-ESM2-0
(Yukimoto et al., 2019), (ii) MIROCé (Shiogama et al., 2019), and
(iii) MPI-ESM1-2-HR (von Storch et al., 2017). Average projections

were calculated for each period and climate change scenario.

Background selection

The accessible area approach was used to define the calibration area
(CA) for A. lineatella. This is an important step in the modelling process
because the size of the calibration area affects the performance met-
rics of the models (Amaro et al., 2023; Anderson & Raza, 2010;
Barbet-Massin et al., 2012). In this study, the Képpen-Geiger climate
zones with at least one occurrence record were used to delimit the
CA (Brunel et al., 2010; Datta et al., 2019; Hill et al., 2017; Hill &
Terblanche, 2014; Marchioro, 2016; Webber et al., 2011). Both native
and invasive occurrence records were used to delimit the CA
(Beaumont et al, 2009; Broennimann & Guisan, 2008; Zhang
et al., 2020), considering that the species may undergo a climatic niche
shift during the invasion process.

Presence-background-based distribution models, such as Maxent,
estimate the relative probability of presence by comparing occurrence

sites to a background (an environmental context) consisting of all the

e |

sites in the calibration area (Halvorsen et al, 2015; Phillips &
Elith, 2013). Ideally, the background samples should reflect the envi-
ronmental conditions that contrast with the species occurrences
(Saupe et al., 2012). Therefore, 10,000 points were randomly selected
throughout the calibration area (Barbet-Massin et al., 2012; Phillips &
Dudik, 2008), equally stratified to the presence points in each parti-
tion (Hirzel & Guisan, 2002).

Model development

All procedures relating to data processing, model development, and
creation of maps and graphs were carried out using the R environ-
ment, version 4.4.0 (R Core Team, 2023), in a fully automated frame-
work, developed based on best practices and recommendations
relating to species distribution modelling with Maxent (Aradjo
et al, 2019; Jarnevich et al., 2015; Low et al., 2021; Merow
et al., 2013; Rojas-Soto et al., 2024; Santini et al., 2021; Sillero, 2011;
Sillero & Barbosa, 2021; Srivastava et al, 2021). The maximum
entropy model (Maxent) was used through an inhomogeneous Pois-
son point process (Phillips, 2008, 2017; Phillips et al., 2006, 2017;
Renner et al., 2015; Renner & Warton, 2013) because this method is
one of the most widely used to model species distributions and has
shown good performance compared to other algorithms (Elith
et al., 2006, 2011; Heikkinen et al., 2012; Helmstetter et al., 2021;
Hijmans, 2012; Valavi et al., 2022; Venette, 2017).

Two main parameters adjusted in Maxent significantly affect
model complexity and performance: (i) the regularization multiplier
(RM), and (i) the feature classes (FC) (Elith et al, 2011; Merow
et al., 2013). The RM determines penalties for including variables or
their transformations (features) in the model. Higher RM values
impose a stronger penalty on model complexity, resulting in simpler
(flatter) forecasts. FCs are transformations of the original predictor
variables and shape the potential marginal response curves. A model
that includes only linear features is likely to be simpler than one that
incorporates all possible features (Elith et al., 2010). In Maxent, FCs
used to build the model can be linear (L), quadratic (Q), threshold (T),
hinge (H), product (P), and categorical (Merow et al., 2013). Hinge fea-
tures often make linear and threshold features redundant. To obtain a
relatively smoother fitted model, similar to a GAM (generalized addi-
tive model), using only hinge features is recommended (Elith
et al., 2010, 2011). Excluding product features results in an additive
model that is easier to interpret, although less capable of representing
complex interactions (Elith et al., 2011).

In this study, the Maxent model was implemented using a 4-fold
cross-validation approach with RM set to 1 and FC set to LQHP,
which are the default settings in Maxent. The selection of the most
important uncorrelated variables for A. lineatella was conducted using
a data-driven approach. Initially, a model was constructed using the
species occurrence records along with all the predictor variables. From
this base model, an iterative process was carried out, starting with the
variable with the highest permutation importance. If a variable was

found to be correlated with others (Sperman rank coefficient > |0.7),
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a jackknife test was performed. The variable that caused the least
decrease in model performance, measured by the True Skill Statistics
metric (TSS) (Allouche et al., 2006), when removed, was excluded from
the analysis. This process was repeated until only uncorrelated vari-
ables remained (Vignali et al., 2020). To optimise the model’'s parsi-
mony, the largest number of variables was removed without affecting
model performance using the jackknife test and the TSS metric. Only
variables with permutation importance greater than 3% were kept in
the analysis.

