

RESEARCH ARTICLE

Direct and Volatile Potential Applications of Essential Oils for Post-Harvest Fungal Control

Ygor G. P. Osti¹ | Larissa G. R. Duarte² | Conny W. T. Fukuyama¹ | Isadora C. Pedrino¹ | Higor V. Santos³ | Josemar G. de Oliveira Filho² | Maria Eduarda A. Astolfo³ | Maria Eduarda M. Martins⁴ | Stanislau Bogusz Junior³ | Marcos David Ferreira²

¹Department of Biotechnology, Federal University of São Carlos, Sao Carlos, Brazil | ²Brazilian Agricultural Research Corporation, Embrapa Instrumentation, Sao Carlos, Brazil | ³Institute of Chemistry (IQSC), University of São Paulo (USP), Sao Carlos, Brazil | ⁴Postgraduate Program in Food Science and Engineering, IBILCE, São Paulo State University 'Julio de Mesquita Filho', UNESP, São José do Rio Preto, Brazil

Correspondence: Larissa G. R. Duarte (larissagraziele@gmail.com)

Received: 29 December 2024 | Revised: 8 March 2025 | Accepted: 10 March 2025

Funding: This research was funded by FAPESP (#2022/10686-6), CNPq (#383138/2023-0, 138584/2023-0), CAPES (# 001), Empresa Brasileira de Pesquisa Agropecuária (#20.19.03.0124.00.00)—Embrapa, Rede Agronano, CNPq/MCTI Sisnano (#442575/2019-0), and M. D. Ferreira CNPq Research Productivity fellowship (#307141/2022-5).

Keywords: Alternaria alternata | antifungal agents | biological activity | Fusarium solani | Lasidiodiplodia theobromae

ABSTRACT

Around one-third of food production is lost globally, significantly impacting food security, primarily due to post-harvest deterioration from phytopathogenic fungi. This study aimed to assess the antifungal properties of essential oils (EOs) from *Syzygium aromaticum*, *Origanum vulgare L.*, *Cymbopogon martinii*, *C. citratus*, *Mentha spicata*, and *Mentha piperita* against three fungi affecting tropical fruits: *Lasiodiplodia theobromae*, *Alternaria alternata*, and *Fusarium solani*. The antifungal efficacy was evaluated using direct contact and volatilization methods, determining the minimum inhibitory concentration (MIC) needed to completely inhibit fungal growth. Scanning electron microscopy was employed to observe the effects of EOs on fungal cells. Among the tested oils, *O. vulgare* showed the most promise, with MIC values ranging from 40 to 200 μ L/L for volatile exposure and from 125 to 500 μ L/L for direct contact. The results indicated that vapor exposure was more effective, requiring lower concentrations for fungal control. Thus, these EOs, particularly that of *O. vulgare*, present a viable alternative to synthetic fungicides for managing post-harvest fungal infections in tropical fruits, promoting sustainable agricultural practices.

1 | Introduction

Post-harvest losses resulting from natural degradation in agricultural products represent a significant challenge to food security and economic sustainability. The Food and Agriculture Organization of the United Nations (FAO) has been putting great efforts into developing an indicator model to monitor food loss at a global level, based on surveys produced by each country. The most recent report showed that fruits and vegetables are the most affected group by post-harvest losses, representing around 31.2%,

globally (FAO). Despite increasing collaboration, these data are still scarce and underrepresented, which could mean even more significant losses worldwide, mainly due to fungal spoilage [1].

Filamentous fungi encompass a vast array of species capable of thriving in diverse environments, making them widely distributed in nature. Their ability to proliferate poses a threat not only to agricultural crops but also to post-harvest management. The contamination by these fungi leads, globally, to significant economic losses and compromises the quality of fresh

© 2025 Wiley-VHCA AG, Zurich, Switzerland

products [2]. In tropical fruits, the fungi *Lasiodiplodia theo-bromae, Alternaria alternata*, and *Fusarium solani* are growing interest among the primary agents due to the increase in incidence and severity of post-harvest diseases caused by them.

L. theobromae is a phytopathogen fungus that can affect a wide variety of tropical crops and has been reported in a rising number of tropical fruits, such as mango, mangosteen, passion fruit, papaya, grapes, avocados, and cocoa ([3; Rusin et al. 4; 5; Quin et al. 6]). Recent studies have shown that this fungus is quite virulent, causing extensive damage just a few days after its inoculation, and showing resistance to some fungicides applied on papaya [7]. The infection happens mostly through injuries in the fruit skin that can occur at any point during harvest, transport, or storage and the disease initially manifests itself as brown spots on the skin around the wound and softening of the fruit in contaminated areas. Over time, it's possible to observe the growth of a grayish-white mycelium over the fruit skin, with gradual darkening, reaching a dark gray color. Additionally, there is rot inside the affected fruit as the fungus penetrates the inner tissues [5].

A. alternata is known as a broad-spectrum pathogen, affecting numerous plant species, including tropical fruits such as kiwi, mango, persimmon, and dragon fruit [8–10]. The contamination usually happens through spores present in the air or by direct contact with other contaminated fruits. Dark necrotic spots or superficial discoloration are often observed symptoms and, in some cases, the proliferation of mycelium on the surface of contaminated fruits may also be visible under favorable conditions such as high humidity and temperature. This species is also known for producing mycotoxins which, in high quantities, can be harmful to human health [7].

Fusarium sp. are mostly soil saprophytes and some species can also cause post-harvest diseases in many fruits such as avocado, mango, papaya, and pineapple, being easily spread generally from the production field. F. solani seems to be the main species that affects tropical fruits [11]. The infection caused by this fungus presents some characteristic signs, such as brown or necrotic lesions, causing wilting and gradual softening of the fruits, resulting in an aged appearance and loss of quality [12]. Controlling this pathogen is also difficult because the use of traditional fungicides can cause negative impacts on the local ecosystem [13].

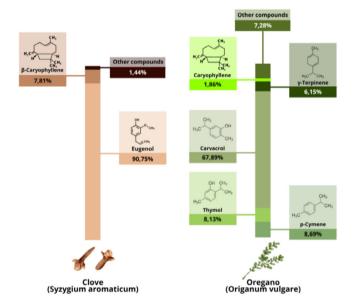
Traditionally, synthetic fungicides have been used to control fruit postharvest pathogens. However, its possible negative effects on human health and the environment have raised concerns about its use. Furthermore, the selection and emergence of strains resistant to a notable number of fungicides have led to attempts to find biological resources to replace these synthetic products [14]. In this sense, plant essential oils (EOs) and their constituent molecules have received special attention as it is recognized as Generally Recognized as Safe by the FDA since 2008 ([Panwar et al. 2024 15; 16, de Oliveira Filho et al. 17]). EOs are volatile oils with low water solubility, extracted from various parts of plants using both traditional and innovative methods (Mendonça et al. [18]). They are widely used in the fragrance and perfume industry [19]. The use of EOs as antifungal agents has a solid theoretical basis, based on the bioactive properties of these natural compounds,

which is why it has been shown to be a safe and effective alternative ([20]; Vilela et al. [21]). The presence of EOs appears to compromise the cell's structural integrity, leading to reduced growth. Treated cells often show a more segmented appearance with clumped growth and increased unidentified material on their surface, indicating cell wall disruption and cytoplasmic leakage, which results in oxidative damage [1].

This study aims to investigate the antifungal potential of *Syzygium aromaticum* (clove), *Origanum vulgare L.* (oregano), *Cymbopogom martinii* (palmarosa), *Cymbopogon citratus* (lemongrass), *Mentha spicata* (green mint) and *Mentha piperita* (peppermint) EOs against three species of phytopathogenic fungi (*L. theobromae, A. alternata, and F. solani*) to determine the minimum concentrations capable of completely inhibiting the growth of these microorganisms to mitigate post-harvest impacts. The relevance of this investigation transcends the scientific field, directly impacting the agricultural sector by providing promising alternatives for post-harvest preservation. By contributing to the understanding of the effectiveness of different EOs, by different methods, against phytopathogenic fungi, this study offers a safe and sustainable alternative to reduce economic losses and improve food security in a challenging post-harvest scenario.

