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Abstract

This study presents an intelligent method for evaluating the risk of Asian rust (Phakopsora
pachyrhizi) based on its development stage in soybean crops (Glycine max (L.) Merrill). It
has been designed using smart computer systems supported by image processing, envi-
ronmental sensor data, and an embedded model for evaluating favorable conditions for
disease progression within crop areas. The approach also includes the use of machine
learning techniques and a Markov chain algorithm for data fusion, aimed at supporting
decision-making in agricultural management. Rules derived from time-series data are
employed to enable scenario prediction for risk evaluation related to disease development.
Measured data are stored in a customized system designed to support virtual monitor-
ing, facilitating the evaluation of disease severity stages by farmers and enabling timely
management actions.

Keywords: Asian soybean rust; machine learning; digital images; pattern recognition;
cloud; big data

1. Introduction
Advances in digital agriculture fostered the development of risk management

tools [1–4]. Therefore, considering the different applications in the academic field and
marketplace, a significant amount of data is required. Prior to its application to different
models, this data needs to be stored and handled.

Various models and algorithms are used to collect, process, and transform this data,
and the results obtained aid in decision-making. Different decision support systems are
available for various agricultural crops [5]. Among these, significant attention has been
paid to the soybean crop (Glycine max (L.) Merrill). Soy is considered one of the most
important legumes in the world and generally has high protein content and numerous
nutrients and bioactive factors beneficial to human life.

In 2024, the global soybean production was equal to 420.762 million metric tons, with
Brazil and the United States leading the way. These two countries are consistently the top
producers (Figure 1), followed by Argentina, China, and India [6].

However, in all the productive soybean countries, yield losses due to soybean diseases
vary between harvests and have been considerable over time. Moreover, in such a context,
Asian soybean rust (ASR) is one of the most serious diseases affecting soybean crops

AgriEngineering 2025, 7, 236 https://doi.org/10.3390/agriengineering7070236

https://doi.org/10.3390/agriengineering7070236
https://doi.org/10.3390/agriengineering7070236
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com
https://orcid.org/0000-0002-8129-8907
https://orcid.org/0000-0002-8367-8233
https://doi.org/10.3390/agriengineering7070236
https://www.mdpi.com/article/10.3390/agriengineering7070236?type=check_update&version=3


AgriEngineering 2025, 7, 236 2 of 42

worldwide. It is known for causing premature defoliation, early maturation, and significant
yield losses, potentially reaching up to 90% or total damage in crop areas [7].

Figure 1. A balance of the harvests related to the world’s main soybean-producing countries by year
(in millions of tons); forecasts as of June 2023 [8].

In Brazil, according to Godoy and collaborators, in the 1970s, soybeans became an
economically important product, and their significance in the global agricultural market
has increased ever since. Despite such an opportunity, data from the 2022–2023 harvest
periods indicate that ASR occurred in all the soybean-producing regions of the country.
In fact, ASR has been reported at different phenological stages of soybean plants, with a
predominance of favorable occurrences between reproductive (R) stages, i.e., R4, R5, and
R6, denoting the phenological stages [9]. This phenological window typically falls between
the 85th and 95th day of the crop’s cycle.

Various factors, such as disease spread, climatic conditions, and the influence of other
environmental variables, are important for understanding regional severity indices and
their direct or indirect impact on losses.

The fungus Phakopsora pachyrhizi is the pathogen responsible for ASR [10]. In its initial
stage, the disease appears as yellowish or orange spots; in the intermediate stage, these
spots expand into larger reddish areas. In the advanced stage, the affected areas become
tan, covering large portions of the leaf.

Owing to different climatic conditions, Brazil has a diversity of soybean-growing
regions, and 44,062.6 million hectares are currently being used. Thus, making generalized
recommendations to control a factor that directly influences the severity of ASR and
covers all regions is not possible and solutions must be adaptive and customized. The
variables that directly contribute to ASR infection are related to the duration of leaf wetness
(6–12 h) at 15–28 ◦C. Rainfall near the dew point contributes directly to the infection
and sporulation of the fungus that causes ASR, accelerating epidemics with regional
spread. Ref. [11] reaffirmed that the duration of leaf wetness and night air temperature
directly affect the spread of ASR and encouraged the use of methods that can measure or
estimate the period of leaf wetness using relative humidity (RH). Similarly, some researchers
highlighted rainfall as the leading cause of variation in the severity of ASR epidemics given
the correlation between rainfall and disease severity. Lelis et al. used two models to assess
conditions favorable to ASR development. One model indicated the number of hours with
RH ≤ 90%, and the other indicated a dew point depression of <2 ◦C. In both models, the
working temperature range was 18–25 ◦C, which is considered ideal for the development
of the fungus causing Asian rust. Consequently, in Brazil, July and August were identified
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as having the least favorable conditions for fungus development, whereas October–April
was identified as the period with the most favorable conditions.

According to Bedin [12], plants with nutritional deficiencies are more susceptible
to pathogen attacks than adequately nourished ones. Ref. [13] emphasized that models
should integrate meteorological data, crop and disease information, and other inoculum
sources (e.g., contagion or diffusion), as well as wind direction and speed, temperature, RH,
leaf wetness, solar radiation intensity, and crop development stage. Also, mathematical
models have been used for predictions of soybean diseases. Researchers used varying
parameters, such as epidemiological knowledge and statistical methods [14,15]. In addition,
Zagui and co-authors [16] developed a spatio-temporal model based on a fuzzy system to
simulate ASR. Their approach integrated input variables into the decision model, including
pathogen presence, susceptible plants, and favorable environmental conditions, thereby
providing information on the region’s vulnerability to the disease. Yu and collaborators
[17] introduced a method for recognizing soybean leaf diseases using traditional deep
learning models (AlexNet, ResNet18, ResNet50, and TRNet50). They proposed a model
based on an enhanced deep learning algorithm, which enabled effective recognition of
soybean leaf diseases.

Recent studies have reinforced the role of mathematical models, hyperspectral sen-
sors, and machine learning algorithms in advancing ASR monitoring and control strate-
gies [18–20]. Some authors proposed a mechanistic model based on differential equations
to simulate the initial phases of the disease epidemic, incorporating climatic variables
and plant characteristics [21–23]. Other authors proposed the DC²Net model, which inte-
grates advanced neural network techniques with hyperspectral imaging, achieving high
accuracy in early ASR detection, including asymptomatic stages [24]. In contrast, other
studies employed algorithms such as Random Forest (RF) and Support Vector Machine
(SVM) to classify disease severity based on spectral data, demonstrating both precision
and large-scale applicability [25,26]. Climatic risk assessments were also investigated, as in
the study that mapped the Brazilian regions most susceptible to ASR based on historical
meteorological data [27]. Complementarily, another applied machine learning techniques
to multispectral images obtained via drones to estimate soybean defoliation levels, high-
lighting the potential of precision agriculture in monitoring symptoms associated with
ASR [28]. Likewise, some authors mentioned that digital images, acquired using drones or
satellites, can be used to assess severity states [29].

However, in such contexts, relying solely on images—especially those based on partial
climatic information—is not sufficient to achieve a complete and precise diagnosis, i.e., in
order to reduce and minimize false-positive information.

In fact, based on the literature and state-of-the-art data fusion techniques, it has become
possible to observe opportunities to structure a complete rule base that systematically
accounts for different situations in which ASR is likely to occur. Then, an intelligent decision
support system can also be defined to assist producers in controlling such an important
disease problem, including the rational and localized use of fungicide applications. This
study aimed to present such a new method for evaluating the stage of favorability of ASR
occurrence in a real crop area.

2. Materials and Methods
Accurately diagnosing the potential occurrence and severity of ASR in the field re-

quires the integration of heterogeneous data. In this study, we combined specific climatic
data, with patterns observed on digital soybean leaf images and key agronomic parameters
(cultivar, plant spacing, and planting period). In such a context, a set of techniques—
based on the literature and including advanced computational intelligence and vision
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algorithms for data fusion—were developed to support decision-making and operate in a
cloud environment.

Thus, as illustrated in Figure 2, in addition to the materials cited below, the techniques
employed are as follows. For data storage and analysis, data lake (DL), data warehouse
(DW), data mart (DM), relational database (RD), object storage (OS), autonomous database
(AD), and extract, transform, load (ETL) were employed. For the computational instances,
data science environment (DSE) and analytics cloud service (ACS) were used. For climatic
data series interpolator, the cubic spline was used. For image processing, median filtering,
segmentation based on histogram equalization and automatic thresholding, clustering
based on K-means, feature extraction based on HU moments, Scale-Invariant Feature
Transform (SIFT), and Histogram of Oriented Gradients (HOG) were employed. For image
pattern classification, principal component analysis (PCA) and SVM were employed. In
addition, for data fusion, two different models were evaluated: one of them regarding
the state of the art presented in the literature, meaning spatio-temporal modeling and
simulation based on fuzzy systems, and one based on hidden Markov chains.

Figure 2. Conceptual diagram.

2.1. Materials

The materials used included a dataset of soybean leaf images collected in a real
field crop during cultivation [30], a dataset of climatic data [31], and a dataset containing
information on the soybean plant cultivated and used in the experimental pilot [32]. These
datasets have the following characteristics:

1. Image dataset: organized according to the protocol established by [33], where soy-
bean leaves were collected from georeferenced plots and imaged under controlled
laboratory lighting using a 24-megapixel digital camera. The images were acquired
at a 90-degree angle with a 19-centimeter camera-to-leaf distance. The resulting
dataset consists of sRGB images showing soybean leaves with various ASR symptoms
against a complex background, with dimensions of 4128 × 3096 pixels, a resolution of
12.78 megapixels, and three color channels;
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2. Climate data: station name and location; station code; municipality; latitude, longi-
tude; start date; end date; measurement periodicity: daily;

3. Plant data: the crop variety (used the BRS-536), distance between plants and rows,
plant height, and number of plants per linear meter.

The primary computing infrastructure, contracted from Oracle Cloud, was configured
as follows: a Virtual Cloud Network (VCN) established within a private subnet, contained
in a compartment that manages security through policies and security lists. The architecture
employs object storage for public data and images in various processing stages. Data
processing is conducted by a data science service and a Linux compute instance, with
analysis and monitoring provided by the cloud service, which users can access via a
Python-based web API and an adequate interface. In addition, it also used a computing
infrastructure involving a workstation with the following configurations: x64-based PC
architecture; Advanced Micro Devices, Inc. (AMD), Santa Clara, CA, USA, 64-bit processor,
3893 megahertz (MHz); 64 gigabytes (GB) of physical memory; and operating system:
Microsoft Windows 10.