Previous research suggests that different combinations of FC and
RM should be tested to determine the best settings for the species
under study (Merow et al, 2013; Moreno-Amat et al., 2015;
Radosavljevic & Anderson, 2014; Syfert et al., 2013). Therefore, the
final model was defined by fine-tuning 171 models consisting of nine
FCs ('L, ‘Q, ‘H’, ‘LQ’, ‘QH’, ‘LQH’, ‘LQP’, ‘QHP’, ‘LQHP’) and
19 RM values ranging from 0.5 to 5, with increments of 0.25 using
the flexsdm package (Velazco et al., 2022). The TSS was used to select
the best combination of FCs and RMs. The permutation importance
of the variables for the final model was estimated using the varlmpor-
tance function from the fitMaxnet package (Wilson, 2024).

The performance of the final model was assessed using multiple
evaluation metrics, including both threshold-dependent and
-independent metrics, as recommended in the literature (Konowalik &
Nosol, 2021; Sofaer et al., 2019). Threshold-dependent metrics
include the True Positive Rate (TPR) (Elith et al., 2006; Fielding &
Bell, 1997; Liu et al., 2013), True Negative Rate (TNR) (Fawcett, 2006;
Hanley & McNeil, 1982), and TSS (Fawcett, 2006; Hanley &
McNeil, 1982). Threshold-independent metrics include the area under
the curve of the receiver operating characteristic (AUC) and the Con-
tinuous Boyce Index (CBI) (Boyce et al., 2002). TPR and TNR assess
the model's ability to accurately identify true positives and true nega-
tives, respectively, while TSS combines both metrics to evaluate the
model’s overall discriminatory capacity. In contrast, AUC and CBI
assess the model’s ability to discriminate between observed presences
and background locations.

The final model was projected on a global scale and across differ-
ent time periods and climate change scenarios evaluated. Maxent gen-
erates a probability of occurrence map with values ranging from O to
1. This map was divided into five fixed probability classes representing
(i) inadequate conditions (0-0.1); (ii) marginal conditions (0.1-0.2);
(iii) moderate conditions (0.2-0.5); (iv) optimal conditions (0.5-0.8);
and (v) high probability of occurrence (0.8-1). The area of each class
was estimated and used as a reference to assess the effect of climate
change on the distribution of A. lineatella. For environmental manage-
ment and phytosanitary policy applications, suitability was also repre-
sented as presence/absence (Liu et al, 2013). A binary map was
generated by applying a threshold that maximises the sum of sensitiv-
ity (true positive rate) and specificity (true negative rate) (Liu
et al., 2005, 2016). In addition, binary maps were created with the
Minimum Training Presence (MTP) and 10th Percentile Training Pres-
ence (10TP) thresholds. MTP represents the minimum environmental
suitability considered sufficient for the species to occur (marginal con-

ditions), while 10TP considers only the top 90% of the presence
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points as suitable, thereby reducing the inclusion of marginal
conditions.

RESULTS
Model performance and variable importance

A total of 389 occurrences were collected from the GBIF database.
After the data-cleaning and filtering processes, 150 occurrences
remained: nine in the native range and 141 in the invaded range
(Figure 1). The data-driven variable selection process resulted in six
variables used in the model development (Appendix S1). The optimal
model for A. lineatella incorporated quadratic, hinge, and product fea-
ture classes with a regularization multiplier of 0.5 (QHPO.5) and dem-
onstrated strong performance across commonly used metrics
(Appendix S1). The selected model showed good discriminatory abil-
ity, as demonstrated by both threshold-dependent (TSS = 0.812) and
threshold-independent metrics (AUC = 0.915; CBIl = 0.893). This
result was confirmed when considering the partial AUC (Jiang
et al., 1996; McClish, 1989) (Appendix S1).

According to the permutation importance, four out of the six vari-
ables were important for the optimal model: mean temperature of
warmest quarter (Bio10-54.0%), precipitation of coldest quarter
(Bio19-21.3%), precipitation seasonality (Bio15-11.7%), and mean
diurnal range (Bio02-6.9%), respectively (Figure 2). Individual marginal
response curves for the most important variables show that the prob-
ability of occurrence of A. lineatella follows a sine curve for Bio10 and
Bio19. The curves indicate a high probability of occurrence in regions
with an average temperature of the warmest quarter around 22°C
and precipitation of the coldest quarter around 268 mm (Figure 3). In
contrast, the probability of occurrence decreases as the precipitation

seasonality and mean diurnal range increase (Figure 3).