2 | Results and Discussion

2.1 | EO Composition


Based on the chromatographic results, the EOs were divided into two groups: the first group consisted of EOs containing alcohol as the main compound and the second group contained aldehyde and ketone as the main compounds [22]. Compounds corresponding to peaks of relative area less than 1% were not listed.

Group 1: The clove (S. aromaticum) EO showed Eugenol (90.75%) and β -Caryophyllene (7.81%) as the main components, results similar to those reported in the literature, with the same major compounds (82.4% and 14.0%, respectively) by Kacániová et al. 2021 [23] and 89.73% eugenol by Fukuyama et al., [24]. The antifungal activity of clove EO has been reported against the fungus Aspergillus sp. due to its major compounds such as eugenol in the work of Haro-González et al. [25]. As for the oregano (O. vulgare) EO, the composition obtained was Carvacrol (67,89%), p-Cymene (8,69%), Thymol (8.13%), γ -Terpinene (6.15%), Caryophyllene (1.86%), β -Myrcene (1.45%) and α -Terpinene (1.22%). Very close to the results reported by Lombrea et al. 2020 [26] In the palmarosa (C. martinii) EO, the main components were Geraniol (86.83%), Nerol acetate (7.78%), β -Linalool (1.41%), and Caryophyllene (1.00%). These results are corroborated by Dangol et al. [27] who found geraniol (76.6%–87.9%) and geranyl acetate (4.4%–15.2%) as the main components (Figure 1).

Group 2: The lemongrass (*C. citratus*) EO showed (E)-Geranial (46.56%), Citral (36.47%), Geraniol (7.19%), β -Myrcene (4.17%), and β -Geraniol (1.40%). Other studies have already shown Geranial (55.2%) and Citral (38.34%) as the main components [28, 29]. The mint (*M. spicata*) EO showed Carvone (66.67%), Limonene (24.00%), and Pulegone (1.29%) as the main compounds, also within a reasonable variation (Carvone representing 41.1% and

TABLE 1 | Percentages of growth inhibition of the fungus Lasiodiplodia theobromae in direct contact with different essential oils at different concentrations.

Concentration (µL/L)	Syzygium aromaticum	Origanum vulgare	Cymbopogon martinii	Cymbopogon citratus	Mentha spicata	Mentha piperita
0	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
62.5	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
125	0 ± 0.00	42.78 ± 8.67	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
250	0 ± 0.00	82.06 ± 1.16	0 ± 0.00	$4,20 \pm 6.54$	8.65 ± 7.01	0 ± 0.00
500	32.76 ± 2.62	100 ± 0.00	0 ± 0.00	100 ± 0.00	56.66 ± 9.75	33.30 ± 5.68
750	72.34 ± 6.07	100 ± 0.00	90.84 ± 7.96	100 ± 0.00	25.00 ± 8.42	60.53 ± 1.49
1000	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00
MIC	750 <mic< 1000<="" td=""><td>250 <mic<500< td=""><td>750 <mic<1000< td=""><td>250<mic<500< td=""><td>750 <mic<1000< td=""><td>750<mic<1000< td=""></mic<1000<></td></mic<1000<></td></mic<500<></td></mic<1000<></td></mic<500<></td></mic<>	250 <mic<500< td=""><td>750 <mic<1000< td=""><td>250<mic<500< td=""><td>750 <mic<1000< td=""><td>750<mic<1000< td=""></mic<1000<></td></mic<1000<></td></mic<500<></td></mic<1000<></td></mic<500<>	750 <mic<1000< td=""><td>250<mic<500< td=""><td>750 <mic<1000< td=""><td>750<mic<1000< td=""></mic<1000<></td></mic<1000<></td></mic<500<></td></mic<1000<>	250 <mic<500< td=""><td>750 <mic<1000< td=""><td>750<mic<1000< td=""></mic<1000<></td></mic<1000<></td></mic<500<>	750 <mic<1000< td=""><td>750<mic<1000< td=""></mic<1000<></td></mic<1000<>	750 <mic<1000< td=""></mic<1000<>

FIGURE 1 | Schematic composition of the two most active essential oils (Clove and Oregano) against the tested fungi. The figure shows the major molecules and their respective percentages found in the essential oils (EOs).

limonene, 14.4%) as described by Giménez-Santamarina et al., [30]. In the peppermint (*M. piperita*) EO, the main components identified were Menthol (37.62%), Menthone (7.57%), Isomenthol (8.25%), Eucalyptol (6.90%), Cyclohexanol (3.77%), and Caryophyllene (2.19%) which are within the range of variation found in other studies, as described by Hudz et al., [31].

2.2 | Antifungal Activity Evaluation

2.2.1 | Direct Contact Method

All EOs inhibited the mycelial growth of L. theobromae, A. alternata, and F. solani by the direct contact method in a dose-dependent manner (Tables 1–3). The highest antifungal activity against L. theobromae was provided by the EOs of O. vulgare and C. citratus, both with total inhibition of mycelial growth between 250 and 500 μ L/L (Table 1). The other studied EOs

showed lower antifungal activity, with total inhibition of mycelial growth between concentrations of 750 and 1000 μ L/L (Table 1).

For the fungus *A. alternata* (Table 2), the highest antifungal activity was provided by the EOs of *O. vulgare* and *C. martinii*, with total inhibition of mycelial growth between concentrations of 125 and 250 μ L/L, and 250 and 500 μ L/L, respectively. The EOs of *M. spicata* and *M. piperita* showed lower antifungal activity, being unable to completely inhibit the mycelial growth of the fungus *A. alternata* up to the maximum tested concentration of 1000 μ L/L (Table 2).

Against the fungus F. solani (Table 3), the EOs of O. vulgare and S. aromaticum showed high antifungal activity, with MIC values between 250 and 500 μ L/L and 500 and 750 μ L/L, respectively. The other studied EOs were not able to completely inhibit the growth of F. solani up to the maximum tested concentration of 1000 μ L/L (Table 3).

Among the three fungi studied, it was found that their sensitivity to EOs differed, with F. solani being the most resistant to the action of most of the EOs tested, requiring high concentrations for C. martinii, C. citratus, M. spicata, and M. piperita to inhibit its development, however as mentioned O. vulgarae and S. aromaticum, respectively, were effective in controlling on lower concentrations than the maximum (Table 3). This high resistance of F. solani to the antimicrobial action of those EOs can be attributed to a combination of factors such as cell wall thickness, adaptive capacity, and genetic variability. The fungus F. solani, when in stressful situations, such as when subjected to antimicrobial agents, can increase the synthesis of chitin, a component of the cell wall, and thus acquire greater protection against external agents [32]. Furthermore, the genetic variability of this fungus may result in some strains being more resistant than others with different levels of resistance to EOs (Zabka & Pavela [33]).

Our results demonstrated that the EO of *O. vulgare* has high inhibitory activity against *L. theobromae*, corroborating the literature that highlights the antifungal potential of bioactive compounds present in this oil ([20]; Vilela et al. [21]). Similarly, Motelica et al. [34] demonstrated the efficacy of zinc oxide nanoparticles loaded with EOs against several pathogens,

TABLE 2 | Percentages of growth inhibition of the fungus Alternaria alternata in direct contact with different essential oils at different concentrations.

Concentration (µL/L)	Syzygium aromaticum	Origanum vulgare	Cymbopogon martinii	Cymbopogon citratus	Mentha spicata	Mentha piperita
0	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
62.5	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
125	0 ± 0.00	0 ± 0.00	10.37 ± 3.25	19.65 ± 0.99	0 ± 0.00	0 ± 0.00
250	22.61 ± 1.55	100 ± 0.00	36.62 ± 7.10	23.83 ± 3.46	18.97 ± 0.63	4.70 ± 7.33
500	85.65 ± 13.17	100 ± 0.00	100 ± 0.00	48.95 ± 7.24	20.32 ± 0.26	37.87 ± 9.76
750	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	20.53 ± 0.32	50.26 ± 9.66
1000	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	44.49 ± 9.78	83.42 ± 6.89
MIC	500 <mic<750< td=""><td>125 <mic< 250<="" td=""><td>250 <mic< 500<="" td=""><td>500<mic<750< td=""><td>MIC > 1000</td><td>MIC > 1000</td></mic<750<></td></mic<></td></mic<></td></mic<750<>	125 <mic< 250<="" td=""><td>250 <mic< 500<="" td=""><td>500<mic<750< td=""><td>MIC > 1000</td><td>MIC > 1000</td></mic<750<></td></mic<></td></mic<>	250 <mic< 500<="" td=""><td>500<mic<750< td=""><td>MIC > 1000</td><td>MIC > 1000</td></mic<750<></td></mic<>	500 <mic<750< td=""><td>MIC > 1000</td><td>MIC > 1000</td></mic<750<>	MIC > 1000	MIC > 1000

TABLE 3 Percentages of growth inhibition of the fungus *Fusarium solani* in direct contact with different essential oils at different concentrations.

