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Megathyrsus maximus (Jacq.), commonly known as guinea grass, is a forage crop widely used to form pastures and feed livestock. The 
species stands out for presenting high yield and nutritional quality in the leaves and its ability to be clonally propagated by seeds. In this 
work, we construct a dense and informative genetic linkage map for M. maximus using multiple dosage markers. We sequenced DNA 
from leaf samples of 224 individuals from a biparental cross between two tetraploid genotypes, then analyzed the raw sequencing data 
to find variants and call dosage-based genotypes using four related reference genomes. With the multiple dosage genotypes for both 
parents and all individuals, we constructed a highly informative genetic linkage map using state-of-the-art methods coupled with the 
multipoint Hidden Markov Model approach. We present the densest and most informative genetic linkage map to date for the species, 
with 7,095 markers distributed across eight homology groups, spanning 1573.31 cM of the genome. Both parents and all individuals in 
the mapping population were phased according to the species’ ploidy level. There was no evidence of double-reduction or preferential 
pairing in the studied population. The linkage analysis provided in this work can help unravel the evolutionary pathway of the species, 
understand the genetic behavior of quantitative traits, assist in the assembly of reference genomes, and support the adoption of gen
omics-assisted selection strategies in M. maximus breeding programs.
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Introduction
Megathyrsus maximus (Jacq.) B.K. Simon & S.W.L. Jacobs (Syn. 
Panicum maximum Jacq., Urochloa maxima (Jacq.) R. Webster), com
monly known as guinea grass, is a forage crop widely used in cattle 
beef production due to its high yield and outstanding nutritional 
quality. The species originated in East Africa but had great adapta
tion to different tropical and sub-tropical land areas and became 
widely cultivated in many countries in South America. In the 
Brazilian market, it is among the most productive grasses propa
gated by seeds (Jank et al. 2011). The species occurs in two natural 
forms: sexual diploid (2n = 2x = 16) and apomictic tetraploid 
(2n = 4x = 32) genotypes. Other chromosomal numbers, as well 
as hexaploids and aneuploids, were also reported in the literature 
with lower frequencies (Warmke 1951; Jauhar 1969; Savidan 1980; 
Hamoud et al. 1994; Giussani et al. 2001; Jain et al. 2003; Akiyama 
et al. 2008).

Since natural tetraploid genotypes of M. maximus undergo apo
mixis (i.e. asexual propagation by seeds, Nogler 1984), it is possible 
to fix superior genotypes and their hybrid vigor while maintaining 
uniform pastures using genetically identical seeds (Jank et al. 
2011). Most of M. maximus breeding programs have been taking ad
vantage of sexual and apomictic genotypes by combining them in 
crossing schemes. Thus, sexual genotypes are used to allow 

recombinations throughout the crosses, while apomixis is used 
to fix the best genotypes and produce seeds on a large scale 
through asexual propagation. As sexuality is exclusive to diploid 
genotypes in nature for M. maximus, the first sexual tetraploid gen
otypes were initially diploids which had their chromosomes dupli
cated with colchicine to allow viable crossings (Savidan 1980; 
Nakagawa and Hanna 1992; Nakagawa et al. 1993). Previous stud
ies have shown that progenies derived from tetraploid sexual vs. 
apomictic crosses segregate in a 1:1 rate for apomixis (Savidan 
1978, 1981; Ebina et al. 2005; Bluma-Marques et al. 2014; Deo 
et al. 2020), although other studies suggest a quantitative genetic 
control for this trait (Kaushal et al. 2008, 2019; Marcón et al. 2019).

The advancements in molecular technology enabled the detec
tion of variants in DNA and RNA sequences, which allowed the 
identification of sources of variation on both molecular and 
phenotypic bases. This knowledge has been supporting studies 
on DNA recombination, molecular paths, and its interactions, 
helping to understand the mechanisms that drive phenotypic ex
pression, organism differentiation, and speciation (Metzker 2009; 
Elshire et al. 2011; Poland and Rife 2012). Many of these investiga
tions are based upon analyses on the genetic diversity of a popu
lation, linkage and QTL mapping, genomewide association 
studies, or whole-genome prediction; thus, their outcomes have 
the potential to significantly change the way breeding programs 
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are planned and conducted (Poland and Rife 2012). Therefore, 
methods to obtain, evaluate, and analyze molecular datasets 
are widespread and well-developed, especially for diploid species. 
However, there has been a delay in developing and extending such 
technology and methods for polyploid species, mainly due to their 
genomic complexity and lack of resources (Garcia et al. 2013).