Distribution of A. lineatella under current climate
conditions

The optimal model predicted high-probability areas for the occurrence
of A. lineatella in southern and western Europe, the entire southern
coast of the Black Sea, the Himalayas, southern China near the border
with Vietnam, parts of South Korea and Japan, as well as isolated
areas in the United States (Figure 4a). The map depicting the specified
probability classes and the estimate of the corresponding areas indi-
cates that environments with a high probability of A. lineatella occur-
rence cover 1,952,031 km?, while those with an optimal probability
cover 4,181,620 km? (Figure 4b).

When considering marginal climatic conditions (Figure 4c), much
of the world was predicted to be suitable for A. lineatella, except for
extremely dry and cold regions. Conversely, the binary map generated
by excluding marginal environments restricted the predictions of suit-
able areas to Europe, some regions in sub-Saharan Africa, the north-

eastern and western United States, and isolated areas in eastern
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FIGURE 1 Global distribution of Anarsia lineatella based on occurrence records collected from the Global Biodiversity Information Facility
(GBIF, 2024). Anarsia lineatella is native to Portugal; all other records represent invaded regions.

Bio19 - - 21.27%
Bio15 - - 11.69%
Bio02 - . 6.93%
Bio18 I 3.04%
Elev - I 3.02%
0 10 20 30 40 50 60 70 80 90 100

Permutation importance (%)

FIGURE 2 Percentage of permutation importance for variables in the highest performing Maxent model developed for Anarsia lineatella.
Variables are Bio2, mean diurnal range (°C); Bio10, mean temperature of warmest quarter (°C); Bio15, precipitation seasonality (mm); Bio18,
precipitation of warmest quarter (mm); Bio19, precipitation of coldest quarter (mm); Elev, elevation (m).

South America (Figure 4c). This result was quite similar to that
obtained using a threshold that maximises the sum of sensitivity and
specificity (estimated at 0.3312) (Figure 4d).

Predicted distribution under climate change

A comparison between the predicted current and future distributions
of A. lineatella shows an increase in suitability as a result of climate
change (Figure 5, Appendix S1). This increase was more pronounced
in the 2021 to 2040 (Appendix S1) and 2041 to 2060 periods under
the SSP5-8.5 scenario, representing high increases in greenhouse gas

emissions. The projected expansion in suitable areas primarily encom-
passes Europe and North America. In Europe, most of the areas with
increased suitability are in the northern and eastern regions. In North
America, these areas mainly include an expansion to the northern
regions, including Canada.

The general increase in suitability is confirmed when the probabil-
ity classes are considered in defining the distribution shifts due to cli-
mate change (Table 1). The model predictions indicate a decrease in
areas unsuitable for A. lineatella and an increase in the percentage of
areas classified as optimal and moderate for the species. Supporting
the results observed in the maps, the largest increase relates to an
estimated average rise of 52% in areas with a high probability of
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FIGURE 3 Individual response curves (left) with residuals (light green dots) and frequency histograms (in light blue), and density curves (left,
in orange) with average values (dashed lines), from the optimal Maxent model for Anarsia lineatella.

occurrence under the SSP5-8.5 for the period 2041 to 2060. The sec-
ond largest average for the same probability class (43%) was predicted
under the SSP2-4.5 scenario for the same period. Interestingly, for

most of the time periods and climate change scenarios studied, a

decrease in areas classified as moderately suitable for the species was

also observed. The exception is the period 2041 to 2060 under the
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FIGURE 4 Predicted global distribution under current climate conditions and observed occurrences for Anarsia lineatella: (a) shows the
continuous probability of occurrence generated by Maxent, (b) shows the probability classes for unsuitable conditions, marginal, moderate,
optimal, and high probability of occurrence, (c) show the map created with the thresholds Minimum Training Presence (MTP) (dark green), and
10th Percentile Training Presence (10TP) (light green), and (d) depicts a binary map created using a threshold that maximizes the sum of
sensitivity and specificity.
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FIGURE 5 Predicted distribution for Anarsia lineatella under current and future climate conditions for different climate change scenarios by
2060 (2041-2060), expressed by continuous probability and probability classes.