Concentration (μL/L)	Syzygium aromaticum	Origanum vulgare	Cymbopogon martinii	Cymbopogon citratus	Mentha spicata	Mentha piperita
0	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
62.5	16.70 ± 3.68	13.52 ± 3.26	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
125	20.36 ± 3.41	24.80 ± 0.77	0 ± 0.00	0 ± 0.00	0 ± 0.00	16.44 ± 0.44
250	39.87 ± 2.64	88.27 ± 1.15	0 ± 0.00	0 ± 0.00	0 ± 0.00	20.93 ± 1.86
500	83.92 ± 8.29	100 ± 0.00	0 ± 0.00	0 ± 0.00	14.44 ± 5.28	27.26 ± 5.26
750	100 ± 0.00	100 ± 0.00	13.16 ± 0.34	0 ± 0.00	29.09 ± 3.82	58.73 ± 1.22
1000	100 ± 0.00	100 ± 0.00	27.57 ± 4.34	14.01 ± 3.17	47.56 ± 7.40	86.93 ± 1.75
MIC	500 <mic<750< td=""><td>250 <mic< 500<="" td=""><td>MIC > 1000</td><td>MIC > 1000</td><td>MIC > 1000</td><td>MIC > 1000</td></mic<></td></mic<750<>	250 <mic< 500<="" td=""><td>MIC > 1000</td><td>MIC > 1000</td><td>MIC > 1000</td><td>MIC > 1000</td></mic<>	MIC > 1000	MIC > 1000	MIC > 1000	MIC > 1000

highlighting the importance of exploring different formulations to optimize post-harvest disease control. Additionally, the use of nanocomposites based on chitosan, ZnO and Ag nanoparticles, and citronella EO, as demonstrated by Motelica et al. [35], presents a promising alternative for fruit coating, aiming at controlling pathogens and increasing the shelf life of products. These innovative approaches, which combine different control strategies, may be particularly useful in mitigating the development of resistance by fungi and reducing dependence on synthetic fungicides. The search for effective and sustainable alternatives is crucial to ensure food security and reduce environmental impacts associated with post-harvest disease control.

2.2.2 | Exposure to Volatiles Method

An important property of EOs is their antifungal activity in the vapor phase, which allows their application in fresh stored products that are sensitive to direct contact preservation treatments. In addition to being less impactful on the integrity of the product, this method can minimize the negative effects of EOs on the sensory properties of the fruits, such as changes in odor and flavor [36]. Tables 4–6 show the percentage inhibition of mycelial growth of *L. theobromae*, *A. alternata*, and *F. solani* and the minimum inhibitory concentration (MIC) of EOs in the vapor phase.

According to Table 4, the most potent antifungal activity against L. theobromae was exhibited by O. vulgare with MIC values ranging between 40 and 100 μ L/L of air. Following closely, C. martinii and C. citratus EOs proved to be the second most effective, completely inhibiting fungal growth at concentrations between 100 and 200 μ L/L. S. aromaticum showed a MIC ranging from 200 to 400 μ L/L. In contrast, M. spicata and M. piperita EOs demonstrated less significant antifungal activity, with complete inhibition observed only at concentrations exceeding 1000 and 800 μ L/L of air, respectively (Table 4).

For A. alternata (Table 5), the EOs of O. vulgare and S. aromaticum showed higher antifungal activity, with total inhibition of mycelial growth between concentrations of 40 and 100 $\mu L/L$. The other EOs also showed good antifungal activity, being able to completely inhibit the mycelial growth of the fungus at low concentrations: between 100 and 200 $\mu L/L$ of air for C. martinii and C. citratus, 200 and 400 $\mu L/L$ of air for M. spicata, and between 400 and 600 $\mu L/L$ of air for M. piperita.

Again, the EOs of *S. aromaticum* and *O. vulgare* exhibited the highest antifungal activity against *F. solani* (Table 6), completely inhibiting its mycelial growth at concentrations of 200-400 $\mu L/L$ and 100-200 $\mu L/L$ of air, respectively. The other EOs tested did not achieve complete inhibition in the concentration range tested (Table 6). Just like in the direct contact test (Table 3), the fungus

TABLE 4 | Percentages of growth inhibition of the fungus *Lasiodiplodia theobromae* exposed to volatiles of different essential oils at different concentrations.

Concentration (µL/L of air)	Syzygium aromaticum	Origanum vulgare	Cymbopogon martinii	Cymbopogon citratus	Mentha spicata	Mentha piperita
0	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	$0 \pm 0,\!00$
20	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	$0 \pm 0,00$
40	0 ± 0.00	59.64 ± 4.82	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
100	1.00 ± 1.73	100 ± 0.00	35.87 ± 30.5	31.12 ± 24.74	0 ± 0.00	0 ± 0.00
200	33.86 ± 29.03	100 ± 0.00	100 ± 0.00	100 ± 0.00	0 ± 0.00	0 ± 0.00
400	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	0 ± 0.00	3.35 ± 3.05
600	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	41.23 ± 4.25	$78,93 \pm 2.43$
800	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	77.83 ± 1.81	95.90 ± 7.09
1000	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	82.70 ± 2.45	100 ± 0.00
MIC	200 <mic<400< td=""><td>40<mic<100< td=""><td>100<mic<200< td=""><td>100<mic<200< td=""><td>1000<mic< td=""><td>800<mic<1000< td=""></mic<1000<></td></mic<></td></mic<200<></td></mic<200<></td></mic<100<></td></mic<400<>	40 <mic<100< td=""><td>100<mic<200< td=""><td>100<mic<200< td=""><td>1000<mic< td=""><td>800<mic<1000< td=""></mic<1000<></td></mic<></td></mic<200<></td></mic<200<></td></mic<100<>	100 <mic<200< td=""><td>100<mic<200< td=""><td>1000<mic< td=""><td>800<mic<1000< td=""></mic<1000<></td></mic<></td></mic<200<></td></mic<200<>	100 <mic<200< td=""><td>1000<mic< td=""><td>800<mic<1000< td=""></mic<1000<></td></mic<></td></mic<200<>	1000 <mic< td=""><td>800<mic<1000< td=""></mic<1000<></td></mic<>	800 <mic<1000< td=""></mic<1000<>

TABLE 5 | Percentages of growth inhibition of the fungus Alternaria alternata exposed to volatiles of different essential oils at different concentrations.

Concentration (µL/L of air)	Syzygium aromaticum	Origanum vulgare	Cymbopogon martinii	Cymbopogon citratus	Mentha spicata	Mentha piperita
0	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
20	12.41 ± 1.47	0 ± 0.00	23.63 ± 3.07	16.86 ± 9.64	38.49 ± 0.93	49.61 ± 5.06
40	96.11 ± 3.38	39.9 ± 4.29	41.60 ± 3.55	36.26 ± 7.02	48.19 ± 0.45	52.70 ± 1.60
100	100 ± 0.00	100 ± 0.00	82.63 ± 16.34	65.64 ± 8.41	57.63 ± 0.46	62.55 ± 2.65
200	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	70.67 ± 0.67	86.29 ± 0.61
400	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	85.93 ± 24.38
600	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00
800	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00
1000	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00	100 ± 0.00
MIC	40 <mic<100< td=""><td>40<mic<100< td=""><td>100<mic<200< td=""><td>100<mic<200< td=""><td>200<mic<400< td=""><td>400<mic<600< td=""></mic<600<></td></mic<400<></td></mic<200<></td></mic<200<></td></mic<100<></td></mic<100<>	40 <mic<100< td=""><td>100<mic<200< td=""><td>100<mic<200< td=""><td>200<mic<400< td=""><td>400<mic<600< td=""></mic<600<></td></mic<400<></td></mic<200<></td></mic<200<></td></mic<100<>	100 <mic<200< td=""><td>100<mic<200< td=""><td>200<mic<400< td=""><td>400<mic<600< td=""></mic<600<></td></mic<400<></td></mic<200<></td></mic<200<>	100 <mic<200< td=""><td>200<mic<400< td=""><td>400<mic<600< td=""></mic<600<></td></mic<400<></td></mic<200<>	200 <mic<400< td=""><td>400<mic<600< td=""></mic<600<></td></mic<400<>	400 <mic<600< td=""></mic<600<>

TABLE 6 | Percentages of growth inhibition of the fungus Fusarium solani exposed to volatiles of different essential oils at different concentrations.