2.2. Methods

In relation to the methods, the data source is characterized by input data from public
or private sources used in the decision model. These databases may originate from agencies
under federal government control, third-sector entities including non-governmental orga-
nizations (NGOs), or directly from agricultural producers, provided the relevant variables
are measured using sensors.

The daily historical data included the following climatic variables available for public
access: total precipitation (mm); maximum temperature (◦C); minimum temperature (◦C);
compensated average temperature (◦C); RH (%); and dew point (◦C).

Data structuring determines the organization of the data from the data source stage.
The following components were used for the structuring (Figure 3): (1) different data
sources; (2) data lake; (3) data marts; (4) data warehouse; (5) relational database; (6) data
preparation; (7) quality requirements; and (8) data vector.

Figure 3. Database structuring diagram.
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The infrastructure for organizing the data was planned to meet four possible sce-
narios: (1) the input of data exported via data marts from legacy systems; (2) the input
of semi-structured and unstructured data via data lake; (3) the input of only structured
data using data lake and storage in the relational database; and (4) a combination of the
three previous scenarios, i.e., the use of input data via data marts and semi-structured,
unstructured, and structured data. Algorithm 1 illustrates the steps for structuring the
databases in pseudocode.

Algorithm 1: Data Structuring
input : d1— climatic data; d2—leaf images; d3—plant data (seeds, spacing, and

location)
output : Data vector

1: d1← climatic data
2: d2← leaf images
3: d3← plant data
4: dimensions← integrity, consistency, completeness
5: procedure BEGIN

6: s1← FUNC_RECEIVE_DATA(d1, d2, d3)
7: s2← FUNC_DIRECT_DATA(s1)
8: s3← FUNC_PREPARE_DATA(s2)
9: s4← FUNC_VALIDATE_QUALITY(s3, dimensions)

10: s5← FUNC_GENERATE_DATA_VECTOR(s4)
11: end procedure

The complex background of the images constituting the dataset was removed, and the
image segmentation technique was automatically used to investigate the color characteri-
zation of the disease. In this context, the band-pass thresholding technique (Equation (1))
was used, which consists of selecting a range of threshold values applied uniformly to all
the pixels in the image [34,35]. Pixel values within the specified range are assigned to one
category, while values outside this range are assigned to another.

f (cx, cy) =

1, if LMmin ≤ I(cx, cy) ≤ LMmax

0, otherwise
(1)

where I(cx, cy) is the pixel value at position (cx, cy) of the image, LMmin is the lower
threshold, and LMmax is the upper threshold.

For this stage of processing, the following quality indicators of the processed data
were considered: image histogram, mean squared error (MSE) metrics (Equation (2)),
peak signal-to-noise ratio (PSNR) (Equation (3)), structure similarity index method (SSIM)
(Equation (4)), and outliers.

MSE =
1

mn

m

∑
i=1

n

∑
j=1

(IA[i, j]− IB[i, j])2 (2)

where m and n are the width and height of the images, respectively; IA[i, j] and IB[i, j] are
the values of the pixels at positions i, j in images IA and IB, respectively.

PSNR = 10 · log10

(
MVP2

MSE

)
(3)
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where MVP represents the maximum value of a pixel in an image. In images with 8 bits
per channel, as is the case with RGB color images, the maximum pixel value is 255; MSE is
the mean squared error found between the reference and processed images.

SSIM(IA, IB) =
(2 · µIA · µIB + α1) · (2 · σIAIB + α2)

(µ2
IA + µ2

IB + α1) · (σ2
IA + σ2

IB + α2)
(4)

where IA and IB are the two reference and processed images, respectively; µIA and µIB are
the averages of the pixel values in IA and IB, respectively; σIA and σIB are the standard
deviations of the pixel values in IA and IB, respectively; σIAIB is the covariance between
the pixel values in IA and IB; α1 and α2 are small constants that are added to avoid division
by zero and stabilize the calculation, such that α1 = (k1 · L)2 and α2 = (k2 · L)2, where L is
the dynamic range of the pixel values (e.g., 255 for 8-bit images per channel); k1 and k2 are
predefined constants.

The MSE, PSNR, and SSIM are frequently applied to evaluate image quality in various
image-processing tasks. These matrices are used to compare images to meet different
sensitivities and degradation contexts irrespective of the consideration of human percep-
tion [36–38].

In this study, a pattern recognition technique was used to extract ASR character-
istics from soybean leaf images. For this, a set of color descriptors defining the pat-
terns were obtained using the Scale-Invariant Feature Transform (SIFT) technique [39]
(Equations (5)–(8)) and HU invariant moment technique [40] (Equations (9)–(20)), and
texture descriptors were obtained using the Histogram of Oriented Gradients (HOG) tech-
nique [41] (Equations (21)–(25)).

G(cx, cy, σ) =
1√

2πσ2
e−(cx2+cy2/2σ2) (5)

L(cx, cy, σ) = G(cx, cy, σ) ⋆ I(cx, cy) (6)

where G(cx, cy, σ) is the key location function at a point (cx, cy) in the image and at a specific
scale (σ). This function represents the response of the Gaussian filter at that position and
scale; cx and cy are the horizontal and vertical coordinates, respectively, for calculating
the response of the Gaussian filter; σ is the Gaussian scaling parameter that controls the
size of the Gaussian filter. The higher the value of σ, the larger the Gaussian filter and the
smoother the response. The smaller the value of σ, the sharper the response, but the greater
the sensitivity of the details.

Mij =
√
(Aij − Ai+1,j)2 + (Aij − Ai,j+1)2 (7)

where Mij is the magnitude of the gradient at position (i, j) of the image, which represents
the change in pixel intensities around that position. Next, the magnitude of these differences
was calculated using the Pythagorean theorem. Aij is the value of the pixel in position (i, j)
of the original image, representing the intensity or color value of the pixel in that position;
Ai+1,j and Ai,j+1 are the values of the pixels in the adjacent positions to the right of (i + 1, j)
and below (i, j + 1) the pixel at (i, j), respectively.

Rij = ATAN2(Aij − Ai+1,j, Ai,j+1 − Aij) (8)

where Rij is the orientation of the gradient at position (i, j) of the image, representing the
direction in which the greatest change in intensity occurs in the vicinity of the pixel (i, j);
Aij is the value of the pixel at (i, j) of the original image, which represents the intensity or
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color value of the pixel in that position; Ai+1,j and Ai,j+1 are the values of the pixels in the
adjacent positions, to the right of (i + 1, j) and below (i, j + 1) the pixel at (i, j), respectively.

As for the geometric descriptors, the two-dimensional, central, and normalized central
moments need to be calculated to calculate the seven HU invariant moments [42].

mbpq =
M−1

∑
cx=0

N−1

∑
cy=0

cxpcyq f (cx, cy) (9)

where p = 0, 1, 2,. . . e q = 0, 1, 2, . . . are integers.

µpq =
M−1

∑
cx=0

N−1

∑
cy=0

(cx− cx)p(cy− cy)q f (cx, cy) (10)

where p = 0, 1, 2, . . . e q = 0, 1, 2, . . . are integers.

cx =
m10

m00
and cy =

m01

m00
(11)

where cx and cy are the coordinates of the center of mass of the image, f (cx, cy). Along
with these central and two-dimensional moments, the other moments that constitute the
set of HU invariant moments, given by Equations (12) and (13), were also considered.

ηpq =
µpq

µ
ς
00

(12)

ς =
p + q

2
+ 1 (13)

where p + q = 2, 3, . . .

∅1 = η20 + η02 (14)

where ∅1 is the orthogonal invariant that refers to the first invariant moment; η20 is the
second-order central moment, which is calculated from the image or region of interest (ROI)
and represents the dispersion of the distribution of pixels or voxels along the X axis; η02 is
the second-order central moment, calculated from the image or ROI, and represents the
dispersion of the distribution of pixels or voxels along the Y axis.

∅2 = (η20 − η02)
2 + 4η2

11 (15)

where ∅2 is the second invariant orthogonal to the rotation that refers to a measure of
the geometric characteristics of the image or ROI; η11 is the second-order central moment
between the X and Y axes and represents the covariance between the axes of the distribution
of pixels or voxels.

∅3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (16)

where ∅3 is the third orthogonal rotation invariant that refers to the measure of the geo-
metric characteristics of the image or ROI; η30 is the third-order central moment along the
principal X axis and represents the dispersion of the pixel or voxel distribution along that
axis; η12 and η21 are third-order central moments involving displacement mixtures along
the principal X and Y axes and represent the dispersion of the pixel or voxel distribution
due to interactions between the axes; η03 is the third-order central moment along the Y axis
and represents the dispersion of the pixel or voxel distribution along that axis.

∅4 = (η30 + η12)
2 + (η21 − η03)

2 (17)
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where ∅4 is the fourth invariant orthogonal to the rotation that refers to the measure of the
geometric characteristics of the image or ROI.

∅5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]+

(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]
(18)

where ∅5 is the fifth invariant orthogonal to the rotation that refers to the measure of the
geometric characteristics of the image or ROI.

∅6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]

+ 4η11(η30 + η12)(η21 + η03)
(19)

where ∅6 is the sixth invariant orthogonal to the rotation that describes the geometric
characteristics of an image or ROI.

∅7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]+

(3η12 − η30)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]
(20)

where ∅7 is the seventh invariant orthogonal to the rotation used to describe the geometric
characteristics of an image or ROI. 

Grcx = ∂I
∂cx

Grcy = ∂I
∂cy

(21)

where Grcx and Grcy represent the derivatives of the image I with respect to the coordinates
cx and cy, respectively; the gradients are calculated using Sobel differentiation operators.

Mag =
√

Gr2
cx + Gr2

cy (22)

where Mag is the gradient magnitude calculated by the gradients Grcx and Grcy.

Θ = arctan
(

Grcy

Grcx

)
(23)

where Θ is the orientation of the gradient, calculated using the arc tangent function (arctan).