The assessment of loci variation for entire populations has be
come a fundamental part in the development of crop species. 
Among the available technologies, single nucleotide polymorph
ism (SNP) is a cost-effective and the most abundant form of vari
ation in the genome, usually in the form of biallelic markers 
(Brumfield et al. 2003). The evaluation of such variants along the 
genome also allows accessing the allele abundance and the esti
mation of genotypes in polyploid species (Voorrips et al. 2011; 
Serang et al. 2012; Garcia et al. 2013; Hackett et al. 2013; Gerard 
et al. 2018). Thus, individual genotypes can be represented with 
different dosages ranging from zero up to the ploidy level of the 
species. The dosage value usually means the estimated count of 
the reference allele that an individual carries for a given biallelic 
locus. As an example, an autotetraploid species may present indi
vidual dosages ranging from 0 to 4, which would represent the 
genotypes aaaa, aaaA, aaAA, aAAA, and AAAA for a biallelic 
marker (Lara et al. 2019). Despite providing more information 
than single dosage markers (i.e. only nulliplex, simplex, and 
double-simplex genotype combinations), dosage-based genotypes 
still lack the complete genetic information for an individual, espe
cially for polyploids. This complete information would include 
multiple allele information and their distribution across individ
ual haplotypes and along the genome, their phase configurations 
with adjacent locus, and the origin and recombination events 
that generated each haplotype in an individual genetic set. 
Fortunately, state-of-the-art methods can recover the complete 
genetic information from the same data that generates dosage 
genotypes, usually by utilizing genomic sequences or performing 
linkage analysis. The former takes sequence-based information to 
detect unique haplotype sequences and recover phase configura
tions or multiallelic information (Motazedi et al. 2018, 2019; 
Moeinzadeh et al. 2020; van Geest et al. 2020), while the latter 
uses additional information from the population structure to 
model the transmission of alleles from parents to the offspring, 
which include the expected Mendelian segregation rates, linkage 
phase configurations, and recombination frequencies (Hackett 
et al. 2013; Bourke et al. 2018b; Mollinari and Garcia 2019).

Linkage analysis has been widely used to understand genetic 
conformity and the inheritance pattern in targeted mapping po
pulations. In addition to the identification of linkage groups, the 
recombination frequencies, physical distances, and the phase 
configuration between a set of genetic variants, linkage analysis 
allows to recover the complete genetic information and study 
the meiotic process involved in the haplotypic inheritance for a gi
ven population (Mollinari and Garcia 2019; Mollinari et al. 2019). 
With the complete genetic information, it is also possible to search 
for QTL along the genome by using the joint genotype probabilities 
of all individuals (Pereira et al. 2020). Only recently, autopolyploid 
species benefited from the extension of methods to construct in
tegrated genetic linkage maps based on multi-dosage informa
tion, primarily for tetraploids (Hackett et al. 2013) and 
hexaploids (Bourke et al. 2018b), then extended to take advantage 
of the Hidden Markov Model to get multilocus estimates for higher 
ploidy levels (Mollinari and Garcia 2019). The same was observed 
for QTL mapping models Hackett et al. (2013, 2014); Chen et al. 
(2018); Pereira et al. (2020). A few polyploid species benefit from 
high-quality, dense, and integrated linkage maps, while most 

were constructed based on single-dosage markers (Wu et al. 
1992) or using diploid-based methods (Balsalobre et al. 2017; 
Shirasawa et al. 2017; Ferreira et al. 2019). Thus, they lack the in
formativeness provided by novel sequencing technologies 
coupled with large populations, good reference genomes, and 
state-of-the-art statistical methods developed specifically for 
polyploid organisms.