Concentration (µL/L of air)	Syzygium aromaticum	Origanum vulgare	Cymbopogon martinii	Cymbopogon citratus	Mentha spicata	Mentha piperita
0	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00	0 ± 0.00
20	19.17 ± 1.20	25.74 ± 2.53	17.28 ± 0.28	13.28 ± 0.92	18.55 ± 1.44	10.15 ± 3.16
40	20.94 ± 0.51	47.97 ± 10.00	19.05 ± 2.31	17.39 ± 2.42	21.9 ± 1.91	13.15 ± 2.99
100	58.10 ± 8.35	86.21 ± 2.83	19.12 ± 5.05	18.5 ± 0.88	26 ± 3.02	27.37 ± 1.29
200	84.50 ± 1.38	100 ± 0.00	29.26 ± 1.61	21.61 ± 3.66	32 ± 4.52	45.67 ± 5.10
400	100 ± 0.00	100 ± 0.00	43.46 ± 3.22	25.67 ± 5.27	55.76 ± 5.42	48.74 ± 7.67
600	100 ± 0.00	100 ± 0.00	47.50 ± 2.11	29.71 ± 1.03	77.85 ± 2.11	61.41 ± 12.61
800	100 ± 0.00	100 ± 0.00	53.47 ± 5.62	33.67 ± 2.22	83.05 ± 1.09	77.63 ± 2.82
1000	100 ± 0.00	100 ± 0.00	52.93 ± 11.53	34.03 ± 2.09	71.06 ± 23.55	83.75 ± 2.51
MIC	200 <mic<400< td=""><td>100<mic<200< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<></td></mic<></td></mic<200<></td></mic<400<>	100 <mic<200< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<></td></mic<></td></mic<200<>	1000 <mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<></td></mic<>	1000 <mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<>	1000 <mic< td=""><td>1000<mic< td=""></mic<></td></mic<>	1000 <mic< td=""></mic<>

TABLE 7 | Comparison between minimal inhibitory concentrations found by direct contact and exposure to volatiles for each combination oil/fungus.

	Lasiodiplodia theobromae		Alternario	alternata	Fusarium solani	
Essential oil	Volatiles exposure	Direct contact	Volatiles exposure	Direct contact	Volatiles exposure	Direct contact
Syzygium aromaticum	200 <mic<400< td=""><td>1000<mic< td=""><td>40<mic<100< td=""><td>500<mic<750< td=""><td>200<mic<400< td=""><td>500<mic<750< td=""></mic<750<></td></mic<400<></td></mic<750<></td></mic<100<></td></mic<></td></mic<400<>	1000 <mic< td=""><td>40<mic<100< td=""><td>500<mic<750< td=""><td>200<mic<400< td=""><td>500<mic<750< td=""></mic<750<></td></mic<400<></td></mic<750<></td></mic<100<></td></mic<>	40 <mic<100< td=""><td>500<mic<750< td=""><td>200<mic<400< td=""><td>500<mic<750< td=""></mic<750<></td></mic<400<></td></mic<750<></td></mic<100<>	500 <mic<750< td=""><td>200<mic<400< td=""><td>500<mic<750< td=""></mic<750<></td></mic<400<></td></mic<750<>	200 <mic<400< td=""><td>500<mic<750< td=""></mic<750<></td></mic<400<>	500 <mic<750< td=""></mic<750<>
Origanum vulgare	40 <mic<100< td=""><td>250<mic<500< td=""><td>40<mic<100< td=""><td>125<mic<250< td=""><td>100<mic<200< td=""><td>250<mic<500< td=""></mic<500<></td></mic<200<></td></mic<250<></td></mic<100<></td></mic<500<></td></mic<100<>	250 <mic<500< td=""><td>40<mic<100< td=""><td>125<mic<250< td=""><td>100<mic<200< td=""><td>250<mic<500< td=""></mic<500<></td></mic<200<></td></mic<250<></td></mic<100<></td></mic<500<>	40 <mic<100< td=""><td>125<mic<250< td=""><td>100<mic<200< td=""><td>250<mic<500< td=""></mic<500<></td></mic<200<></td></mic<250<></td></mic<100<>	125 <mic<250< td=""><td>100<mic<200< td=""><td>250<mic<500< td=""></mic<500<></td></mic<200<></td></mic<250<>	100 <mic<200< td=""><td>250<mic<500< td=""></mic<500<></td></mic<200<>	250 <mic<500< td=""></mic<500<>
Cymbopogon martinii	100 <mic<200< td=""><td>750<mic<100< td=""><td>150<mic<200< td=""><td>250<mic<500< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<500<></td></mic<200<></td></mic<100<></td></mic<200<>	750 <mic<100< td=""><td>150<mic<200< td=""><td>250<mic<500< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<500<></td></mic<200<></td></mic<100<>	150 <mic<200< td=""><td>250<mic<500< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<500<></td></mic<200<>	250 <mic<500< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<500<>	1000 <mic< td=""><td>1000<mic< td=""></mic<></td></mic<>	1000 <mic< td=""></mic<>
Cymbopogon citratus	100 <mic<200< td=""><td>250<mic<500< td=""><td>150<mic<200< td=""><td>500<mic<750< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<750<></td></mic<200<></td></mic<500<></td></mic<200<>	250 <mic<500< td=""><td>150<mic<200< td=""><td>500<mic<750< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<750<></td></mic<200<></td></mic<500<>	150 <mic<200< td=""><td>500<mic<750< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<750<></td></mic<200<>	500 <mic<750< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<750<>	1000 <mic< td=""><td>1000<mic< td=""></mic<></td></mic<>	1000 <mic< td=""></mic<>
Mentha spicata	1000 <mic< td=""><td>750<mic<100< td=""><td>200<mic<400< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<></td></mic<400<></td></mic<100<></td></mic<>	750 <mic<100< td=""><td>200<mic<400< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<></td></mic<400<></td></mic<100<>	200 <mic<400< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<></td></mic<400<>	1000 <mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<>	1000 <mic< td=""><td>1000<mic< td=""></mic<></td></mic<>	1000 <mic< td=""></mic<>
Mentha piperita	800 <mic<1000< td=""><td>750<mic<100< td=""><td>400<mic<600< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<></td></mic<600<></td></mic<100<></td></mic<1000<>	750 <mic<100< td=""><td>400<mic<600< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<></td></mic<600<></td></mic<100<>	400 <mic<600< td=""><td>1000<mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<></td></mic<600<>	1000 <mic< td=""><td>1000<mic< td=""><td>1000<mic< td=""></mic<></td></mic<></td></mic<>	1000 <mic< td=""><td>1000<mic< td=""></mic<></td></mic<>	1000 <mic< td=""></mic<>

F. solani was the least sensitive to the action of EOs by the method of exposure to volatiles.

2.2.3 | Comparison between both Methods

Overall, the EO of *O. vulgare* was the most efficient in inhibiting the growth of the studied tropical fungi (*L. theobromae, A. alternata*, and *F. solani*) by both direct contact and exposure to volatiles methods (Table 7). The strong antifungal activity of *O. vulgare* EO has been reported by other authors and seems to be mainly related to the presence of Carvacrol in its composition [7, 37]. These results support the hypothesis about the antifungal activity of Carvacrol, suggesting that it creates a stressful environment that can cause structural damage, damaging proteins, altering morphology and even leading to apoptosis [38].