SSP5-8.5 scenario, where an increase in the areas classified as suitable

was predicted for all classes.

DISCUSSION

In this study, we developed a Maxent model to predict globally suitable
areas for A. lineatella, an important pest of stone fruits in Europe and
the United States. Using a fully automated framework based on best
practices and recommendations for species distribution modelling with
Maxent (Aradjo et al., 2019; Jarnevich et al., 2015; Low et al,, 2021;
Merow et al, 2013; Rojas-Soto et al., 2024; Santini et al., 2021;
Sillero, 2011; Sillero & Barbosa, 2021; Srivastava et al., 2021), we gen-
erated an optimised model. This model demonstrated strong discrimina-
tion of suitable areas for A. lineatella, as confirmed by all threshold-

dependent and -independent performance metrics.

In addition to statistical performance, the reliability of model pre-
dictions depends on their ability to describe the species’ ecology. In
this study, four of the six variables used in the modelling process con-
tributed most to the model, as assessed by the permutation impor-
tance: mean temperature of the warmest quarter, precipitation of the
coldest quarter, precipitation seasonality, and mean diurnal range.
The response curves for each of these variables indicate a species
adapted to temperate continental and subtropical climates. For exam-
ple, a high probability of presence was observed in regions where the
mean temperature of the warmest quarter is around 22°C, a charac-
teristic of humid continental climates with hot summers, such as those
found in parts of Europe and the northeastern United States (Peel
et al., 2007). In most of these regions, precipitation is well distributed
throughout the year (Ahrens & Henson, 2015), which may explain the
decrease in the probability of occurrence with increasing precipitation

seasonality. Further evidence of the model’s accuracy in capturing the
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TABLE 1 Estimated areas (km?) and percentage change for the probability classes and climate scenarios studied, according to the optimal
Maxent model developed for Anarsia lineatella.