Several investigations have been conducted to study the M. 
maximus molecular behavior, including genetic diversity studies 
(Giussani et al. 2001; Aliscioni et al. 2003; González and Morton 
2005; Akiyama et al. 2008; Salariato et al. 2010; Grass Phylogeny 
Working Group II 2011; Morrone et al. 2012; Hunt et al. 2014; 
Kellogg 2015; Burke et al. 2016; Tomaszewska et al. 2021), linkage 
and QTL mapping (Ebina et al. 2005; Deo et al. 2020), transcriptome 
and RNAseq analysis (Yamada-Akiyama et al. 2009; Toledo-Silva 
et al. 2013; Radhakrishna et al. 2018; Wedow et al. 2019), genomic 
selection (Lara et al. 2019), and cytogenomics (Tomaszewska 
et al. 2021). However, there is still no consensus regarding the 
taxonomic placement of the species, and little is known about 
its evolutionary and genomic behaviors, as well as the molecular 
pathways that drive phenotypic expression. Although other link
age and QTL studies were reported for M. maximus, they lack the 
density and informativeness provided by recent statistical meth
ods; yet few autopolyploid species have already benefited from 
them (Ferreira et al. 2019; Mollinari et al. 2019; Cappai et al. 2020; 
Oloka et al. 2021).

Given M. maximus relevance to tropical and subtropical live
stock farming and the lack of studies involving recent statistical 
methods, more studies are necessary to unravel the species’ gen
omic complexity, its inheritance patterns, molecular pathways, 
and their relation to phenotypic expression. Thus, the objectives 
of this study were to: (a) detect DNA polymorphisms in a M. max
imus mapping population; and (b) construct a state-of-the-art gen
etic linkage map with phased parental and progeny haplotypes. 
The results of this work will contribute to the advancement of 
knowledge and support the development of genomic technologies 
for the species, including the assembly of a reference genome, and 
also provide a reliable basis for further investigations, such as QTL 
mapping and genomics-assisted selection, which will help im
prove the efficiency of M. maximus breeding programs.

Materials and methods
Mapping population
To obtain the biological samples for this study, we performed a bi
parental cross between distinct cultivars, namely Miyagui and S12. 
The former is an apomictic commercial cultivar used as the male 
parent (pollen donor), whereas the latter is a sexual accession 
used as the female parent. We selected these genotypes due to 
their contrast in important breeding traits, such as forage yield, 
plant height, inflorescence compactness, and seed shattering.

Before the cross, we performed a clonal propagation of both 
genotypes in a greenhouse to increase the number of plants while 
guaranteeing that all female and male plants were genetically 
identical. We conducted the cross in 2017 at the Embrapa Beef 
Cattle, Campo Grande, Brazil, following a regular blocking scheme 
with female clones in the middle and male clones in the borders of 
the block. The blocking scheme forces male plants to act as a 
physical barrier to external pollen contamination, whereas fe
male plants are expected to be pollinated only by male pollen.

Assuming no contamination occurred, we collected seeds pro
duced only by the female plants to obtain the progeny individuals. 
The resulting F1 segregating progeny consisted of 224 individuals 
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used as the basis for the mapping population. Similar to the par
ents, we clonally propagated all individuals to increase the num
ber of plants, allowing their evaluation throughout replicated 
trials while guaranteeing their genetic identity.

Genotypic data
We collected leaf samples from both parents and all progeny indi
viduals to extract their DNA sequences using the QIAGEN 
DNAeasy Plant kit. The DNA sequences were arranged in 7 plates 
of 96-plex each, minus two wells for quality control. All progeny 
individuals were sampled once, while parents were repeated 14 
times (two samples per parent by plate). Plates were sequenced 
at Elshire Group Inc. (Australia) using the genotyping-by- 
sequencing (GBS) technique. The GBS library was generated fol
lowing a modified version of the Elshire et al. (2011) protocol, 
with the following changes: 100 ng of genomic DNA, 1.44 ng of to
tal adapters, the genomic DNAs were restricted with the rare-cut 
PstI enzyme, sequences were marked with combinatorial bar
codes, and the library was amplified with 18 PCR cycles. 
Sequencing was performed using the Illumina HiSeq Xten plat
form, producing paired-end reads with 150bp for each plate. 
After trimming both primer and adapter sequences, the resulting 
variable-length paired-end reads presented three types of combi
nations: absent, partially, or totally overlapping reads.

With sequence data in hand, we demultiplexed all sample reads 
and removed their barcodes using the software axe-demux (Murray 
and Borevitz 2018), followed by a quality control analysis using 
the software FastQC (Available at: https://www.bioinformatics. 
babraham.ac.uk/projects/fastqc/), FastQ Screen (Wingett and 
Andrews 2018), and MultiQC (Ewels et al. 2016).