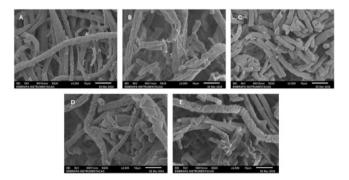
The *S. aromaticum* EO has also shown great results, especially by the exposure to volatiles method, in which the MICs obtained were between 40 and 100 μ L/L of air for *A. alternata* and between 200 and 400 μ L/L of air for both *L. theobromae* and *F. solani*. The major compound in the EO of *S. aromaticum* is eugenol, which appears to inhibit the plasma membrane H+ ATPase, causing increased cell permeability. It also causes an increase in lipid peroxidation levels and reactive oxygen species (ROS) formation, leading to oxidative stress and cell death [39].

Studies involving *C. citratus* and its main components, such as citral, have demonstrated effectiveness in combating post-harvest spoilage microorganisms. The antimicrobial action is through the inhibition of the biosynthesis of ergosterol, a crucial component of the fungal cell membrane, thus affecting the cellular integrity of these microorganisms ([40]; OuYang et al. [41]).

The volatile exposure method showed better efficiency compared to the direct contact method. The method by exposure to volatiles may have been more effective than the direct contact method due to the volatiles dispersing and reaching a larger area and meeting a greater quantity of mycelia, in addition to persisting in the air inside the plate for a longer period. The direct contact method also has the disadvantage of needing to use solvents or emulsifiers for better availability and diffusion of the individual active compounds in the culture medium which can affect the inhibition results [42].

In other studies, such as that by Oliveira and collaborators (2019) [43], the direct contact method against *Colletotrichum acutatum* achieved better control. Therefore, it is important to highlight that the antimicrobial potential depends on the sensitivity of each species, the structural and morphological characteristics of each microorganism, and the composition and proportion of each individual compound in EOs [44].

2.2.4 | Scanning Electron Microscopy


The results obtained in the tests confirm the compounds present in EOs have great application potential. To better understand the inhibitory effects and their possible applications, it is necessary to investigate these compounds' mechanisms of action and the susceptibility of fungi to the possible mechanisms. The most widespread antimicrobial mechanism of EOs is the ability of compounds to penetrate the cell, causing damage to its wall and cytoplasmic membrane, oxidative damage, and ultimately cell lysis ([1]).

To observe differences in the effects of EOs on cellular structure, the fungus *L. theobromae* was tested with two EOs with different major compounds: *S. aromaticum* (eugenol—alcohol) and *C. citratus* (geranial—aldehyde) and visualized by scanning electron microscopy at MIC concentrations and in higher concentrations (Figures 2 and 3).

The two most effective EOs against *L. theobromae* were *O. vulgare* (alcohol) and *C. citratus* (aldehyde and ketone). However, *S. aromaticum* and *C. citratus* EOs were chosen for the images as *S. aromaticum* EO (alcohol) was the second one for fungi control and has been reported to be effective for inhibiting *L. theobromae* (Vilela et al. [21]; [5]). Additionally, clove EO has been pointed as an alternative sanitizer for fruit packing-house (Soraggi et al.2021 [45]). The images of EO action are at the MIC value to identify the effects of the lowest concentration of EO necessary to inhibit fungal growth and at concentrations above the MIC to intensify the visible effects and also observe whether there is a relationship between dose and susceptibility of the fungus or if the compounds are only effective in high concentrations (García-Salinas et al. [46]).

FIGURE 2 | Scanning electron microscopy (SEM) of Lasiodiplodia theobromae hyphae in contact with clove (Syzygium aromaticum) essential oil. (A) control (B) in direct contact with an oil concentration of 1250 μ L/L (C) in direct contact with an oil concentration of 1750 μ L/L (D) by volatiles in an oil concentration of 400 μ L/L air (E) by volatiles at an oil concentration of 1000 μ L/L air.

FIGURE 3 | Scanning electron microscopy (SEM) of *Lasiodiplodia theobromae* hyphae in contact with lemongrass (*Cymbopogon citratus*) essential oil. (A) control (B) in direct contact with an oil concentration of 400 μ L/L (C) in direct contact with an oil concentration of 1000 μ L/L (D) by volatiles in an oil concentration of 400 μ L/L air (E) by volatiles at an oil concentration of 1000 μ L/L air.

It is possible to observe damage caused to cell walls in all samples treated with *S. aromaticum* EO (Figure 2). The cell surfaces have a much more irregular texture and size (Figure 2B,D) and some signs of wall disruption (Figure 2C) when compared to the untreated control (Figure 2A). Some of the treated cells also have a completely shriveled appearance (Figure 2D), possibly due to cell lysis and extravasation of cytoplasmic material, confirming the previously mentioned mechanism. The growing pattern also seems to have been affected by the EOs: control cells have a more uniform pattern of growth, with elongated and intact hyphae, while treated cells have a more segmented appearance and agglomerated growth (Figure 2E) and with more unidentified material adhered to the cell surface (Figure 2B,D), similarly to results found by Stringaro et al. [38].

It is also possible to notice this when compared to the untreated control (Figure 3A). The cell surfaces have a modified texture with some debris (Figure 3B,D,E). The cells also appear shorter and with clustered growth (Figure 3C,E). Lemongrass EO damages the cell membranes of fungi, so the mycelia are fragmented into smaller parts due to damage to structural integrity ([47]; Mukarram et al. 2021 [48]). Figure 4 below shows a schematic of

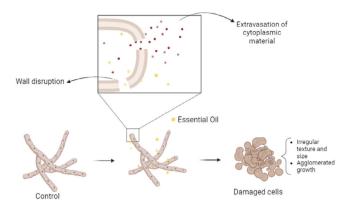


FIGURE 4 | Schematic of the action of essential oils on the fungitested.

the effects observed on the treated cells compared to the untreated control.

All tested EOs showed potential application: the oregano (*O. vulgare*) EO proved to be the most efficient, being the only one that achieved 100% inhibition for all fungi tested, both by direct contact and exposure to volatiles methods. The *S. aromaticum* EO had the second-best activity, not being able to completely inhibit fungal growth only against *L. theobromae* by direct contact method while *A. alternata* and *F. solani* were both completely inhibited within the tested range by both methods. Despite being quite efficient, these oils have an intense aroma, especially *O. vulgare*, which can be unfavorable for application and must be taken into consideration as it may have an effect on the acceptance of the treated products by the final consumer [49].

The *C. citratus* EO presented excellent results against *L. theobromae* and *A. alternata* by both methods but did not reach complete inhibition against *F. solani*. Also, *C. martinii* had excellent results against *A. alternata* by both methods and against *L. theobromae* by the volatile exposure method. When it comes to sensorial perception, *C. citratus* and *C. martinii* EOs may be less disturbing than the *O. vulgare* EO, with softer aromas, bringing a certain freshness.

The *M. spicata* and *M. piperita* were the less effective ones, showing good activity against *A. alternata* by volatile exposure, but were not as efficient by direct contact method. For *L. theobromae*, the complete inhibition happened only at higher concentrations and *F. solani* was the least affected.

3 | Conclusions

The results of this study demonstrated that the EOs tested have strong antifungal potential against L. theobromae, A. alternata, and F. solani, with exposure to volatiles proving to be more effective than direct contact, requiring lower concentrations for total inhibition of the fungi. The EO of O. vulgare stood out as the most efficient, with MIC ranging from 40 to $200 \, \mu L/L$ in exposure to volatiles and between 125 and $500 \, \mu L/L$ in direct contact, while S. aromaticum also exhibited high activity, especially against A. alternata and F. solani. Electron microscopy analyses revealed severe structural changes in the treated fungal cells, suggesting

mechanisms of action associated with cell wall degradation and plasma membrane destabilization.

In addition to confirming the effectiveness of EOs, this study provides concrete information for the practical application of these substances in the post-harvest conservation of tropical fruits, contributing to the development of natural alternatives to the use of synthetic fungicides. In the industrial context, the use of controlled release systems in modified atmosphere packaging (MAP) may be a promising approach, allowing volatile compounds to be released gradually, ensuring prolonged protection against fungi and reducing sensory impacts on fruits. Another possibility is the incorporation of EOs into edible coatings applied directly to the surface of the fruits, creating a physical and chemical barrier that hinders fungal growth.