Estimated area (km?) Percent change
Climate Unsuitable = Marginal Moderated Optimal High Unsuitable Marginal Moderated Optimal High
Currently (1991-2020) 115,266,561 7,119,663 8,260,871 4,181,620 1,952,031 0.00% 0.00% 0.00% 0.00%  0.00%
CMIP6 MIROC6 SSP126 114,408,374 7,774,619 7,559,599 4,732,227 2,305,926 —-0.74% 9.20% —8.49% 13.17% 18.13%
(2021-2040)
CMIP6 MRI-ESM2-0 SSP126 113,798,778 7,818,076 7,886,090 4,914,195 2,363,606 —1.27% 9.81% —4.54% 17.52% 21.08%
(2021-2040)
CMIP6 CMCC-ESM2 SSP126 114,503,552 8,067,591 7,306,153 4,627,147 2,276,302 —0.66% 13.31% —11.56% 10.65% 16.61%
(2021-2040)
CMIP6 Mean SSP126 (2021- 114,165,430 7,908,052 7,679,262 4,774,135 2,253,867 —0.96% 11.07% —7.04% 14.17% 15.46%
2040)
CMIP6 MIROC6 SSP126 114,293,587 7,585,651 7,869,876 4,666,296 2365336 —0.84% 655% —473% 11.59% 21.17%
(2041-2060)
CMIP6 MRI-ESM2-0 SSP126 113,839,539 7,683,374 8,000,220 4,908,761 2,348,852 —1.24% 7.92% —-3.16%  17.39% 20.33%
(2041-2060)
CMIP6 CMCC-ESM2 SSP126 112,516,303 8,073,530 8,689,436 4,762,958 2,738,520 —2.39% 13.40% 5.19%  13.90% 40.29%
(2041-2060)
CMIP6 Mean SSP126 (2041- 113,439,253 7,891,185 8,262,426 4,767,742 2,420,139 —1.59% 10.84% 0.02% 14.02% 23.98%
2060)
CMIP6 MIROC6 SSP245 114,402,363 7,669,127 7,528,285 4,770,507 2,410,464 —0.75% 7.72% —8.87%  14.08% 23.48%
(2021-2040)
CMIP6 MRI-ESM2-0 SSP245 113,911,988 7,686,501 7,765,112 4,970,247 2,446,898 —1.18% 7.96% —6.00% 18.86% 25.35%
(2021-2040)
CMIP6 CMCC-ESM2 SSP245 114,379,022 7,691,945 7,585,122 4,804,061 2,320,596 —-0.77% 8.04% —-8.18%  14.89% 18.88%
(2021-2040)
CMIP6 Mean SSP245 (2021- 114,107,594 7,765,311 7,697,258 4,885,353 2,325,229 —-1.01% 9.07% —6.82% 16.83% 19.12%
2040)
CMIP6 MIROC6 SSP245 114,192,992 7,308,042 7,935,268 4,727,571 2,616,872 —0.93% 2.65% —-3.94% 13.06% 34.06%
(2041-2060)
CMIP6 MRI-ESM2-0 SSP245 113,455,625 7,279,836 8,497,173 4,893,541 2,654,571 —-1.57% 2.25% 2.86% 17.03% 35.99%
(2041-2060)
CMIP6 CMCC-ESM2 SSP245 111,459,093 7,877,737 9,303,878 4,855,483 3,284,556 —3.30% 10.65% 12.63% 16.11% 68.26%
(2041-2060)
CMIP6 Mean SSP245 (2041- 112,875,297 7,666,689 8,655,432 4,787,637 2,795,690 —2.07% 7.68% 4.78% 14.49% 43.22%
2060)
CMIP6 MIROC6 SSP585 114,513,913 7,615,210 7,477,437 4,716,105 2,458,081 —0.65% 6.96% —9.48%  12.78% 25.92%
(2021-2040)
CMIP6 MRI-ESM2-0 SSP585 113,865,709 7,615,459 7,913,261 4,811,263 2,575,054 —1.22% 6.96% —421% 15.06% 31.92%
(2021-2040)
CMIP6 CMCC-ESM2 SSP585 114,232,834 7,931,130 7,627,445 4,764,806 2,224,531 —0.90% 11.40% —-7.67%  13.95% 13.96%
(2021-2040)
CMIP6 Mean SSP585 (2021- 114,037,019 7,818,126 7,773,666 4,817,996 2,333,939 —1.07% 9.81% —590%  15.22% 19.56%
2040)
CMIP6 MIROC6 SSP585 113,898,931 7,039,288 8,351,595 4,555,022 2,935,910 -1.19% -1.13% 1.10% 8.93% 50.40%
(2041-2060)
CMIP6 MRI-ESM2-0 SSP585 113,047,469 6,923,291 8,598,044 5,063,002 3,148,939 —1.93% —2.76% 4.08% 21.08% 61.32%
(2041-2060)
CMIP6 CMCC-ESM2 SSP585 112,486,103 7,489,383 9,060,924 4,684,408 3,059,928 —2.41% 5.19% 9.68%  12.02% 56.76%
(2041-2060)
CMIP6 Mean SSP585 (2041- 113,005,131 7,250,008 8,789,989 4,768,289 2,967,328 —1.96% 1.83% 6.41%  14.03% 52.01%

2060)
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species’ ecology is its ability to predict the currently known distribu-
tion of the species in both its native and invaded range, as demon-
strated in this study.

Although several regions of the world have favourable conditions
for the occurrence of A. lineatella, its distribution remains largely
restricted to Europe and North America (Figure 1). Factors that may
explain this limited distribution include effective border protection
systems and the absence of host plants, preventing the establishment
of A. lineatella in new areas. Interestingly, A. lineatella possesses sev-
eral traits commonly associated with invasiveness. For example, an
analysis of 113,185 interception records from 52 Lepidoptera families
revealed that micromoths, including those of the family Gelechiidae,
were underrepresented in interceptions but had a higher rate of
establishment as non-native species than their interceptions would
suggest (Mally et al., 2023). Additionally, borers and leaf-rollers, which
disperse faster than external feeders (Paynter & Bellgard, 2011), are
more likely to establish than external feeders (Kimberling, 2004).

The existence of suitable areas outside the current distribution of
A. lineatella indicates a potential risk of this species spreading through-
out fruit production areas worldwide. In particular, China, Brazil, Repub-
lic of Korea, and Russia (FAOSTAT, 2024) are among the main
producers of major hosts (peaches, nectarines, and apricots) predicted
to be suitable for A. lineatella. Other countries with significant produc-
tion of almonds (Australia), apples (Russia), and pears (Argentina and
Chile) also have suitable conditions for A. lineatella. The suitability map
presented here provides initial information for developing phytosani-
tary measures to prevent the spread of this species. However, further
analysis should consider not only habitat suitability but also local or
regional production areas of plants used as hosts by A. lineatella, as well
as their proximity to ports of entry, to fully understand the invasion risk
posed by this pest. The primary routes of introduction for A. lineatella
are likely through international trade or travellers carrying infested
fruits (Champan et al., 2017). For instance, this species was recently
intercepted at the international airport of Sdo Paulo, Brazil, in peaches
imported from the United States. This underscores the importance of
prioritising phytosanitary measures, especially the surveillance of air-
ports and seaports associated with international trade in countries
where A. lineatella is categorised as an absent quarantine pest, such as
in Argentina, Brazil, and Chile in South America (IPPC, 2024).