Since M. maximus does not have a reference genome available, 
we mapped all sequence reads to six different reference genomes 
from phylogenetically related species, using the software Bowtie2 
v2.1.0 (Langmead and Salzberg 2012). All runs included the 
flag –very-sensitive-local to perform a restrictive alignment, limiting 
the number of dynamic programming problems to 20, the max
imum number of alignments of each read to 3, and the size of 
seeds to 20 bases. The six reference genomes used along the pipe
line were: Panicum hallii v3.0 (Lovell et al. 2018), Panicum virgatum 
v5.0 (Lovell et al. 2021), Setaria italica v2.0 (Bennetzen et al. 2012), 
Setaria viridis v2.0 (Mamidi et al. 2020), and Urochloa ruziziensis 
v1.0 (Pessoa Filho et al. 2019). All species used as references are di
ploids with 2n = 2x = 18 and reference genomes arranged in 9 
chromosomes, except the allotetraploid P. virgatum (2n = 4x = 36) 
with a reference genome arranged in two sets of 9 chromosomes 
(named as K and N subgenomes). In this case, we mapped the se
quence reads to the two subgenomes separately. All published 
genomes were downloaded from the Phytozome v13 database 
(Goodstein et al. 2011) or the NCBI platform (https://www.ncbi. 
nlm.nih.gov/).

With the mapped reads in hand, we performed the variant dis
covery using the software GATK v.4.1.6.0 (McKenna et al. 2010), and 
jointly genotyped all samples simultaneously according to the Best 
Practices recommendations (submodules: HaplotypeCaller, 
GenomicsDBImport, GenotypeGVCFs, VariantFiltration, and 
SelectVariants, Van der Auwera and O’Connor 2020) with the fol
lowing modifications: no duplicates were removed, and no base 
or variant recalibration was performed. We also hard-filtered var
iants according to the Best Practices guidelines by visualizing each 
parameter distribution separately. We considered the following 
parameters in the filtering step: total read depth (DP), mapping 
quality (MQ), mapping quality rank-sum (MQRankSum), quality 
by depth (QD), fisher strand (FS), and strand odds ratio (SOR). We 

performed additional filtering steps to consider only biallelic var
iants with an average read depth higher than 50×. An overview 
of all steps in the variant and genotype calling steps is shown in 
Fig. 1.

Finally, we evaluated the fit of all progeny individuals to the bi
parental cross by their estimated genetic distances to the parents, 
using the genomic relationship matrix (G) (VanRaden 2008). We 
calculated the G matrix using the R package AGHmatrix v2.0.0 
(Amadeu et al. 2023) and plotted the genetic distances using the 
software R (R Core Team 2023).

Genetic linkage mapping
Before constructing the genetic linkage map, we submitted var
iants to another filtering round by selecting them according to 
their informativeness (i.e. non-monomorphic markers with 
dosage information for both parents) and removing markers 
with >20% of missing data. Individual genotypes supported by 
<50 reads were considered missing data as well. We then tested 
variants using a chi-squared distribution based on the expected 
Mendelian segregation ratio given each parental dosage combin
ation. The threshold for accepting the null hypothesis (i.e. assum
ing that a variant follows the expected segregation distribution) 
was defined using the Bonferroni’s correction (Bonferroni 1936). 
After removing distorted variants, we identified and temporarily 
removed redundant variants (i.e. variants that carry the same in
formation), keeping only the first variant of each redundancy 
group. We temporarily removed those markers because they do 
not provide additional information to the model (i.e. all variants 
in the redundancy group would end up in the same map position), 
but would increase the usage of resources and computation time.

Given the variants that passed through all filtering steps, we es
timated the recombination fractions for all possible linkage 
phases between all pairs of variants, according to Mollinari and 
Garcia (2019). We used a heatmap graphic to identify linkage evi
dence between genomic sequences, then manually assigned 
linked genomic sequences to the same homology groups. We ap
plied another round of filtering by removing any variants with 
>90% of recombination fractions <0.05 or >0.40 with the remain
ing markers in their respective homology group. Then, we con
verted all recombination fractions to genetic distances using 
Haldane’s mapping function and ordered all variants inside 
each homology group using the multidimensional scaling (MDS) 
algorithm (Preedy and Hackett 2016).