Future studies should investigate the stability of volatile compounds during storage, as well as the interaction of these treatments with the sensory characteristics of the fruits, ensuring the viability of industrial use. Thus, this work not only reinforces the potential of EOs in controlling post-harvest fungi, but also paves the way for their practical application, promoting more sustainable and safe solutions for the conservation of tropical fruits.

4 | Experimental

4.1 | Materials

Essential oil of *S. aromaticum* (clove), *O. vulgare L.* (oregano), *C. martinii* (palmarosa), *M. piperita* (peppermint) was obtained from Harmonie Aromaterapia (Florianopolis, SC, Brazil); *M. spicata* (green mint) EO was acquired from Terraflor Aromaterapia (Alto Paraiso de Goias, GO, Brazil); and *C. citratus* (lemongrass) EO was acquired from Mundo dos Óleos (Brasilia, DF, Brazil). The potatodextrose agar (PDA) medium was obtained from KASVI (Madrid, Spain) and Tween 80 from Synth (Diadema, SP, Brazil). The fungal strains tested were *L. theobromae* CMF 0657, *A. alternata* DSMZ 12633 CCT 7152, *F. solani* IMI 314228 CCT 2876.

4.2 | EO Composition

The EOs of Clove (S. aromaticum), Oregano (O. vulgare), Palmarosa (C. martini), Lemongrass (C. citratus), Green mint (M. spicata) and peppermint (M. piperita) were initially diluted in dichloromethane (1:10) and stored in 1.5 mL vials at -28°C. For analysis, 1 µL of the diluted samples (10% v/v) was injected into a Shimadzu GC-MS model GCMS-QP2010 Plus, equipped with an HP-5MS fused silica capillary column (30 m \times 0.25 mm i.d. \times 0.25 µm), under the following chromatographic conditions: injector at 250°C operating in split mode 1:20 by 1.0 min; helium carrier gas at 1.0 mL min⁻¹ oven temperature ramp: 60°C (1 min), increasing 3°C min⁻¹ up to 240°C; interface temperature: 240°C, ionization source electrons +70 eV, scanning mode between 35 and 350 m/z. A solution of n-alkanes (C8-C20) was injected into the GC-MS under the same conditions as the sample to obtain the programmed temperature retention indices (LTPRI-linear temperature programmed retention index) of volatile compounds. The identification of the analytes was carried out by comparing the LTPRI and the mass obtained for the sample with mass spectra and LTPRI from the literature (NIST, 2011 [50]), with similarity of at least 85% for mass spectra, and maximum variation in LTPRI of \pm 10.

4.3 | Antifungal Activity by the Direct Contact

PDA culture medium was prepared according to the manufacturer's instructions (KASVI, Madrid, Spain) at a concentration of 39 g/L of distilled water. For the direct contact method, the culture media is added with a Tween 80 emulsifier (0.05% v/v) for better incorporation of EOs into the culture medium. After sterilization and sufficient cooling, different volumes of EOs are added to obtain final concentrations equal to 0, 62.5, 125, 250, 500, 750, and 1000 µL/L of PDA, performed in triplicate. The whole manipulation of the plagues was done in a sterilized environment. The fungal inoculation was done by transferring 10 mm diameter plugs containing the fungus of interest from an actively growing colony to the center of each plate with 20 mL of the culture medium containing the EOs at the concentrations mentioned above. The incubation temperature was 28°C until the control plaques reached 100% of growth, monitored every 24 h.

The evaluation of the antifungal activity of EOs was carried out by measuring the inhibition of the growth of the fungi of interest in different concentrations of oil and comparing them to controls without oil, containing only Tween 80 (0.05% v/v). After the incubation, the diameter of the colonies was measured using a digital caliper in two perpendicular directions. The inhibition of fungal growth in different concentrations of EOs was calculated by Equation (1):

$$PI(\%) = [(CONTROL_{growth} - TREATED_{growth})/CONTROL_{growth}]$$

$$\times 100$$
(1)

4.4 | Antifungal Activity by Exposure to Volatiles

The PDA culture medium was prepared at a concentration of 39 g/L of distilled water. This was then followed by sterilization using moist heat in an autoclave. After sufficient cooling, 20 mL of sterile PDA medium was transferred to each plate in a sterilized environment.

The fungal inoculation was done by transferring 10 mm diameter plugs containing the fungus of interest from an actively growing colony to the center of each plate with 20 mL of sterile culture medium and 50 mL of air. After inoculation, different volumes of EOs were applied to a sterile disc of filter paper (r = 10 mm) fixed in the center of the inner part of the Petri dish lid. The resulting concentrations tested were 0, 20, 40, 100, 200, 400, 600, 800, and 1000 $\mu L/L$ of air. The plates were then sealed with parafilm and kept at 28°C until the Control colonies occupied the entire area of the plate (100% growth), monitored every 24 h. After the incubation, the average diameter of the colonies was calculated, using a digital caliper in two perpendicular directions. The inhibition of fungal growth in different concentrations of EOs was also calculated by Equation (1).

4.5 | Scanning Electron Microscope

The morphological changes of fungi structure caused by the antimicrobial activity of EOs and their volatiles were analyzed by scanning electron microscopy (SEM JEOL JSM-6701F; Tokyo, Japan) to visualize the caused damage at a microscopic level. For this process, the sample preparation was based on Yu et al. [51], with necessary modifications.

Petri plaques containing PDA medium were inoculated with 10 mm diameter PDA discs containing the fungus of interest cut from an active colony and then incubated at 28°C for 4 days. After this period, the colonies were exposed to equivalent concentrations to the previously achieved MIC for each fungus/oil combination for both methods. For the Direct Contact experiment, different volumes of an EO:DMSO (1:1) solution were added directly on top of the hyphae, for the Volatiles Exposure, the EOs were added to a filter paper disc on the plaque lid, as used in the previous assays. The protocol was run in triplicate and the control group consisted of samples without oil addition.

After more 24-h incubation, a PDA disc (10 mm diameter) containing the cells was cut and left in glutaraldehyde (3%, v/v) overnight, and then immersed in phosphate buffer (0.05 M, pH 6.8). The samples were then dehydrated in a graded series of acetone solution (30%, 50%, 70%, and 90%; v/v), and later dried in liquid carbon dioxide at the critical point. After that, the dried disks of samples were coated with gold.

Author Contributions

Ygor G. P. Osti: conceptualization, data curation, investigation, and writing – original draft. Larissa G. R. Duarte: conceptualization, methodology, supervision, visualization, and writing – review and editing. Conny W. T. Fukuyama: investigation and formal analysis. Isadora C. Pedrino: investigation and formal analysis. Higor V. Santos: investigation and formal analysis. Josemar G. de Oliveira Filho: conceptualization, methodology, supervision, visualization, and writing – review and editing. Maria Eduarda de A. Astolfo: investigation and formal analysis. Maria Eduarda Martins: formal analysis. Stanislau Bogusz Junior: methodology and supervision. Marcos D. Ferreira: conceptualization, funding acquisition, methodology, project administration, resources, supervision, and writing – review and editing.

Acknowledgments

This research was funded by FAPESP (# 2022/10686-6), CNPq (# 383138/2023-0, 138584/2023-0), CAPES (# 001), Empresa Brasileira de Pesquisa Agropecuária (# 20.19.03.0124.00.00)—Embrapa, Rede Agronano, CNPq/MCTI Sisnano (# 442575/2019-0), and M. D. Ferreira CNPq Research Productivity fellowship (# 307141/2022-5).