Hist(θ) = ∑
pixels per cell

w(θ −Θ) (24)

where Hist(θ) represents the orientation histogram for a given cell. It is a distribution that
shows the number of gradients with orientations in different angular ranges within the cell;
θ represents the orientation of the gradient at a given pixel within the cell; Θ represents
the predominant orientation of the gradients in the cell. This is often calculated from θ and
can be used to weigh the contribution of each pixel to the histogram; w(θ −Θ) represents a
weighting function that determines the weighing of the contribution of a specific gradient
to the histogram based on the angular difference between θ and Θ; ∑ pixels in the selected cell
indicates the sum of all the pixels in the cell.

v =
v√

∥v∥2
2 + ϵ2

(25)
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where ϑ represents the concatenated vector of orientation histograms in a block; ||ϑ||2
indicates the Euclidean norm (or length) of the vector ϑ, calculated as the square root of the
sum of the squares of the vector elements; ϵ is a small constant added inside the square
root to avoid possible divisions by zero.

Thus, these descriptors were used to recognize patterns that constitute the image
variable for the fusion model, and the recognition of pixels or even clusters of pixels in
green, yellow, and brown was considered.

As part of the deliverables of this stage, the process considers feature vectors organized
into green, yellow, and brown.

For this stage of processing, the following quality indicators of the processed data were
considered: missing values and dimensionality reduction. Missing values were assessed at
the point in the process where the feature data vectors were joined.

For the high dimensionality indicator, the dimensionality of the feature vector was
reduced to 130 columns.

A machine learning technique was employed to classify the patterns identified in the
images, corresponding to each crop leaf. The SVM classifier was applied to process the
feature vectors extracted from these patterns. The SVM classifier utilizes functions known
as kernels, as shown in Equation (26). A kernel represents abstract spaces and receives two
objects, xoi and xoj, in the input space to compute their scalar product in the feature space
ℑ, which may reach very high dimensions, where the computational cost factor Φ can be
substantial [43–46].

K(xoi, xoj) = Φ(xoi).Φ(xoj) (26)

For the kernel to represent mappings that facilitate the calculation of scalar products,
according to the function defined in Equation (26), the conditions provided by Mercer’s
theorem were considered, which is characterized by giving rise to semidefinite matrices k,
where each element Kij is defined by Kij = K(xoi, xoj) for all i, j = 1, ..., n, where Φ(xoi) and
Φ(xoj), respectively, represent xoi and xj after applying the feature mapping function Φ(x).

In this study, the SVM technique was applied using grid search to obtain the best
hyperparameter configurations using the dataset of characteristics originating from soybean
leaves. From the processing being performed in machine learning, metrics are generated for
model evaluation. Various statistical indicators and classification metrics were used, which
are fundamental for understanding the quality of predictions and the robustness of the
model. These indicators allow an analysis ranging from data dispersion to the effectiveness
of classifications, providing a comprehensive view of the model’s performance. Each metric
used is presented individually below.

The machine learning model was evaluated based on the following metrics [47]:
variance, standard deviation, precision, accuracy, support and revocation, F1-score, and
area under the ROC curve (involving the measures true positive rate (TVP), true negative
rate (TFP), and confusion matrix).

The confusion matrix represents the distribution of classifications made by the model,
comparing predicted values with actual values, and involves the measures true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). Although not a metric
itself, it provides the necessary data for calculating key performance metrics such as
precision, recall, and F1-score, which, in turn, compose the classification report.

After using the classifier, the dimensionality of the feature vector was reduced owing to
the use of the principal component analysis (PCA) technique. PCA is an unsupervised tech-
nique for dealing with high-dimensional data and is also known as the Karhunen–Loève
transformation [48], Hotelling transformation [49], or singular value decomposition [50].
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For this stage of the processing, the following quality indicators of the processed data
were considered: accuracy, precision, F1-score, recall (the classifier report), the TP, TN, FP,
and FN of the confusion matrix, and the area under the ROC curve.

Algorithm 2 illustrates the steps involved in processing, such as segmentation, pat-
tern recognition and feature extraction, dimensionality reduction, and machine learning
in pseudocode.

Algorithm 2: Image Processing
input : images—soybean leaf images; vetor_dados—data vector
output : Data vector with classified images

1 images← soybean leaf images
2 qi← number of images
3 b1← bucket for images without cloud background
4 b2← bucket for segmented images with cloud background
5 b3← bucket for cloud pattern data
6 c← colors: green, yellow, brown
7 qual_1←metrics: PSNR, MSE, SSIM
8 qual_2←metrics: missing values
9 qual_3←metrics: dimensional reduction

10 qual_4←metrics: SVM classifier report
11 begin
12 for i in 1 to qi do
13 s1← Func_background_segmentation(imagens)
14 b1← s1

15 end
16 for j in 1 to 3 do
17 s2← Func_background_segmentation(b1)
18 s3← Func_process_quality(s2, qual_1)
19 b2← s2

20 end
21 for k in 1 to qi do
22 for l in 1 to 3 in c do
23 s4← Func_extract_patterns(b2)
24 s5← Func_process_quality(s4, qual_2)
25 b3← s4

26 end
27 end
28 s6← Func_dimensionality(b3)
29 s7← Func_process_quality(s6, qual_3)
30 s8← Func_pattern_classification(b3)
31 s9← Func_process_quality(s8, qual_4)
32 s10← Func_insert_classification_into_data_vector(s8)
33 end

A structured data vector was adopted for data fusion, combining variables from the
climatic time series with those derived from the processing of digital images of soybean crop
leaves. When structuring this variable vector (Figure 4), all time-series data are checked for
gaps within the ten-day time windows considered for analysis. If any gap is found, data
interpolation with a cubic spline is used (Equations (27)–(29)).
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Figure 4. Set of variables considered for analysis in a temporal window.

The cubic B-spline is a polynomial function consisting of continuous parts. Therefore,
each part is composed of a 3rd degree polynomial in the interval [xik−1, xik], k = 1, 2, 3, .n.
In addition, it obtains an interpolation formula that is smooth and continuous in the first
and second derivatives, respectively, both within an interval and on its boundaries [51].

Γ(xi) =
n−1

∑
i=0

ciBi,g;t(ι) (27)

where ci are the coefficients, g represents the order of the B-spline, t represents the nodes,
and Bi,g(ι) is defined by Equations (28) and (29).

Bi,0(xi) =

{
1, se ti ≤ ι < ti+1

0, se otherwise
(28)

Bi,k(xi) =
x− ti

ti+k − ti
Bi,k−1(ι) +

ti+k+1 − xi
ti+k+1 − ti+1

Bi+1,k−1(xi) (29)

Furthermore, after using the Equations (27)–(29) to complete all the climatic series
of data, the rules for decision-making could be established. Such rules describe the set of
conditions associated with the favorability definition for ASR occurrences.

2.3. Description of Data Fusion Process

This study compares two data fusion methods for addressing ASR: the first is based
on the hidden Markov technique, while the second is a fuzzy logic approach, considered
state-of-the-art in the literature [16].

The data fusion process using the hidden Markov chain technique [50,52,53] is based
on the integration of variables from different sources and normalized physical quantities,
as can be observed from data listed in Table 1.

Table 1. Variables and physical quantities: data fusion.

ID Description of Variables Physical Quantity

V1 Leaf Wetness Period Percentage (%)
V2 Minimum Leaf Wetness Period Millimeters (mm)
V3 Temperature Range Degrees Celsius (◦C)
V4 Maximum Temperature Degrees Celsius (◦C)
V5 Minimum Temperature Degrees Celsius (◦C)
V6 Dew Point Degrees Celsius (◦C)
V7 Image Classification Data Classification Unit (0 or 1)

In addition, this study considers a general rule base that integrates the main climate
data and image patterns recognized from soybean leaves since they can be correlated,
enabling risk assessment of disease severity and favorability diagnoses. Table 2 presents
the general rule base for the decision-making process.
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Table 2. Integral rule base for ASR favorability [54].

Climatic Conditions for Asian Soybean Rust Favorability

Description Variable Estimated Value

Known Climatological Data

Leaf Wetness Period Hours Quantity Relative humidity greater than or
equal to 90%

Dew Point Temperature Difference less than 2 ◦C
Temperature Range Favorable

for Fungus Development
Temperature Range between 18 ◦C and 25 ◦C

Minimum and Maximum
Temperature during Leaf

Wetness Period

Temperature
Range

Range between 18 ◦C and 26.5 ◦C

Minimum Leaf Wetness Period Time 6 h

New Presented Data

Soybean Leaf Cultivar Data Classification Pixel analysis

Phenomenology of Asian
Soybean Rust Problem

Discovery of
Color Classes

Analysis of green, yellow, and
brown pixels

Disease Stage Identification Percentage
occurrence of

classes

Quantity of pixels for each class

Favorability Probability Set of variables
from indicators

Low, Median, and High

The data fusion based on fuzzy logic, as presented in the literature, is defined by [55].
In such an arrangement, four main types of decision functions are considered as fol-
lows [56,57]: (1) Gaussian, (2) trapezoidal, (3) triangular, and (4) singleton. For this devel-
opment, the triangular function was used as described by Equation (30) given that L(χ)
is a continuous strictly increasing function with L(a) = 0 and L(b) = 1 and R(χ) is a
continuous strictly decreasing function with R(b) = 1 and R(c) = 0.

µα(χ) =


0, if χ < a

L(χ), if a ≤ χ ≤ b

R(χ), if b ≤ χ ≤ c

0, if χ > c

(30)

Additionally, like a discrete universe X, it was defined according to Equation (31), i.e.,
following Prokopowicz and collaborators [58].

α = ∑
χ∈X

µα(χ)/χ (31)

where µα(χ) and χ represent the membership degree of the pair object χ, with the “/”
symbol denoting the pair separator and ∑ representing idempotent summation.

In fact, the concepts of fuzzy logic are organized into a fuzzy model given by the
configuration of the antecedent and consequent variables. The formation (if <antecedent>
then <consequent>) is used, adhering to conditions that can be fully or partially satisfied,
according to the fuzzy inference mechanism, which defines the rule firing. It should also be
noted that the rules were constructed according to the Mamdani inference model [59], as
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presented in Table 3. These descriptions contain descriptions of the constructed inferences,
considering low, medium, and high favorabilities. Additionally, it represents the number
of rule combinations generated for each inference.

The combinations arise from the variations, translated by the phenomenological knowl-
edge of the ASR problem, expressed by the seven variables, V1 to V7 (antecedents), that
feed the fuzzy model. These are necessarily composed of “OR” and “AND” conjunctions,
forming unique rules. Therefore, by summing all combinations of the three favorability pos-
sibilities, one may find 120 constructed rules, which comprise the rule base to be submitted
to the fuzzy inference engine for data fusion and the support decision method.

Table 3. Fuzzy inferences.