Considering the MDS-based variant order for each homology 
group, we re-estimated their linkage phase configurations and re
combination fractions using the multipoint, Hidden Markov 
Model (HMM) approach extended to autopolyploids by Mollinari 
and Garcia (2019). We estimated parental linkage phases by se
quentially adding variants to the map and evaluating all possible 
phase configurations between the inserted variant and the exist
ing map sequence. Phase configurations with a difference of <50 
on the LOD scale were retained to be evaluated during the next 
rounds of variant insertion. Similarly, recombination fractions 
with a difference of <10 on the LOD scale were also retained. 
The HMM likelihood was calculated for each round using a tail se
quence of 200 variants. Markers that inflated the map by >5 cM 
were removed during the process. All recombination fractions 
were re-estimated using the full HMM after adding the last variant 
to the map. With the final maps in hand, we re-estimated all dis
tances considering a global error rate of 5% in the emission func
tion of the HMM. Later, we reinserted the redundant variants at 
their respective positions and generated the final map for each 
homology group.
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To assess the pairing pattern among haplotypes during the 
meiosis, we marginalized their probabilities conditional on paren
tal linkage phases and the recombination fractions at each map 
position, according to Mollinari et al. (2019). We also calculated 
the Genomic Information Content (GIC) among parental haplo
types in the final genetic linkage maps (Bourke et al. 2018a). All 
genetic linkage analysis were performed using the R package 
MAPpoly v0.2.3. We developed a web application using the R pack
age shiny v1.6 (Chang et al. 2021) with interactive versions of the fi
nal genetic linkage maps and the estimated parental haplotypes 
The application is available at https://statgen.esalq.usp.br/ 
megathyrsus-map/.

Results
Library preparation and genotype-by-sequencing
The GBS library amplified well and presented a good fragment size 
distribution. Sequencing was also performed successfully, provid
ing high-quality paired-end reads for all plates. The library pre
sented an average of 437.57 million paired-end reads and 
particularly outstanding coefficients of variation, 28.28% on aver
age (Table 1), which is far below the averages reported by similar 
studies (e.g. 43% in maize (Elshire et al. 2011), 67% in D. simulans 
(Andolfatto et al. 2011), and 39% in beef cattle (Donato et al. 
2013)). On average, 94.62% of the processed reads were successful
ly demultiplexed, and all blank checks passed the tests according
ly. The Elshire Group Inc. reported that the library exceeded most 
of its quality control metrics. One sample in Plate 3 presented a 
low average of reads due to low DNA concentration, but the afore
mentioned sample does not belong to the mapping population.

Our quality control analysis confirmed that the sequencing de
livered high-quality reads for all samples in the mapping popula
tion. Supplementary Fig. 1 shows that all reads exhibited high 
mean quality scores for all base pairs along the sequences. The 
first 110 base pairs presented quality mean scores >35, while the 
following 20 base pairs stayed >28. Even the last few bases 

presented scores >25 on the phred-scale for all samples in the 
mapping population. Similarly, Supplementary Fig. 2 shows that 
most sequences had a high overall quality score >28, while most 
remained >38 on the phred-scale.

All samples passed additional quality control tests, including 
sequence count distribution, per base sequence content, per se
quence GC content, per base N content, sequence length distribu
tion, sequence duplication levels, overrepresented sequences, 
and adapter content. Only the sequence duplication levels pro
duced warnings because >90% of the sequences were duplicated, 
a behavior that is naturally expected for RAD-seq datasets (Van 
der Auwera and O’Connor 2020).

Variant discovery and genotype calling
All reference genomes delivered intermediate levels of mapped 
reads and number of variants (Table 2). The U. ruziziensis reference 
outperformed the other reference genomes, presenting the high
est values for all metrics: 49.84% of mapped reads and 866,361 
variants, yielding 12,549 variants after the quality-control filtering 
steps . On the other hand, the P. virgatum subgenomes K and 
N provided the lowest values: 26.83% and 26.54% of mapped 
reads, 550,295 and 542,114 variants, yielding 7,843 and 7,983 
variants after the quality-control filtering step, respectively. 

Fig. 1. Workflow of the variant discovery and genotype calling pipeline.

Table 1. Overall quality control metrics regarding the GBS library 
sequencing for all plates.