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

- 1. F. Almeida, M. L. Rodrigues, and C. Coelho, "The Still Underestimated Problem of Fungal Diseases Worldwide," *Frontiers in Microbiology* 10 (2019): 426683, https://doi.org/10.3389/fmicb.2019.00214.
- 2. Y. Chen, M. Xing, T. Chen, S. Tian, and B. Li, "Effects and Mechanisms of Plant Bioactive Compounds in Preventing Fungal Spoilage and Mycotoxin Contamination in Postharvest Fruits: A Review," *Food Chemistry* 415 (2023): 135787, https://doi.org/10.1016/j.foodchem.2023.135787.
- 3. F. K. Sandra, Y. S. Nurhasanah, K. Mutaqin, S. Wiyono, and E. T. Tondok, "Keragaman Morfologi dan Molekuler *Lasiodiplodia theobromae* Dari Tanaman Jeruk, Kakao, Karet, Manggis, dan Pisang," *Jurnal Fitopatologi Indonesia* 17, no. 2 (2021): 58–66, https://doi.org/10.14692/jfi.17.2.58-66
- 4. C. Rusin, F. R. Cavalcanti, P. C. G. de Lima, C. M. D. R. Faria, M. A. K. Almança, and R. V. Botelho, "Control of the Fungi *Lasiodiplodia theobromae*, the Causal Agent of Dieback, in Cv. syrah Grapevines," *Acta Scientiarum Agronomy* 43 (2020): e44785, https://doi.org/10.4025/actasciagron.y43i1.44785.
- 5. Y. Sun, L. Shuai, D. Luo, and L. Ba, "The Inhibitory Mechanism of Eugenol on *Lasiodiplodia theobromae* and Its Induced Disease Resistance of Passion Fruit," *Agronomy* 13, no. 5 (2023): 1408, https://doi.org/10.3390/agronomy13051408.
- 6. F. Qiu, X. H. Tan, C. P. Xie, et al., "First Report of *Lasiodiplodia theobromae* Causing Branch Blight on Avocado in China," *Plant Disease* 104, no. 10 (2020): 2728–2728, https://doi.org/10.1094/PDIS-03-20-0451-PDN
- 7. H. Li, J. Ding, C. Liu, et al., "Carvacrol Treatment Reduces Decay and Maintains the Postharvest Quality of Red Grape Fruits (*Vitis vinifera* L.) Inoculated With Alternaria Alternata," *Foods* 12 (2023): 4305, https://doi.org/10.3390/foods1223430.
- 8. J. C. Castro, E. H. Endo, M. R. de Souza, et al., "Bioactivity of Essential Oils in the Control of *Alternaria alternata* in Dragon Fruit (*Hylocereus undatus* Haw.)," *Industrial Crops and Products* 97 (2017): 101–109, https://doi.org/10.1016/j.indcrop.2016.12.007.
- 9. L. Li, H. Pan, W. Liu, M. Y. Chen, and C. H. Zhong, "First Report of *Alternaria alternata* Causing Postharvest Rot of Kiwifruit in China," *Plant Disease* 101 (2017): 1046, https://doi.org/10.1094/PDIS-11-16-1611-PDN.
- 10. D. Prusky, I. Kobiler, M. Akerman, and I. Miyara, "Effect of Acidic Solutions and Acidic Prochloraz on the Control of Postharvest Decay Caused by *Alternaria alternata* in Mango and Persimmon Fruit," *Postharvest Biology and Technology* 42 (2006): 134–141, https://doi.org/10.1016/j.postharvbio.2006.06.001.
- 11. L. Zakaria, "Fusarium Species Associated with Diseases of Major Tropical Fruit Crops," *Horticulturae* 9, no. 3 (2023): 322, https://doi.org/10.3390/horticulturae9030322.
- 12. E. García-Ramírez, A. Contreras-Oliva, J. Salinas-Ruiz, G. Hernández-Ramírez, and J. L. Spinoso-Castillo, "Plant Extracts Control In Vitro Growth of Disease-Causing Fungi in Chayote," *Plants* 12 (2023): 1800, https://doi.org/10.3390/plants12091800.
- 13. N. Carreras-Villaseñor, J. B. Rodríguez-Haas, L. A. Martínez-Rodríguez, et al., "Characterization of Two *Fusarium solani* Species Complex Isolates From the Ambrosia Beetle Xylosandrus Morigerus," *Journal of Fungi* 8 (2022): 231, https://doi.org/10.3390/jof8030231.
- 14. C. A. Brühl, M. A. Andres, S. Echeverría-Sáenz, et al., "Pesticide Use in Banana Plantations in Costa Rica—A Review of Environmental and Human Exposure, Effects and Potential Risks," *Environment International* 174 (2023): 107877, https://doi.org/10.1016/j.envint.2023.107877.
- 15. A. Panwar, V. Kumar, A. Dhiman, et al., "Nanoemulsion Based Edible Coatings for Quality Retention of Fruits and Vegetables-decoding the Basics and Advancements in Last Decade," *Environmental Research* 240 (2024): 117450, https://doi.org/10.1016/j.envres.2023.117450.
- 16. A. Prakash, R. Baskaran, N. Paramasivam, and V. Vadivel, "Essential Oil Based Nanoemulsions to Improve the Microbial Quality of Minimally

- Processed Fruits and Vegetables: A Review," *Food Research International* 111 (2018): 509–523, https://doi.org/10.1016/j.foodres.2018.05.066.
- 17. J. G. D. Oliveira Filho, L. G. R. Duarte, Y. B. Silva, et al., "Novel Approach for Improving Papaya Fruit Storage With Carnauba Wax Nanoemulsion in Combination With Syzigium Aromaticum and Mentha Spicata Essential Oils," *Coatings* 13 (2023): 847, https://doi.org/10.3390/coatings13050847.
- 18. A. Mendonca, A. Jackson-Davis, R. Moutiq, and E. Thomas-Popo, "Chapter 14 Use of Natural Antimicrobials of Plant Origin to Improve the Microbiological Safety of Foods", in *Food and Feed Safety Systems and Analysis*, eds. S. Ricke, G. G. Atungulu, C. Rainwater, and S. H. Park (Academic Press, 2018), 249–272, https://doi.org/10.1016/B978-0-12-811835-1.00014-2.
- 19. S. Burt, "Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review," *International Journal of Food Microbiology* 94 (2004): 223–253, https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.
- 20. S. Baptista-Silva, S. Borges, O. L. Ramos, M. Pintado, and B. Sarmento, "The Progress of Essential Oils as Potential Therapeutic Agents: A Review," *Journal of Essential Oil Research* 32 (2020): 279–295, https://doi.org/10.1080/10412905.2020.1746698.
- 21. E. S. D. Vilela, D. Terao, S. C. do Nascimento de Queiroz, et al., "Essential Oils on the Control of Fungi Causing Postharvest Diseases in Mango," *Brazilian Journal of Microbiology* 55 (2024): 689–698, https://doi.org/10.1007/s42770-023-01237-2.
- 22. A. Maurya, J. Prasad, S. Das, and A. K. Dwivedy, "Essential Oils and Their Application in Food Safety," *Frontiers in Sustainable Food Systems* 5 (2021): 653420, https://doi.org/10.3389/fsufs.2021.653420.
- 23. M. Kačániová, L. Galovičová, P. Borotová, et al., "Chemical Composition, In Vitro and In Situ Antimicrobial and Antibiofilm Activities of *Syzygium aromaticum* (Clove) Essential Oil," *Plants* 10 (2021): 2185, https://doi.org/10.3390/plants10102185.
- 24. C. W. Fukuyama, L. G. Duarte, I. C. Pedrino, M. C. Mitsuyuki, S. B. Junior, and M. D. Ferreira, "Effect of Carnauba Wax Nanoemulsion Associated with *Syzygium aromaticum* and *Mentha piperita* Essential Oils as an Alternative to Extend Lychee Post-harvest Shelf Life," *Sustainable Food Technology* 2 (2024): 426–436, https://doi.org/10.1039/D3FB00251A.
- 25. J. N. Haro-González, G. A. Castillo-Herrera, M. Martínez-Velázquez, and H. Espinosa-Andrews, "Clove Essential Oil (*Syzygium aromaticum* L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health," *Molecules* 26 (2021): 6387, https://doi.org/10.3390/molecules26216387.
- 26. A. Lombrea, D. Antal, F. Ardelean, et al., "A Recent Insight Regarding the Phytochemistry and Bioactivity of *Origanum vulgare* L. Essential Oil," *International Journal of Molecular Sciences* 21 (2020): 9653, https://doi.org/10.3390/ijms21249653.
- 27. S. Dangol, D. K. Poudel, P. K. Ojha, et al., "Essential Oil Composition Analysis of Cymbopogon Species From Eastern Nepal by GC-MS and Chiral GC-MS, and Antimicrobial Activity of Some Major Compounds," *Molecules* 28 (2023): 543, https://doi.org/10.3390/molecules28020543.
- 28. I. Sawadogo, A. Paré, D. Kaboré, et al., "Antifungal and Antiaflatoxinogenic Effects of *Cymbopogon citratus, Cymbopogon nardus*, and *Cymbopogon schoenanthus* Essential Oils Alone and in Combination," *Journal of Fungi* 8, no. 2 (2022): 117, https://doi.org/10.3390/jof8020117.
- 29. J. Yan, H. Wu, K. Chen, J. Feng, and Y. Zhang, "Antifungal Activities and Mode of Action of Cymbopogon Citratus, Thymus Vulgraris, and Origanum Heracleoticum Essential Oil Vapors against *Botrytis cinerea* and Their Potential Application to Control Postharvest Strawberry Gray Mold," *Foods* 10 (2021): 2451, https://doi.org/10.3390/foods10102451.
- 30. S. Giménez-Santamarina, J. A. Llorens-Molina, F. Sempere-Ferre, C. Santamarina, J. Roselló, and M. P. Santamarina, "Chemical Composition of Essential Oils of Three Mentha Species and Their Antifungal Activity Against Selected Phytopathogenic and Post-harvest Fungi," *All Life* 15 (2022): 64–73, https://doi.org/10.1080/26895293.2021.2022007.