If Favorability Combinations

If Favorability is TRUE for up to two variables THEN Low
1 option: V1 or V2 or V3 or V4 or V5 or V6 or V7 1

If Favorability is TRUE for up to two variables THEN Low
2 options: V1 or group (V2 or V3 or V4 or V5 or V6 or V7) 8

If Favorability is TRUE for up to four variables THEN Medium
3 options: V1 AND V2 AND group (V3 or V4 or V5 or V6 or V7) 21

If Favorability is TRUE for up to four variables THEN Medium
4 options: V1 AND V2 AND V3 AND group (V4 or V5 or V6 or V7) 35

If Favorability is TRUE for more than four variables THEN High
5 options: V1 AND V2 AND V3 AND V4 AND group (V5 or V6 or V7) 35

If Favorability is TRUE for more than four variables THEN High
6 options: V1 AND V2 AND V3 AND V4 AND V5 AND group (V6 or V7) 20

Moreover, to have the conditional fuzzy rules defined, in order to reach both the
minimum t-norm function (∧) and the maximum t-norm function (∧), as presented by
Equations (32) and (33):

α ⋆T β = min(α, β) = α ∧ β (32)

where α and β are fuzzy variables or sets being combined using the minimum t-norm
function; ⋆T is the t-norm* operator representing the minimum operation (or minimum
AND) used to combine the fuzzy sets α and β; α ∧ β means the function’s output is the
minimum membership value between the two sets for a given element of the universe
of discourse.

α ⋆S β = max(α, β) = α ∨ β (33)

where α and β are fuzzy variables or sets being combined using the maximum s-norm
function and can be either a scalar value or a fuzzy set; ⋆S is the s-norm operator representing
the maximum operation (or maximum OR) used to combine the fuzzy sets α and β; α ∨ β

means the function’s output is the maximum between the membership values of α and β

for a given element of the universe of discourse.
Conversely, the defuzzification process consists of calculating a representative numeri-

cal output, where β0 ∈ Y, from the resulting fuzzy set B′(β) in Y. Therefore, it involves
mapping fuzzy sets from the space Y to a single numerical value in Y, where F(Y)→ Y.
Thus, the numerical result is calculated using the Center of Gravity (COG) method, utilizing
Equations (34) and (35) [58].
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β0 =

∫
Y βµB′(β)dβ∫
Y µB′(β)dβ

(34)

µB′(β) =
m∨

i=1

[
F(i)(χ0) ∧ µB(i)(β)

]
(35)

where µB′(β) represents the membership of β to a fuzzy set B′; β is the output variable for
which the membership in the fuzzy set B′ is calculated;

∨m
i=1 represents the “supremum”

or maximum operation to calculate the supreme membership among the m fuzzy sets
resulting from the fuzzy inference; i is the index used to iterate from 1 to m through the
fuzzy sets participating in the inference; F(i)(x0) is the membership function of the fuzzy
set α(i) with respect to the input variable χ0, representing the membership of χ0 to the
fuzzy set α(i); µB(i)(β) is the membership function of the fuzzy set B(i) with respect to the
output variable β, representing the membership of β to the fuzzy set B(i).

After the calculation is performed by the defuzzification process, a 5% error rate is
computed on the resulting numerical value so that the favorability can be known. The value
of the “favorability” consequence ranges from 0 to 100%, which maintains the standard
used in the figure of merit approach. Then, the favorability result, given the numerical
defuzzification value, is low favorability from 0 to 33.3%, medium favorability from 33.4
to 66.6%, and high favorability from 66.7 to 100%. Algorithm 3, presented below, uses
methods from the Scikit-Fuzzy library [60].

Algorithm 3: Data Fusion with Fuzzy Logic Approach
Input : Crisp values for leaf wetness, precipitation, temperature, etc.
Output : Favorability: {low, medium, high}
/* 1. Fuzzification Stage */

1 Fuzzify all crisp inputs to determine their membership degrees in the relevant fuzzy sets;
/* 2. Inference Stage */

2 Let C be the crisp output of the fuzzy inference system;
3 if (lea f _wetness ≥ 90%) ∨ /* ...OR if the next condition is true */
4 (min_wetness ≥ 6h∧ precipitation ≤ 25%) ∨ /* ...OR if the next condition is true */
5 (temp_range ∈ [18, 25]) ∨ /* ...OR if the next condition is true */
6 (avg_temp− dew_point < 2) ∨ /* ...OR if the next condition is true */
7 (image_class = 1) then
8 Apply inference engine (e.g., Min–Max aggregation) and defuzzify the result to

calculate C;

9 endif
10 else
11 C ← 0 /* Default to a non-favorable value */
12 endif

/* 3. Final Classification */
13 if C ≤ 33.3% then
14 return low;
15 else if C > 33.3%∧ C ≤ 66.6% then
16 return medium;
17 else
18 return high;

Finally, system validation was conducted with input from five specialists in agronomy
and phytopathology, focusing on soybean diseases and particularly Asian rust. A question-
naire was designed for expert evaluation, including various occurrence scenarios observed
in a soybean cultivation area, along with corresponding tables of climatic data and digital
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images of the crop leaves. This setup allowed the consulted experts to assess the presence
or absence of Asian rust, as well as its severity stage when applicable. Regarding the hidden
Markov chain [61], it is a dual stochastic process that has both observable and unobserv-
able components. Hidden Markov chains are an extension of the Markov chains [62,63]
defined as a stochastic model {Xn, n ∈ N} that describes a sequence of events where the
probability of a future event depends only on the current state and not on previous states.
This Markovian property is expressed as

Pr(ζn = ξn|ζn−1 = ξn−1, . . . , ζ0 = i0) = Pr(ζn = ξn|ζn−1 = ξn−1) (36)

where P = p(ij) is the transition matrix governing the Markov chain; if ζn denotes the state
of the Markov chain at time n, then pi,j = Pr(ζn = j|ζn−1 = ξ); that is, every entry of P
satisfies pij ≥ 0 and every line of P satisfies ∑j pij = 1.

For the model developed, Markov chains have discrete states representing the possible
conditions or configurations of the combination of variables constituting the input data
vector. Each state in the discrete-time Markov chain corresponds to a discrete representation
of the system’s situation at a given time. According to the probability model, changes in
state are referred to as transitions. Transition probabilities describe the likelihood of these
transitions between stages of favorability within a given period (time window).

In addition, considering the hidden Markov chains to be characterized by elements
N [64] is important. The number of hidden states in the model, denoted by the individual
states, is

SO = {so1, so2, . . . , soN} (37)

where SO represents the set of individual possible states that a Markov chain can assume;
s1, s2, . . . , sN are the individual state variables that constitute the set S, where each si

represents a specific state in the Markov chain. The subscription i ranges from 1 to N,
where N is the total number of states in the Markov chain.

For the result delivery stage, a set of reports was considered. This set was used to
construct the decision-making recommendations based on information from management
reports and by visualizing the method’s processing content available on the user interface
via dashboard.

For this processing stage, the quality indicators (accuracy and precision) of the pro-
cessed data were used to evaluate the outcomes obtained from the application of Markov
chains. These quality indicators were based on autocorrelation theory, where expected val-
ues were estimated from the observations [65]. Thus, from a time series of N measurements
for the Markov process (Equation (38)), ei represents the configurations generated for the
time series, and i is the temporal order measured between observations. The estimator of
the expected value for ȷ̂ is shown in Equation (39), where the symbol (dash) represents the
sample mean.

ȷi = ȷi(ei), i = 1, ..., N (38)

ȷ =
1
N ∑ ȷi (39)

The autocorrelation function for an observable ȷ̂ was defined (Equation (40)) consider-
ing the translation invariance in time for the equilibrium of the dataset established in the
process. According to Equation (41), the variance of ȷ is a special case of autocorrelation.

Ĉ(t) = Ĉij =
〈
(ȷi − ⟨ȷi⟩)(ȷj −

〈
ȷj
〉
)
〉
=

〈
ȷi ȷj

〉
− ⟨ȷi⟩

〈
ȷj
〉
= ⟨ȷ0 ȷt⟩ − ȷ̂2 (40)
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where Ĉ(t) is the autocorrelation value for an observable at a given time t; Ĉij is the
autocorrelation value between two variables ȷi and ȷj; ȷi and ȷj are the observations of
the variables. Each of them can be viewed as a time series of data; ⟨ȷi⟩ and

〈
ȷj
〉

are the
averages of the time series ȷi and ȷj, respectively;

〈
(ȷi − ⟨ȷi⟩)(ȷj −

〈
ȷj
〉
)
〉

is a measure of the
covariance between the time series;

〈
ȷi ȷj

〉
is the mean of the product of the time series ȷi and

ȷj, representing the raw covariance between the two variables; ȷ̂2 is the mean square of the
variable ȷ, i.e., ⟨ȷ⟩2, which represents the variance of ȷ; ⟨ȷ0 ȷt⟩ is the average of the product of
the variables ȷ0 e ȷt, where ȷ0 is an observation at a given time and ȷt is an observation at a
later time t in the time series. It represents the covariance between ȷ0 and ȷt.

Ĉ(0) = σ2(ȷ) (41)

where Ĉ(0) is the value of autocorrelation at t = 0 for an observable, i.e., the covariance
of the variable ȷ with itself at the same instant of time; σ2(ȷ) represents the variance of the
variable ȷ. The variance measures the dispersion of the values of the variable ȷ in relation to
its mean, calculated as the average of the squares of the differences between each value
and the mean of ȷ.

Another point to consider in the theory [65] is the analysis of self-consistency versus
reasonable error. This involves examining the system’s equilibrium aspects by evaluating
the time series within the context of the Markov chain and monitoring the integrated
autocorrelation times obtained from different measurements of ȷ. Equations (42)–(44)
define the calculation of the error ∆ȷ, the variance of the estimator ȷ, and the integrated
correlation time τint, respectively.

∆ȷ =
√

σ2(ȷ) with σ2(ȷ) = τint
σ2(ȷ)

N
(42)

where ∆ȷ is the standard error that measures the uncertainty associated with estimating
the sample mean ȷ; σ2(ȷ) is the variance that indicates the spread of the values of the
sample means relative to the true population mean; τint represents the integration time or

integrated correlation time. This parameter describes the autocorrelation of the data; σ2(ȷ)
N

is the estimate of the variance of the mean ȷ based on the sample size N.