Plate Yield 
(ng/μl)

TRP 
(Million)

ARPC 
(Million)

CV 
(%)

BC SBA

1 24.3 443 4.4 23 PASS 0
2 28.2 424 4.2 21 PASS 0
3 28.6 449 4.5 25 PASS 1
4 31.4 442 4.4 29 PASS 0
5 27.3 437 4.5 39 PASS 0
6 34.0 442 4.5 26 PASS 0
7 24.4 426 4.4 35 PASS 0

TRP, total read pairs; ARPC, average read pair count; CV, coefficient of variation; 
BC, blank check; SBA, samples with <10% average.
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The P. virgatum subgenomes also produced the highest level of 
missing data and the lowest amount of redundancy.

Annotated gene information for all genomes except the U. ruzi
ziensis, is available at the Phytozome v13 platform (Goodstein et al. 
2011). The pairwise orthology plots between the available gen
omes show that relatively high collinearity exists for both gene 
content and position along the genomes (Supplementary Figs. 
36–41). The annotated genes in the P. hallii genome share a very 
similar order with their correspondents in the P. virgatum genome, 
highlighting the collinearity between the two subgenomes in the 
P. virgatum genome. However, the curve is not perfectly linear, 
meaning chromosome segments may present different physical 
lengths and local arrangements between the two genomes. The 
opposite is observed between S. italica and S. viridis genomes, as 
they show a perfect linear relation between their gene positions. 
The previous pattern can be confirmed as P. virgatum presents 
high collinearity with both S. italica and S. viridis, despite two small 
inversions at the beginning of chromosomes 1 and 5. Similarly, the 
linear relation between S. italica and S. viridis is confirmed through 
the identical patterns between the P. hallii and both S. italica and S. 
viridis genomes. Two whole-sequence inversions are shown in 
chromosomes 4 and 5, followed by small inversions at the begin
ning of chromosomes 1 and 5 and in the middle of chromosomes 3 
and 4. Despite the high collinearity evidenced by the orthology 
plots, only 863 variants out of 42,654 in the dataset were 

redundant between different reference genomes, whereas 4,806 
were redundant within reference genomes.

Both markers and individuals presented varying levels of missing 
data, mostly below the 20% line. Individuals 138, 152, and 123 pre
sented the highest percentages of missing data, 27.64%, 27.22%, 
and 26.23%, respectively, while the remaining ones stayed in the 
range between 17.5% and 22.5% (Supplementary Figs. 3 and 4). 
After removing markers with >20% of missing data, the 
amount of missing data for individuals was reduced considerably 
(Supplementary Fig. 5). The remaining percentages of individual 
missing data passed the threshold level of 20%, thus no individuals 
were removed due to high missing data levels.

Genetic linkage mapping
A preliminary analysis of the estimated pairwise recombination 
fractions between all markers inside each genome provided a bet
ter understanding of the fit between the sequence data and the 
available reference genomes. All genomes produced the expected 
pattern of a mapping population, with a gradient of hot (red) 
colors between markers from the same chromosome and cold 
(blue) colors between markers from different chromosomes 
(Supplementary Figs. 7–12). Also, there is evidence of linkage be
tween two chromosomes within each genome, thus reducing 
the number of homology groups to eight and meeting the basic 
chromosomal number for the M. maximus species. Despite show
ing the expected pattern for a mapping population, it was difficult 
to include markers yielded by the P. virgatum references due to an 
increased amount of noise and reduced data quality. Thus, we dis
carded these markers and continued the analysis with markers 
yielded by the remaining reference genomes.

The variant discovery process provided a total of 79,534 var
iants distributed in four reference genomes. Some variants pre
sented redundancy, missing genotype information for one or 
both parents, as well as non-informative dosage combinations, 
i.e. dosage 0 or 4 for both parents. Those redundant, missing, 
and non-informative markers were removed, reducing the dataset 
to 42,654 variants, characterized by 20% of overall missing data, 
10.13% of redundancy, and varying dosage combinations between 
parents (Table 3). The dataset was then filtered again to hold only 
20% of missing data on the variant basis, which yielded 28,827 var
iants with a similar proportion of dosage combinations 
(Supplementary Fig. 13).

Most markers in the final dataset presented single dosage com
binations (0-1, 1-0, 3-4, and 4-3), followed by duplex combinations 
(2-0, 0-2, 2-4, and 4-2) and multiplex combinations. The amount of 
missing data was randomly distributed across markers and indivi
duals. A fraction of 12.2% of the markers was removed during the 
map building process due to redundancy, then added back to the 
final linkage maps later (Supplementary Fig. 6).