- 31. N. Hudz, L. Kobylinska, K. Pokajewicz, et al., "*Mentha piperita*: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products," *Molecules* 28 (2023): 7444, https://doi.org/10.3390/molecules28217444.
- 32. M. T. El Sayed and A. S. El-Sayed, "Tolerance and Mycoremediation of Silver Ions by *Fusarium solani*," *Heliyon* 6 (2020): e03866, https://doi.org/10.1016/j.heliyon.2020.e03866.
- 33. M. Zabka, R. Pavela, and R. Chapter, "Antifungal and Insecticidal Potential of the Essential Oil from Ocimum sanctum L. against Dangerous Fungal and Insect Species and Its Safety for Non-Target Useful Soil Species Eisenia fetida (Savigny, 1826)", in *Natural Antimicrobial Agents*, eds. J.-M. Mérillon, and C. Riviere, (Springer, 2018), 95–120, https://doi.org/10.3390/plants10102180.
- 34. L. Motelica, D. Ficai, V. Trusca, et al., "Innovative Antimicrobial Chitosan/ZnO/Ag NPs/Citronella Essential Oil Nanocomposite—Potential Coating for Grapes," *Foods* 9 (2023): 1801, https://doi.org/10.3390/foods9121801.
- 35. C. S. A. de Lima, T. S. Balogh, J. P. R. O. Verca, et al., "An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications," *Pharmaceutics* 12 (2020): 970, https://doi.org/10.3390/pharmaceutics12100970.
- 36. V. Glicerina, L. Siroli, E. Betoret, et al., "Characterization and Evaluation of the Influence of an Alginate, Cocoa and a Bilayer Alginate–cocoa Coating on the Quality of Fresh-Cut Oranges During Storage," *Journal of the Science of Food and Agriculture* 102 (2022): 4454–4461, https://doi.org/10.1002/jsfa.11799.
- 37. L. Zhao, J. Wang, H. Zhang, et al., "Inhibitory Effect of Carvacrol Against Alternaria alternata Causing Goji Fruit Rot by Disrupting the Integrity and Composition of Cell Wall," *Frontiers in Microbiology* 14 (2023): 1139749, https://doi.org/10.3389/fmicb.2023.1139749.
- 38. A. Stringaro, M. Colone, S. Cecchetti, E. Zeppetella, F. Spadaro, and L. Angiolella, ""In Vivo" and "In Vitro" Antimicrobial Activity of Origanum vulgare Essential Oil and Its Two Phenolic Compounds on Clinical Isolates of Candida spp.," *Archives of Microbiology* 205, no. 1 (2023): 15, https://doi.org/10.1007/s00203-022-03355-1.
- 39. M. Didehdar, Z. Chegini, and A. Shariati, "Eugenol: A Novel Therapeutic Agent for the Inhibition of Candida Species Infection," *Frontiers in Pharmacology* 13 (2022): 872127, https://doi.org/10.3389/fphar.2022.872127.
- 40. R. Garcia, E. S. Alves, M. P. Santos, et al., "Antimicrobial Activity and Potential Use of Monoterpenes as Tropical Fruits Preservatives," *Brazilian Journal of Microbiology* 39 (2008): 163–168, https://doi.org/10.1590/S1517-838220080001000032.
- 41. Q. OuYang, N. Tao, and G. Jing, "Transcriptional Profiling Analysis of *Penicillium digitatum*, the Causal Agent of Citrus Green Mold, Unravels an Inhibited Ergosterol Biosynthesis Pathway in Response to Citral," *BMC Genomics* 17 (2016): 599, https://doi.org/10.1186/s12864-016-2943-4.
- 42. S. Álvarez-García, M. Moumni, G. Romanazzi, "Antifungal Activity of Volatile Organic Compounds From Essential Oils Against the Postharvest Pathogens Botrytis cinerea, *Monilinia fructicola*, *Monilinia fructigena*, and *Monilinia laxa*," *Frontiers in Plant Science* 14 (2023): 1274770, https://doi.org/10.3389/fpls.2023.1274770.
- 43. J. Oliveira, E. M. Gloria, M. C. M. Parisi, et al., "Antifungal Activity of Essential Oils Associated With Carboxymethylcellulose Against Colletotrichum Acutatum in Strawberries," *Scientia Horticulturae* 243 (2019): 261–267, https://doi.org/10.1016/j.scienta.2018.08.032.
- 44. A. El Khetabi, R. Lahlali, S. Ezrari, et al., "Role of Plant Extracts and Essential Oils in Fighting Against Postharvest Fruit Pathogens and Extending Fruit Shelf Life: A Review," *Trends in Food Science & Technology* 120 (2022): 402–417, https://doi.org/10.1016/j.tifs.2022. 01.009.
- 45. T. Soraggi Battagin, M. Nicolas Caccalano, G. Dilarri, et al., "Syzygium Aromaticum (Clove) Essential Oil: An Alternative for the Sanitization of Citrus Fruit in Packinghouses", *Journal of Food Processing and Preservation* 45, no. 9 (2021): e15496, https://doi.org/10.1111/jfpp.15496.

- 46. S. García-Salinas, H. Elizondo-Castillo, M. Arruebo, G. Mendoza, and S. Irusta, "Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils," *Molecules* 23, no. 6 (2018): 1399, https://doi.org/10.3390/molecules23061399.
- 47. A. K. Tyagi and A. Malik, "Liquid and Vapour-phase Antifungal Activities of Selected Essential Oils Against *Candida albicans*: Microscopic Observations and Chemical Characterization of *Cymbopogon citratus*," *BMC Complementary and Alternative Medicine* 10 (2010): 65, https://doi.org/10.1186/1472-6882-10-65.
- 48. M. Mukarram, S. Choudhary, M. A. Khan, et al., "Lemongrass Essential Oil Components With Antimicrobial and Anticancer Activities," *Antioxidants* 11 (2021): 20, https://doi.org/10.3390/antiox11010020.
- 49. D. de Vasconcellos Santos Batista, R. C. Reis, J. M. Almeida, et al., "Edible Coatings in Post-harvest Papaya: Impact on Physical–chemical and Sensory Characteristics," *Journal of Food Science and Technology* 57, no. 1 (2020): 274–281, https://doi.org/10.1007/s13197-019-04057-1.
- 50. F. W. McLafferty, Wiley Registry 9th Edition/NIST 2011 Mass Spectral Library [Software] (Wiley, 2011).
- 51. D. Yu, J. Wang, X. Shao, F. Xu, and H. Wang, "Antifungal Modes of Action of Tea Tree Oil and Its Two Characteristic Components Against *Botrytis cinerea*," *Journal of Applied Microbiology* 119, no. 5 (2015), https://doi.org/10.1111/jam.12939.