σ2(ȷ) = σ2 (ȷ)

N

[
1 + 2

N−1

∑
t=1

(
1− t

N

)
ϵ̂(t)

]
com ϵ̂(t) =

Ĉ(t)
Ĉ(0)

(43)

where ϵ̂(t) is the autocorrelation function normalized at t = 0, i.e., Ĉ(0) = 1, and measures
the autocorrelation of the variable ȷ at different points in time t, normalized with respect
to autocorrelation.

τint =

[
1 + 2

N−1

∑
t=1

(
1− t

N

)
ϵ̂(t)

]
(44)

The use of the variable rule base in Algorithm 4 is innovative. In the current agronomic
literature, as previously observed, such variables are generally considered individually.
This approach thus enables the simultaneous consideration of all conditions that may lead
to the occurrence of Asian rust in soybeans.

After the execution of Algorithm 4, the flow of methodological steps concludes by
integrating data structuring, image processing, and the fusion of the involved variables.
Each algorithm fulfills a specific function: Algorithm 1 organizes the data; Algorithm 2
performs image processing and pattern extraction; and Algorithm 4 integrates this informa-
tion with climatic data to identify the risk of Asian rust occurrence. The combination of
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these methods enables the analysis of disease favorability within time windows, providing
support for decision-making in soybean crop management.

Algorithm 4: Data Fusion with Hidden Markov Chain Approach
input : v—data vector; window—temporal data window; rules—rule base;

chain—hidden Markov chain
output : Result of occurrence and favorability

1: v← data vector
2: rules← rule base
3: chain← hidden Markov chain
4: quality← Precision σ( f̄ ), Accuracy σ2( f̄ )Ĉ(t)
5: procedure BEGIN

6: s1← FUNC_PROCESS_RULE_BASE(rules)
7: s2← FUNC_PROCESS_FUSION(s1, chain)
8: s3← FUNC_PROCESS_MARKOV_QUALITY(s2, quality)
9: s4← FUNC_GENERATE_RESULT(s2, s3)

10: end procedure

For data fusion, the evaluation of the two selected models, as described below, was
considered by the following metrics: accuracy, precision, and performance.

3. Results and Discussion
Results related to the performance of the computational architecture and the effective-

ness of the image processing and classification techniques were obtained. Also, results of
the outcomes related to probabilistic modeling using both the fuzzy and hidden Markov
models were evaluated for ASR’s risk analysis and the system validation.

3.1. Implementation of the Cloud Architecture and Interfaces of the Intelligent System

For the Oracle Cloud platform, a study was conducted considering three possible
architecture scenarios. Among them, the most suitable option identified (Figure 5) featured
access to both private and public networks, interconnection of object storage components,
infrastructure for compute instances, a data science environment, services for analyti-
cal data processing, and support for both transactional and multidimensional databases.
Additionally, the computational infrastructure for hosting WEB services aimed at user
monitoring was also highlighted.

Figure 6 illustrates the resources used for system development, without detailing net-
work configurations, users, and access permissions, which were nonetheless implemented.
In this context, a compute instance was also utilized, sized to host the code developed in
Python technology, and configured to provide external access via public IP for the data
fusion stage through a WEB framework. The compute instance was set up with the Oracle
Linux 8.0 operating system, a configuration of 1 OCPU on an AMD architecture, and 16 GB
of RAM. Access was established via the SSH protocol using the PuTTY application and
2048-bit public and private key encryption. Additionally, the object storage menu featured
buckets, organized according to the processing structure to provide storage for both data
source input and processing output. Similarly, appropriate configurations were applied to
the Oracle database (Figure 7) for the transactional (relational) and multidimensional (DW)
databases, respectively.

The instance configured to process the Python code in the data science environment
was prepared using AMD architecture, with four OCPUs, 64 GB of RAM, and a 250 GB
disk for storing processing results in the form of a VM.Standard.E3.Flex compute shape.
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The technologies provided by Oracle Cloud enabled seamless integration of the archi-
tecture modules, which included the data science environments and the Linux Computing
Instance. Consequently, the implementation of Python algorithms and their deployment
on a web platform were facilitated.

The cloud-based intelligent system for Asian soybean rust risk analysis in soybean
crops was designed to present results in a dashboard format. The system’s main interface
(Figure 8) supported both the fusion stage processing and the visualization of results
through a clean, intuitive navigation layout. Accordingly, tabs were positioned at the top
of the interface, ensuring clear and organized information display.

The results of the processing performed on the cloud infrastructure were stored in
databases when structured or in buckets when unstructured or semi-structured. These
were analyzed using the Analytics Cloud Service, which also supplied the decision support
system. The analyses were made available for user monitoring via a web interface through
the Linux compute instance.

Figure 5. Oracle Cloud architecture for the intelligent system.

Figure 6. Oracle Cloud architecture for the intelligent system: initial screen.
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Figure 7. Oracle Cloud architecture for the intelligent system: autonomous database.

Figure 8. Main interface (input).

Additionally, recommendations for the soybean producer were relationally included
based on the favorability results obtained from the processing. Thus, when the result
indicates low favorability, a corresponding set of considerations is presented, as also occurs
for medium- and high-favorability scenarios (Figure 9).

Further aspects were also taken into account in the recommendation reports, such
as the inclusion of a link to the Phytosanitary Pesticide System (Agrofit) for consulting
registered fungicide options for disease control, in accordance with the technical rec-
ommendations issued by the Brazilian Ministry of Agriculture, Livestock, and Supply
(MAPA/Brazil).
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Figure 9. Recommendation interface (output).

3.2. Image Processing and Classification Performance

The results of processing the developed model, based on the established cloud infras-
tructure, include the organization of climatic data, the processing of soybean leaf images,
and the fusion of variables through hidden Markov chains. The processing sequence
involves interpolation of the time series, image processing and classification results, di-
mensionality reduction, and ultimately the assessment of disease favorability based on the
generated analytical reports.

During the data reading stage, within the established windows (Table 4), interpolation
was required in some cases to fill in missing records. Thus, the records were completed
using cubic B-spline interpolation, as shown in one of the analyzed cases (Figure 10), which
illustrates the arrangement adopted for organizing and using the time-series data of the
variables considered for decision support.

Regarding the used interpolation, it was also observed that the correlation coefficients,
obtained with the application of the B-spline function, were of the order of 0.66 for the pre-
cipitation data series, 0.78 for the maximum temperature data series, 0.82 for the minimum
temperature data series, 0.63 for the relative humidity data series, 0.82 for the dew point
data series, and 0.72 for the compensated average temperature data series.

Regarding the processing of leaf images collected in a real field via imaging, a dataset
of sRGB images of soybean leaves exhibiting various ASR symptoms and containing
complex backgrounds was used for method validation; dimensions: 4128 × 3096 pixels;
resolution: 12,780,288 pixels. Thus, after splitting the RGB channels, the green channel was
selected for processing as it exhibited a wavelength closest to the effects expected due to
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the potential presence of the rust pathogen. Image histogram techniques were applied to
this channel, resulting in the minimization of background effects.

Table 4. Data series temporal window.

N. Precip. Max.
Temp.

Min.
Temp.

Relative
Humidity

Dew
Point

Comp. Average
Temperature Status

1 4.20 35.50 24.00 72.75 23.08 28.44 Original
2 0.00 32.50 24.40 88.75 23.80 25.80 Original
3 18.00 33.30 22.50 79.00 22.85 26.80 Original
4 0.00 33.00 23.20 84.00 22.62 25.52 Original
5 0.00 33.60 23.80 88.25 24.02 26.12 Original
6 3.00 34.50 23.40 83.00 23.06 26.18 Original
7 0.00 33.50 24.00 84.25 23.47 26.34 Original
8 4.20 35.50 24.00 72.80 23.10 28.40 Interpolated
9 6.10 32.80 24.90 88.70 23.80 25.90 Interpolated
10 5.40 32.60 23.90 86.80 23.70 26.00 Interpolated

Next, a median filter with a 3 × 3 window was applied to smooth the image for better
feature extraction. After this step, a highlight, as an automation point of the process, was the
identification of the seed pixel, according to the disease reference colors and the threshold
definition process (Figure 11), using statistical techniques such as median calculation,
standard deviation, and outlier removal, considering a maximum associated error ≤ 5%.

Figure 10. Arrangement of the time series of data from the set of variables for the decision sup-
port system.
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The choice in thresholds involved analyzing image histograms and evaluating regions
to segment the object of interest. The background exhibited a significant number of colors
similar to those of the object of interest, i.e., the leaf. The adopted procedure for histogram
evaluation was supervised, aiming to identify two thresholds capable of segmenting the
largest possible background area without compromising the leaf region, which, due to ASR,
displayed a variety of color tones. The histogram analysis focused on six different ranges:
(a) 0 to 85, (b) 31 to 165, (c) 70 to 159, (d) 83 to 159, (e) 100 to 130, and (f) 18 to 200. Tests
conducted with ranges (b) and (f), like the others, resulted in substantial pixel loss in the
object of interest. The threshold range (b), from 31 to 165, yielded favorable results and was
adopted as the standard for processing the image dataset.

Figure 11. Examples of results obtained based on differents threshold selection, where (a) 0 ≤ threshold
values ≤ 85, (b) 31 ≤ threshold values ≤ 165 (c) 70 ≤ threshold values ≤ 159, (d) 83 ≤ threshold
values ≤ 159, (e) 100 ≤ threshold values ≤ 130, (f) 18 ≤ threshold values ≤ 200.

The result of applying segmentation techniques (Figure 12) was organized in stages,
i.e., first removing the background and then associating the result based on the reality of
the absence, appearance, and presence of the disease in a soybean cultivation area, in other
words, considering segmentation in green, yellow, and brown colors, respectively.

Additionally, after thresholding, the k-means technique (Figure 12d) was applied to
cluster the image pixels according to the established color class definitions. These results
indicated the need to consider up to six different labeled clusters, with label number four
being used as it was indeed associated with identifying the occurrence of ASR, both in its
intermediate and advanced stages.

Regarding the quality metrics of all the images analyzed: the MSE values (Equation (2))
ranged from 0.01 to 0.06, with a median of 0.03; the SSIM values (Equation (4)) ranged from
0.87 to 0.97, with a median of 0.94; the PSNR values (Equation (3)) ranged from 18.98 to
20.04, with a median of 14.29.

For the ranges of pixel values of an ROI related exclusively to green, yellow, and
brown colors, the values summarized in Table 5 were observed for these metrics.
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Figure 12. An example of results obtained with the application of segmentation technique, where (a) is
an RGB original image, (b) is the green band from the original one, (c) is the histogram processing
equalization result, (d) are the processed labels from 0 to 5, related to the output results obtened
after equalization, also showing into a red retangle the selected one, (e) is the selected label, (f) is the
segmented values related to green pixels, (g) is the segmented values related to yellow pixels, (h) is
the segmented values related to brown pixels.