Apart from the accidental introduction of species, climate change
is another factor contributing to the observed shifts in species distri-
bution. Empirical evidence of distribution shifts due to climate change
is increasing, with significant movement to higher elevations and lati-
tudes for several taxa (Pecl et al., 2017; Rubenstein et al., 2023). In
this context, ecological niche models are widely used to anticipate
range shifts, especially for economically important species such as
insect pests. Several studies projected that many insect pests are
expected to increase their distribution (e.g., Chen et al., 2023; Gilioli
et al,, 2014; Qin et al., 2019), which may have significant implications
for risk assessment. Here, our findings suggest a range expansion of
A. lineatella under climate change, especially in the northern hemi-
sphere. A pronounced increase in the areas classified as optimal and
of high probability of occurrence was predicted, particularly in the cli-
mate change scenario representing high greenhouse gas emissions.

Entomological
tomological
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Most of the expansion in the suitable areas was predicted towards
the northern and eastern distribution of A. lineatella in Europe and the
northern and western direction in the United States. This result sug-
gests that this species may become even more problematic in these
regions.

Although a state-of-the-art methodology was used in this study,
it is recognised that the model projections may have limitations due to
uncertainties related to the nature of invasive species, particularly niche
shifts and their ability to adapt to climate changes. A growing body of
evidence supports the occurrence of niche shifts during biological inva-
sions of insect pests (e.g., Hill et al., 2017; Marchioro & Krechemer,
2023; Zhou et al., 2023), which may lead to an underestimation of the
species ranges if only native occurrences are considered. In this study,
this issue was addressed by using occurrence records for both native
and invasive ranges. Furthermore, only elevation and climate variables
were included in the model. Future studies should consider incorporating
non-climatic factors such as biotic interactions, dispersal capacity, likeli-
hood of introduction, and the presence of host plants.

In conclusion, this study developed a Maxent model for
A. lineatella considering the best recommendations from the literature.
The optimized model demonstrated good statistical performance and
effectively identified suitable sites for A. lineatella. Suitable areas were
predicted for this species in continents beyond its current distribution,
including host fruit-producing countries such as Argentina, Australia,
Brazil, Chile, China, and the Republic of Korea. An increase in the dis-
tribution of A. lineatella was projected under climate change, with a
more pronounced expansion in the high greenhouse gas emission sce-
nario (SSP5-8.5) for 2041 to 2060. These findings provide initial infor-
mation on the potential distribution of A. lineatella and can support
the prioritization of areas for the development of phytosanitary mea-

sures against this pest, particularly in fruit-producing regions.
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Figure S1. Correlation between bioclimatic variables estimated using
the corrplot R package version 0.927: (a) lilac with a slope to the right
indicates a positive correlation, while orange with a slope to the left
indicates a negative correlation. The intensity of the correlation coef-
ficient increases as the shape changes from circle (|p| = 0) to ellipse
(Jo| = intermediate) to line (jp| =1). Correlated variables were
grouped by Ward's method (internally homogeneous groups, most
heterogeneous among themselves) through hierarchical cluster analy-
sis; (b) estimated values of the correlation coefficients between the
variables, following the same color pattern.

Table S1. Descriptive statistics of the covariates used in the models
considering their values associated with occurrence records of Anarsia
lineatella. Bold lines indicate the variables included in the model based
on the data-driven selection process.

Figure S2. Area under the Curve ROC (AUC) (a), and partial AUC at a
10% threshold (b) of the optimal model for Anarsia lineatella.

Table S2. Evaluation metrics used to assess the performance of the
selected Maxent model for Anarsia lineatella.

Figure S3. Predicted distribution for Anarsia lineatella under current
and future climate conditions for different climate change scenarios
by 2040 (2021-2040), expressed by continuous probability and prob-
ability classes.
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