In addition to the marker filtering steps, we used the aforemen
tioned dataset to calculate the genomic matrix (G) and evaluate 

Table 2. Percentage of mapped reads, number of initial variants, number of variants AQCF (after quality-control filtering), percentage of 
missing data, and redundancy rate, for all reference genomes.

Genome Mapped reads (%) Variants Variants (AQCF) Missing data (%) Redundancy (%)

U. ruziziensis 49.84 866,361 12,549 20.35 10.31
P. virgatum K 26.83 550,295 7,843 21.74 8.95
P. virgatum N 26.54 542,114 7,983 22.30 9.18
P. hallii 31.91 671,353 9,108 19.74 10.26
S. italica 36.18 765,041 10,314 19.88 10.08
S. viridis 36.23 770,317 10,683 20.12 9.85
Total 36.91 5131,997 79,534 20.74 9.98

Table 3. Dosage combinations between parents Miyagui and S12, 
and their respective number of variants along some filtering steps 
used to construct the genetic linkage map.

Miyagui S12 Variants Variants (NVM 20%) Variants (AST)

0 1 7,040 5,470 2,716
0 2 2,855 1,949 253
0 3 1,294 45 34
1 0 9,189 7,203 3,848
1 1 1,511 1,202 529
1 2 848 658 161
1 3 455 160 92
1 4 763 21 18
2 0 3,677 2,509 196
2 1 733 581 153
2 2 919 852 150
2 3 713 574 138
2 4 1,758 1,207 128
3 0 1,529 66 53
3 1 350 123 86
3 2 623 471 133
3 3 1,201 960 546
3 4 3,773 2,816 1,812
4 1 482 17 13
4 2 963 618 81
4 3 1,978 1,325 678
Total 42,654 28,827 11,818

NVM, number of variants after filtering for 20% of missing data; AST, number of 
variants after the segregation test.
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the genetic distance between all offspring individuals and their 
parents. Nine individuals in the offspring presented skewed gen
etic distances to parents when compared to the expected pattern 
for a biparental cross, of which five exhibited accentuated skew 
towards the apomictic parental (Supplementary Fig. 16). 
Because those skewed individuals showed unexpected behavior 
for a biparental population, we assumed they were contaminants 
and removed them from the final dataset.

Given the filtered dataset, we performed the chi-square segre
gation test considering the P-value threshold for significance 
equal to 1.734485 × 10−6, according to Bonferroni’s correction. 
This step eliminated 59% of the variants (Supplementary Fig. 
14), reducing the number of variants in the dataset to 11,818 
(Supplementary Fig. 15).

With the final dataset in hand, we estimated the pairwise re
combination fractions between all markers, considering all refer
ence genomes together. As pointed out in the preliminary 
analysis, there is evidence of linkage between chromosomes with
in genomes, as well as between chromosomes across genomes, in
dicating that the inheritance pattern was captured successfully 
throughout the analysis. Thus, we rearranged the chromosomes 
according to their linkage patterns and got exactly eight homology 
groups, which is the basic chromosomal number of the M. max
imus species and the expected number of homology groups 
(Supplementary Figs. 17 and 18). Thus, instead of applying any 
grouping algorithm, we used the available genomic information 
to group variants according to their linkage evidence.

With the formed homology groups and their respective recom
bination fractions, we filtered which phase configurations and re
combination fractions would be used during the ordering step. 
Basically, we defined LOD-score thresholds of 5 and 10 for phases 
and recombination fractions, respectively, to be selected among 
all possible phases for a given pair of markers. This means that 
any phase or recombination fraction with LOD scores lower 
than the thresholds was also considered during the ordering 
step. We also eliminated variants with >90% of estimated recom
bination frequencies <0.05 or >0.45 across their respective hom
ology groups (i.e. completely linked or unlinked markers). 
Finally, we ordered all variants within groups using the 
Multidimensional Scaling (MDS) algorithm.

In the final heatmap, a good linkage pattern stands through a 
gradient of hot (red) colors between variants from the same hom
ology group, while pure blue is shown between variants in differ
ent homology groups (Fig. 2). Regarding the number of markers, 
homology groups 1 and 3 were the biggest ones, followed by hom
ology groups 7, 2, 4, 6, and 8. Homology group 5 was the smallest 
one, with <200 markers.