Table 5. Segmentation quality analysis: metrics and outliers.

Segmented Images Metrics Outliers

MSE PSNR (dB) SSIM Seeds Calculation

Green 0.05 13.35 0.91 0 3
Yellow 0.06 12.59 0.91 14 14
Brown 0.05 12.94 0.91 1 1

The OpenCV and Skimage libraries were used to extract the features and recognize
the patterns. This was achieved by applying SIFT (Equations (5)–(8)), HOG, and HU
moments (Equations (9)–(20)), with algorithms written in Python 3.6.8., based on the
default parameters of these libraries. Each process generated a file with the characteristics
of each color, and its storage was considered in the Oracle Cloud bucket.

For example, part of the processing can be observed in Figure 13, which illustrates the
results for texture, color, and geometric shape.

The processing of these features using the HOG, SIFT, and HU invariant moment
algorithms resulted in vectors with 130 features. The PCA technique was then used to
reduce this vector to that with five features, as shown in Figure 14.

The choice in the ideal number of principal components was based on the total variance
(Table 6), adopting a minimum threshold of 70% explained variance as the criterion. To en-
sure an efficient representation of the information in the feature vectors, nineteen principal
components were sufficient to explain 70.79% of the total variance. In contrast, reducing to
eighteen components explained 69.56%, which is slightly below the established threshold.

Based on PCA dimensionality reduction, different classifiers were evaluated (Decision
Tree, K-Nearest Neighbor, Naïve Bayes, and Support Vector Machine (SVM)), with the
latter selected for yielding the best results. For SVM, three kernels were tested, chosen
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according to the behavior of the data to be classified: linear, polynomial, and RBF. These
configurations are shown in Table 7.

Figure 13. Non-normalized Hu, Hog, and SIFT descriptors.

Figure 14. Feature data after PCA processing.

The data for training and testing, intended for selecting the SVM classifier, was
organized considering three configuration aspects, namely percentages of 80–20%, 50–50%,
and 70–30%, respectively, for the training and testing stages.

From the analyses performed, the third-order polynomial kernel presented the best
result (Figure 15), where the best combination evaluated for the training and testing data,
according to the classification report metrics (Table 8), was 80–20% (Table 9). That is, it
presented the best metrics regarding accuracy, precision, recall, F1-score, area under the
curve, and lower mean squared error (Equation (2)). In this context, the final configuration
for the polynomial kernel is presented in Table 10.
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Table 6. Explained variance per principal component–19 components.

PC Eigenvalue % of Variance Cumulative Variance (%)

1 0.64 12.30 12.30
2 0.57 11.02 23.31
3 0.33 6.33 29.65
4 0.28 6.28 35.93
5 0.28 5.31 41.24
6 0.18 3.56 44.79
7 0.18 3.59 48.18
8 0.13 2.79 50.97
9 0.14 2.56 53.53

10 0.12 2.47 56.00
11 0.13 2.57 58.52
12 0.11 1.87 60.39
13 0.09 1.63 62.02
14 0.09 1.65 63.66
15 0.08 1.57 65.23
16 0.08 1.54 66.76
17 0.07 1.41 68.17
18 0.06 1.31 69.48
19 0.06 1.23 70.79

Table 7. Hyperparameter settings–grid search
.

Polynomial Kernel Settings

kernel: polynomial, Degree: 3, 5, 7, Parameters C: 1, 10, 100, 1000,
Gamma: 0.001; 0.01; 0.1; 1, Class_Weight: (balanced, 0: 0.1 | 1: 0.9)

RBF Kernel Settings

kernel: RBF, Degree: 3, 5, 7, Parameters C: 1, 10, 100, Gamma: 0.001; 0.01; 0.1; 1,
Weight: (0: 0.3 | 1: 0.7) (0: 0.1 | 1: 0.9)

Linear Kernel Settings

kernel: linear, Parameters C: 1, 10, 100, Gamma: 0.01; 0.1; 1, Class_Weight: (0: 0.1|1: 0.9)

Figure 15. Result obtained with an SVM classifier based on a polynomial kernel.

Table 8. Classifier report data—polynomial kernel.

Precision Recall F1-Score Support

0 0.88 0.50 0.64 692
1 0.79 0.96 0.87 1361

Accuracy 0.81 2053
Macro Average 0.83 0.73 0.75 2053

Weighted Average 0.82 0.81 0.79 2053
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Table 9. Comparative data—SVM classifier.

Descriptive Statistics Configuration 80-20 Configuration 70-30 Configuration 50-50

Acc. MSE AUC Acc. MSE AUC Acc. MSE AUC

SVM Classifier—Linear Kernel

Minimum 0.692 0.000 0.440 0.684 0.000 0.480 0.687 0.000 0.490
Maximum 1.000 0.308 0.690 1.000 0.316 0.690 1.000 0.313 0.640

Mean 0.787 0.213 0.587 0.792 0.208 0.588 0.777 0.223 0.583
Standard Error 0.011 0.011 0.008 0.011 0.011 0.006 0.011 0.011 0.003

Variance 0.008 0.008 0.004 0.007 0.007 0.002 0.007 0.007 0.001
Standard Dev. 0.089 0.089 0.062 0.085 0.085 0.050 0.085 0.085 0.025

Median 0.750 0.250 0.590 0.761 0.239 0.590 0.741 0.259 0.590
25th Percentile 0.731 0.167 0.540 0.729 0.179 0.550 0.724 0.212 0.570
75th Percentile 0.833 0.269 0.640 0.821 0.271 0.620 0.788 0.276 0.600

SVM Classifier—Polynomial Kernel

Minimum 0.692 0.000 0.820 0.795 0.034 0.800 0.769 0.041 0.800
Maximum 1.000 0.308 1.000 0.966 0.205 1.000 0.959 0.231 0.990

Mean 0.790 0.210 0.917 0.860 0.140 0.916 0.844 0.156 0.900
Standard Error 0.011 0.011 0.006 0.005 0.005 0.005 0.005 0.005 0.005

Variance 0.008 0.008 0.002 0.002 0.002 0.001 0.001 0.001 0.001
Standard Dev. 0.088 0.088 0.043 0.042 0.042 0.039 0.036 0.036 0.039

Median 0.756 0.244 0.915 0.850 0.150 0.910 0.841 0.159 0.900
25th Percentile 0.731 0.167 0.900 0.829 0.128 0.890 0.815 0.133 0.870
75th Percentile 0.833 0.269 0.948 0.872 0.171 0.940 0.867 0.185 0.928

SVM Classifier—RBF Kernel

Minimum 0.709 0.000 0.570 0.709 0.000 0.570 0.687 0.000 0.460
Maximum 1.000 0.291 1.000 1.000 0.291 1.000 1.000 0.313 1.000

Mean 0.794 0.206 0.820 0.794 0.206 0.820 0.779 0.221 0.769
Standard Error 0.011 0.011 0.015 0.011 0.011 0.015 0.011 0.011 0.018

Variance 0.007 0.007 0.014 0.007 0.007 0.014 0.007 0.007 0.020
Standard Dev. 0.084 0.084 0.119 0.084 0.084 0.119 0.084 0.084 0.143

Median 0.765 0.235 0.830 0.765 0.235 0.830 0.744 0.256 0.755
25th Percentile 0.729 0.173 0.713 0.729 0.173 0.713 0.728 0.210 0.653
75th Percentile 0.827 0.271 0.930 0.827 0.271 0.930 0.790 0.272 0.878

Table 10. Hyperparameters—polynomial kernel.

Hyperparameters Values

C 100
Weight (Class 0) 0.3
Weight (Class 1) 0.7

Degree 3
Gamma 0.1

When the polynomial kernel was used and the confusion matrix was analyzed, the
main diagonal of the matrix correctly indicated 346 cases belonging to class “0”, i.e., absence
of favorability to ASR. These records were indeed class “0”. However, 346 false positives
were observed in the upper right quadrant, corresponding to cases that actually belonged
to class “1”, i.e., favorable to the occurrence of ASR.

In the second quadrant along the main diagonal, 1312 cases were recorded. The model
correctly classified these cases as belonging to class “1”, which they indeed did.
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However, in the lower left quadrant, 49 false negatives were identified. These cases
actually belonged to class “0”.

3.3. Results of Variable Fusion and Fuzzy Modeling for Favorability Prediction

Table 11 shows the fuzzy variable settings and the corresponding membership func-
tions for the seven variables considered for risk analysis. In addition, Figure 16 shows the
obtained results, as indicated for each interval of the membership functions, i.e., with the
associated error of approximately ±5%, corresponding to each transition zone between the
low, medium, and high favorability levels.

Table 11. Configuration of the membership functions.

Description Configuration

Antecedent: Leaf Wetness Period
Humidity below threshold 0, 43, 89
Humidity at threshold 88, 90, 94
Humidity above threshold 93, 96, 100

Antecedent: Minimum Leaf Wetness Period
Time below threshold 0, 14, 24
Time at threshold 22, 46, 70
Time above threshold 66, 83, 100

Antecedent: Soybean Leaf Image Classification Data
Unfavorable 0, 0, 1
Favorable 1, 1, 1

Antecedent: Dew Point
Temperature below threshold −2, −1, 0
Temperature at threshold 0, 1, 2
Temperature above threshold 2, 3, 4

Antecedent: Temperature Range
Initial: range below threshold 0, 7, 15
Initial: range at threshold 14.4, 18, 21.4
Initial: range above threshold 21, 24, 27
Final: range below threshold 14, 19, 24
Final: range at threshold 23.4, 26, 28.4
Final: range above threshold 28, 36, 44

Antecedent: Minimum Temperature
Minimum temperature below threshold 0, 7, 15
Minimum temperature at threshold 14, 18, 22
Minimum temperature above threshold 21, 24, 27

Antecedent: Maximum Temperature
Maximum temperature below threshold 14, 19, 24
Maximum temperature at threshold 23, 26, 28
Maximum temperature above threshold 27, 35, 43

Consequent: Favorability
Low 0, 17.15, 33.3
Medium 32.3, 50, 67.6
High 66.6, 84, 100
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Figure 16. Results based on the membership functions.

3.4. Results of Variable Fusion and Markovian Modeling for Favorability Prediction

Based on the structuring of the cloud architecture, the data for the variable fusion
stage were selected. This dataset encompassed the considered time series period, enabling
validation of the method using predefined ten-day temporal windows shifted along the
series. Classification information was derived from the analysis of image processing using
the Embrapa dataset.

Once the climatic time-series data were structured, and considering the set of images
with their classified patterns, the variable fusion algorithm based on the Markovian model
was applied, as shown in Figure 17.

Figure 17. The Markov hidden chain’s model for Asian rust risk analysis in soybean crops.
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For the favorability of ASR occurrence, the probability values for low, median, and high
occurrences were considered to be 0.1, 0.3, and 0.7, respectively. The combinations denoted
by “C” represented 27 possibilities generated from the variables Vf 1 (leaf wetting period),
Vf 2 (minimum leaf wetting period), Vf 3 (temperature range), Vf 4 (maximum temperature),
Vf 5 (minimum temperature), Vf 6 (dew point), and Vf 7 (results of the image classification
based on the soybean leaf color related to field truth), totaling 128 combinations. To
evaluate disease occurrence, the hidden Markov chain observations were defined by the
combinations of these seven variables (Vf 1–Vf 7) and their associated probabilities within
the windowing period, corresponding to the time-series data and this classification variable.

The transition probabilities, representing changes in disease favorability states, associ-
ated with each variable also comprised the hidden Markov chain and were identified by
the percentages indicated in each observation.

The emission probabilities were derived from the state transitions of the observations
within the hidden Markov chain. The combinations were selected through a data collection
process using a time window, guided by the ASR favorability rule for different stages:
(1) transition to the “Low” favorability state, when the set of variables corresponded to
the 0–33% range according to the observations; (2) transition to the “Median” favorability
state, when the identified variables were within the 34–66% range; and (3) transition to the
“High” favorability state, when the variables exceeded the 66% range. The hidden Markov
chain is summarized schematically in Table 12.

Table 12. The hidden Markov chain data.

C Vf 1 Vf 2 Vf 3 Vf 4 Vf 5 Vf 6 Vf 7 S P_Vf 1 P_Vf 2 P_Vf 3 P_Vf 4 P_Vf 5 P_Vf 6 P_Vf 7

1 0 0 0 0 0 0 0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0 0 0 0 0 0 1 1 0.00 0.00 0.00 0.00 0.00 0.00 1.00
3 0 0 0 0 0 1 0 1 0.00 0.00 0.00 0.00 0.00 1.00 0.00
4 0 0 0 0 0 1 1 1 0.00 0.00 0.00 0.00 0.00 0.50 0.50
5 0 0 0 0 1 0 0 1 0.00 0.00 0.00 0.00 1.00 0.00 0.00
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
9 0 0 0 1 0 0 0 1 0.00 0.00 0.00 1.00 0.00 0.00 0.00
10 0 0 0 1 0 0 1 1 0.00 0.00 0.00 0.50 0.00 0.00 0.50
11 0 0 0 1 0 1 0 1 0.00 0.00 0.00 0.50 0.00 0.50 0.00
12 0 0 0 1 0 1 1 2 0.00 0.00 0.00 0.33 0.00 0.33 0.33
13 0 0 0 1 1 0 0 1 0.00 0.00 0.00 0.50 0.50 0.00 0.00
14 0 0 0 1 1 0 1 2 0.00 0.00 0.00 0.33 0.33 0.00 0.33
15 0 0 0 1 1 1 0 2 0.00 0.00 0.00 0.33 0.33 0.33 0.00
16 0 0 0 1 1 1 1 2 0.00 0.00 0.00 0.25 0.25 0.25 0.25
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

128 1 1 1 1 1 1 1 3 0.14 0.14 0.14 0.14 0.14 0.14 0.14

The probability for the “Start” state in the Markovian model application was randomly
assigned. Additionally, at the model’s onset, low favorability (S1) was set to 10%, median
favorability (S2) to 20%, and high favorability (S3) to 70%. For state S1, the probability of
remaining in S1 was set at 40%, while the probability of transitioning to state S2 was 60%.
For state S2, the probability of remaining in the same state was 30%, whereas the probability
of evolving to state S3 was 70%. Once state S3 was reached, the probability of remaining in
this state was set to 100%, meaning a return to states S1 or S2 was not possible.

The hidden Markov chain customized for the process was obtained by using
Equation (45) to calculate the probabilities (Table 12) of each combination in the hidden
Markov chain.
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PRc =
1

∑n
var=1(Rvar + β)

(45)

where PRc is the total probability of the hidden Markov chain combination; n is the
quantity; Vf represents the variables involved; and β is an adimensional constant used to
avoid division by zero.

After defining the vector of occurrences corresponding to one of the windowings
applied to the time series of climate and classification data, it was used as input for the
Markovian algorithm.

As part of the method, the number of values within the same time window that
satisfied the rule was counted for each variable. This involved transforming the number of
occurrences relative to the values of the “Vf ” variables. The transformation function was
defined as follows: when the number of occurrences of Vf ≥ 1, then Vf = 1; and, when the
number of occurrences of Vf ≤ 1, then Vf = 0.

After this, the occurrences were transformed to form the input vector for the Marko-
vian algorithm. Table 4 presents an example of the data mapped over a ten-day window,
in which the leaf wetness period variable registered seven occurrences of favorability for
ASR. In this example, the values for minimum leaf wetting period, maximum temperature,
minimum temperature, dew point, and image data were “1”, while no occurrences were
recorded for the temperature range variable.

Based on the graph of considered rules (Figure 18) and data input vector (Table 13),
the transformed occurrences indicated high favorability, considering values of six variables
as “1”.

Figure 18. Chart of accounted rules.

Table 13. Data input vector.

Input (Algorithm) Vf 1 Vf 2 Vf 3 Vf 4 Vf 5 Vf 6 Vf 7

Occurrences: 7 6 0 1 1 1 1
Transformed Occurrences: 1 1 0 1 1 1 1

Thus, based on this input vector, the Markovian model generated an output vector that
translated the information on the stage of favorability of ASR, as summarized in Table 14.
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Table 14. Markov chain result.

Selected Hidden Chain: 1 1 0 1 1 1 1

Selected Probability: 0.17 0.17 0.0 0.17 0.17 0.17 0.17

State (S): 3

Favorability: High

It is noteworthy that, depending on the input variables, the state of favorability was
defined as low, medium, or high.

Examples of data processed in different time windows and originating from each
process cycle are listed in Table 15. To assess the quality of processing, the time windows
were selected via the web interface using the hidden Markov chain technique.

Table 15. Markovian quality data.

Favorability Vf 1 Vf 2 Vf 3 Vf 4 Vf 5 Vf 6 Vf 7 ĉ(t) σ2( f ) σ Accuracy Precision

Low

0 0 0 0 0 0 0 1.00 0 0 1 1
0 0 0 0 0 0 1 1.00 0.12 0.35 0.88 0.65
0 0 0 0 0 1 0 1.00 0.12 0.35 0.88 0.65
0 0 0 0 0 1 1 1.00 0.20 0.45 0.80 0.55
0 0 0 0 1 0 0 1.00 0.12 0.35 0.88 0.65

Median

0 0 0 0 1 1 1 1.00 0.24 0.49 0.76 0.51
0 0 0 1 0 1 1 1.00 0.24 0.49 0.76 0.51
0 0 0 1 1 0 1 1.00 0.24 0.49 0.76 0.51
0 0 0 1 1 1 0 1.00 0.24 0.49 0.76 0.51
0 0 0 1 1 1 1 1.00 0.24 0.49 0.76 0.51

High

0 1 1 1 1 0 1 1.00 0.20 0.45 0.80 0.55
0 1 1 1 1 1 0 1.00 0.20 0.45 0.80 0.55
0 1 1 1 1 1 1 1.00 0.12 0.35 0.88 0.65
1 0 0 1 1 1 1 1.00 0.20 0.45 0.80 0.55
1 1 0 1 1 1 1 1.00 0.12 0.35 0.88 0.65

The result indicated an error of <1%, demonstrating a high-quality index for the data
fusion process. Next, for low favorability, the first point was notable, presenting an error of
“0” and accuracy and precision values of “1”.

Regarding the standard deviation (Table 15), the observed error differences were minor,
making the obtained autocorrelation values reasonable. The calculated autocorrelations
depended on two main factors: the input variables and the value of (ĉ(t)), which represents
the size of the processing time window. The variation in (ĉ(t)) was minimal, affecting only
the third or fourth decimal place as the processing was executed under the same infras-
tructure configuration. Consequently, under these conditions, this variable contributed
minimally to the differences observed in the standard deviation of the reasonable errors for
the calculated autocorrelations.

However, the variation in combinations of input variables from Vf 1 to Vf 7 more
significantly influenced the differences in the standard deviation values of the reasonable
errors for the calculated autocorrelations. The combinations of variables from Vf 1 to Vf 7, as
shown in Figure 19, indicate that the increase in standard deviation values was due to the
presence of variables with a value equal to “1”. A noteworthy observed behavior was that
the standard deviation value reached its peak with up to three variables equal to “1” and



AgriEngineering 2025, 7, 236 33 of 42

stabilized at the fourth. From the fifth variable equal to “1” onward, the standard deviation
of the reasonable errors for the calculated autocorrelations began to decrease, indicating
greater consistency in information processing.

Figure 19. Standard deviation versus status of the variables related to each input in the hidden
Markov chain applied to ASR risk evaluation.

3.5. Comparative Evaluation of the Results Between Modeling Based on the Fuzzy System and the
Hidden Markov Chain

To compare the data fusion models, an evaluation framework based on two distinct
scenarios was established, i.e., using for the first one 29 combinations for low-, 29 combina-
tions for medium-, and 29 combinations for high-favorability occurrences. On the other
hand, for the second one, there were only 41 combinations for medium favorability, and
zero combinations for the low and high occurrences. Table 16 presents the final comparative
results, where it is possible to observe, for both scenarios, the best behavior of the model
based on the hidden Markov chain, which presented accuracy equal to 100% matching.

Table 16. Performance comparison of the data fusion models.

Favorability Analysis—Evaluation

Fuzzy Logic
(Category)

Scenario 1 Scenario 2

Samples
Correct
(Count)

Accuracy (%) Samples
Correct
(Count)

Accuracy (%)

Low Favorability 29 8 27.59 0 N/A N/A

Medium Favorability 29 12 41.38 41 25 60.98

High Favorability 29 18 62.07 0 N/A N/A

Hidden Markov Model
(Category)

Samples
Correct
(Count)

Accuracy (%) Samples
Correct
(Count)

Accuracy (%)

Low Favorability 29 29 100.00 0 N/A N/A

Medium Favorability 29 29 100.00 41 41 100.00

High Favorability 29 29 100.00 0 N/A N/A

In such a context, the processing output was displayed on a dashboard panel
(Figure 20), which, in summary, included the main information from the executed pro-
cedures, such as segmented images, visualization of climatic variables, data fusion and
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favorability results, as well as access to a container with decision-support reports, prepared
based on the historical data cube from the data warehouse. Accordingly, reports (Subject 1),
(Subject 2), and (Subject 3) could be displayed in separate containers at the top of the
dashboard panel.

Figure 20. Final dashboard interface (when under processing).

3.6. Analytical Reports

The analytical reports represent another important aspect of the analyzed results.
These reports were generated from OLAP tool queries based on the DW historical database,
whose model was constructed according to the defined requirements.

A load was executed on the DW using an SQL script, and data of interest to the
producer was collected. The script was created by combining the data tables of the trans-
actional database, which responded to the queries of the developed requirements. These
requirements involved (1) the influence of climatic variables on the favorability of ASR
(Subject 1, Figure 21); (2) the accounting of low, median, and high favorability per year
(Subject 2, Figure 22); and (3) the influence of the image of the soybean leaf on the favora-
bility of ASR per year, in the planting and harvesting stages, primarily R5 and R6 as they
are the most affected by the disease (Subject 3, Figure 23).

Figure 21. Data analysis analytical report (subject 1).
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The analytical report (Subject 1) showed that the highest incidences of ASR favorability
over time were associated with the leaf wetting period, maximum temperature, minimum
temperature, minimum leaf wetting period, and soybean leaf image classification data.

Following this line of reasoning, the other most significant variables contributing
to disease favorability were the minimum period of leaf wetness, followed by the dew
point and temperature range. These findings highlight the variables and their respective
relationships on an annual scale in the historical data series.

In the analytical report (Subject 2), it was possible to observe the evaluation of favora-
bility accounting. No cases of low favorability were found during the one crop cycle period.
However, both medium and high favorabilities were identified. Figure 22a illustrates
the historical series overview for the high-favorability case, while Figure 22b shows the
overview for the medium-favorability case.

The period encompassing the interval between soybean reproductive phenological
stages R4, R5, and R6 was assessed in the analytical report (Subject 3). ASR was found to be
predominant during stages R5 and R6, which corresponded to the period with the highest
incidence of the disease. This 17-day interval (17 November to 4 December) was mapped
between the 85th and 95th days (stages Vf 5 and Vf 6). This result indicates a high degree of
favorability for this specific period.

Regarding high favorability (Figure 23), in a few years of the time series, this level
of favorability was not observed, even during the R5 and R6 stages of crop development.
However, in the remaining years, disease occurrence was recorded. In one instance, during
the R5 and R6 stages, only a single record of average favorability was found.

Figure 22. Example of an analytical report (subject 2). In (a), the example illustrates that the
combinations of the rule base variables were between 66.7% and 100%, while in (b) these combinations
were between 33.4% and 66.6%.

Figure 23. Data analysis analytical report (subject 3).
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3.7. Computational Cost

To analyze the computational cost, both the CPU nuclei and memory were evaluated
across the four-stage pipeline: (1) segmentation, (2) pattern recognition and PCA, (3)
machine learning, and (4) variable fusion for the decision-support process. This evaluation
was conducted from two perspectives. The first was a single-instance analysis, focusing
on a specific time point from the climate data and its corresponding digital image from a
soybean leaf (Figure 24). The second one was a full-dataset analysis, encompassing the
processing of all the climate time series and the digital images for producing the result. The
resulting percentage utilization of the processing units and memory is shown in Table 17.

The resource consumption dynamics during runtime are detailed in Figure 24, while a
consolidated statistical summary is presented in Table 17. The machine learning and all
seven variables for the data fusion stages exhibited intense and stable processing demands,
with mean usages of 90.55% and 89.26%, respectively. In contrast, the feature extraction
together with the PCA stage showed more variable behavior, with a mean usage of 27.51%
and a high standard deviation (22.06), indicating that processing loads peaked at 75.10%.
Memory consumption remained consistently less than 11.18%, and it was stable across
all the stages, peaking at 11.60%, which demonstrates that memory was not a critical
computational resource.

Figure 24. Computational cost analysis.

Table 17. Statistical summary of computational cost by process.

Process
Processing (%) Memory (%)

Mean Std.
Dev. Min. Max. Mean Std.

Dev. Min. Max.

Segmentation 76.24 2.10 75.10 81.10 11.18 0.44 9.80 11.40
Feature Extraction with PCA 27.51 22.06 5.30 75.10 8.52 0.65 7.90 9.70
Machine Learning 90.55 3.51 83.80 94.10 10.95 0.52 10.40 11.60
Variable Data Fusion 89.26 3.49 83.80 94.10 10.96 0.51 10.40 11.60

3.8. System Validation with Phytopathologists and Agronomists

The tests submitted to the specialists were also processed by the developed system. The
responses of the specialists (phytopathologists and agronomists) were used as references,
alongside the system’s corresponding accuracy relative to those responses. Additionally,
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to organize the responses into a unified dataset, normalization was applied based on the
maximum and minimum values within the response set.

The system validation results demonstrate a strong correlation between the system
and the specialists: the identification of Asian soybean rust presence yielded a coefficient of
determination of R2 = 0.94, while the estimation of severity levels reached R2 = 0.88, as
shown in Figure 25 and Figure 26, respectively.

Figure 25. Validation of the presence or absence of Asian soybean rust.

Figure 26. Validation of Asian soybean rust severity level.

These results express the amount of data variance explained using the linear model.
Therefore, the high R2 values found indicate that the developed system performed satisfac-
torily in relation to the responses provided by the consulted specialists.

It is important to observe in this developed method that it is not universal. In fact, it is
customized for ASR risk management in soybean crops. However, it is based on the idea of
being adaptive to other diseases that can occur in soybeans and other grain crops. In this
case, such customization may become possible as long as these diseases encounter favorable
situations involving climatic issues and symptoms expressed in the crop phenotype.

4. Conclusions
Crop diseases represent the main challenges faced by the agricultural sector. This

paper presents a new method for assessing ASR in crops regarding an advanced intelligent
and computational decision-making system based on cloud infrastructure. Early detection
of ASR disease in crops is crucial to reduce not only its severity and spread in the field but
also to minimize the use of fungicides. The decision model was implemented considering
not only climatic time series of data but also digital images from soybean leaves, spatially
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collected for the evaluation of changes in their phenotype. In relation to the climatic time
series of data, the use of B-splines resulted in correlation coefficients (CCs) in the interval
0.63 ≤ CC ≤ 0.82, which avoided missing data. The absence of data reduces statistical
power, which refers to the probability that the test will reject the null hypothesis when it is
false. Also, the lost data can cause bias in the estimation of parameters, and it can reduce
the representativeness of the samples. For ASR’s risk analysis, the processing employed
a large data scale, incorporating both data lake and data warehouse systems, web-based
operation, and integrated image feature extraction methods based on SIFT, HOG, and HU
(invariant moments) for the pattern’s recognition on leaves, and PCA for dimensionality
reduction. Moreover, classification using an SVM with a polynomial kernel was used,
which achieved an accuracy larger than 84% and AUC larger than 0.90, demonstrating
adequate performance. In addition, the use of the metrics PSNR, MSE, and SSIM enabled
demonstrating the robustness of such an arrangement, i.e., leading to values in the ranges
of 14.00 ≤ PSNR ≤ 15.00, 0.03 ≤ MSE ≤ 0.05, and ≥0.91, respectively. For the data fusion
of the variables, i.e., the climate ones and the classified image patterns, the model based on
the hidden Markov chain was selected since it presented the best effectiveness, allowing
100% matching for the three different levels of possible risk occurrences. The development
of the data quality framework allowed a comprehensive evaluation, supporting the relia-
bility of the method. The quality indicators were also evaluated based on autocorrelation
theory and estimation of expected values from the processed data. According to the results,
these indicators showed adequate accuracy and precision, with cross-correlation valida-
tion by experts in phytopathology, achieving linear regression correlation factor values
above 0.85, i.e., confirming the method’s reliability. In conclusion, the results validated
the developed method, demonstrating significant improvements over traditional climate-
or even digital-image-only approaches through the integration of heterogeneous data fu-
sion. Likewise, its practical viability has been shown for field implementation through an
intuitive web interface, with the potential to reduce ASR-related losses through disease
prevention, early detection, and rational use of fungicides. This development is of great
relevance both for advancing knowledge in computer science techniques related to signal
and digital image processing and reducing production risks in agriculture. The current
method was specifically calibrated for soybeans and requires adaptation for other grain
cultivars and geographic regions. For future work, one may aim to use convolutional
networks and evaluate opportunities to enable unsupervised operations for agricultural
plant disease assessments.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronym Meaning
ACS Analytics Cloud Service
AD Autonomous Database
AI Artificial Intelligence
AMD Advanced Micro Device
API Application Programming Interface
ASR Asian Soybean Rust
AUC Area Under the Curve
CC Correlation Coefficient
CNN Convolutional Neural Network
COG Center of Gravity
DL Data Lake
DM Data Mart
DSE Data Science Environment
DW Data Warehouse
Embrapa Brazilian Agricultural Research Corporation
ETL Extract, Transform, Load
Fapesp São Paulo Research Foundation
FN False Negative
FP False Positive
FSIM Feature Similarity Index
GB Gigabyte
GIS Geographic Information System
HOG Histogram of Oriented Gradients
HU Hu Moments
INMET Instituto Nacional de Meteorologia
IoT Internet of Things
KNN K-Nearest Neighbor
MAPA Ministry of Agriculture, Livestock and Food Supply (Brazil)
MHz Megahertz
MSE Mean Squared Error
OLAP Online Analytical Processing
OS Object Storage
PCA Principal Component Analysis
PSNR Peak Signal-to-Noise Ratio
RD Relational Database
RF Random Forest
RGB Red, Green, Blue
RH Relative Humidity
ROC Receiver Operating Characteristic
ROI Region of Interest
SIFT Scale-Invariant Feature Transform
SQL Structured Query Language
SSIM Structural Similarity Index
SVM Support Vector Machine
TFP True False Positive
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
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TVP True Positive Rate
VCN Virtual Cloud Network
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