Based on the estimated order for each homology group, we con
structed the maps using the sequential algorithm coupled with 
the Hidden Markov Model (HMM) and considering a 5% of error 
rate in the HMM’s emission function. Homology group 3 was the 
biggest one with 324.41 cM, followed by homology groups 1 and 
7 with 233.48 and 225.9 cM, respectively. The homology groups 
8, 4, 6, and 2 presented sizes between 184.46 and 157.01 cM, while 
homology group 5 was the smallest, with 93.43 cM (Fig. 3). 
Homology group 1 was the densest, with 7.65 markers/cM, while 
homology group 5, with 1.22 markers/cM was the less dense. 
The other homology groups presented densities between 2.26 
and 5.23 markers/cM. The greatest distance between a pair of 
markers was 7.55 cM in homology group 4. All homology groups 
were predominantly composed of simplex markers, with few 
double-simplex and multiplex variants (Table 4). Also, the final 
linkage maps were mostly supported by markers produced by 

the alignment with U. ruziziensis reference genome, with 2,134 
markers, followed by S. viridis, S. italica, and P. hallii with 1,765, 
1,713, and 1,483 markers, respectively (Table 5). The quality of 
all homology groups increased after removing the previously 
identified skewed individuals (Supplementary Table 1).

The GIC graphic shows the amount of information each haplo
type carries, allowing their distinction during the map building 
process. Notably, almost all haplotypes were distinguished well, 
mostly because of the propagation of information through the 
chain enabled by the HMM model. However, some haplotypes pre
sented lower levels of GIC because they presented almost identical 
haplotypes, which hindered their distinction under the assumed 
threshold levels in the HMM. It is important to note that regions 
with lower GIC values tend to present very similar haplotype com
positions within parents (Fig. 4 and Supplementary Figs. 19–26).

Finally, we performed an evaluation of the pairing configura
tions and their associated probabilities, given the estimated geno
types for all individuals in the population. All pairing configuration 
probabilities were close to the 0.33 expected ratio, suggesting no 
preferential pairing occurred during the meiotic processes that 
generated this population. The associated P-values of all pairing 
configurations were below the 2.0 threshold, which reinforces 
that they occurred randomly, following the expected behavior 
for an autopolyploid species (Supplementary Fig. 27).

Discussion
The present study reports the third linkage map of M. maximus 
published to date. The high-resolution map represents 64 paren
tal homologs distributed across eight homology groups, which 
were densely saturated with variants supported by four reference 
genomes of phylogenetically related species. The 7,095 markers in 
the final linkage map covered 1,573.31 cM with an average density 
of 4.12 markers/cM. The first linkage map of the species was re
leased by Ebina et al. (2005), which used 360 AFLP and RAPD mar
kers to map 39 linkage groups in a population of 71 individuals, 
covering 1,703.5 cM for only one parent with an average density 
of 0.21 marker/cM. Then, a second linkage map was constructed 
by Deo et al. (2020) using the NGS (next-generation sequencing) 
technology to generate sequence data for both parents and 132 
offspring individuals. The authors provided a more informative 
consensus linkage map, with 858 markers distributed across eight 
homology groups, totaling 756.69 cM with an average density of 
1.13 markers/cM. Thus, the present linkage map provides a great 
advance and knowledge regarding the species’ genomic conform
ity through higher resolution, density, and informativity.

Many factors may have contributed to the advance over the pre
viously published linkage maps, including the population size, the 
choice of the GBS protocol, the use of different reference genomes 
to discover variants, and the statistical genetics methods employed 
to build the linkage map. The present linkage map was built upon a 
larger offspring size of 223 individuals, which gives more statistical 
power and reduces bias and errors when estimating parameters 
that rely on sample size, such as linkage phases and recombination 
fractions. These parameters can influence the genetic linkage ana
lysis in a cascade effect, where linkage phases and recombination 
fractions influence each other in a two-way fashion, which affect 
marker grouping and ordering, while these ultimately impact the 
resulting genetic linkage maps. We highlight that the methods 
used hereby provided a complete framework to build the map 
with all the information available, using all possible dosage combi
nations in an integrated and multilocus-based approach (Mollinari 
and Garcia 2019). This framework can overcome possible 
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limitations imposed by reduced sample size or a small number of 
variants, mostly because of the propagation of information en
abled by the transitive property of the multipoint HMM approach. 
Thus, all phases and recombination fractions are jointly estimated 

based on the information present in the whole homology group, ra
ther than solely on the pairwise estimates. Furthermore, this al
lowed the inference on the transmission of parental haplotypes 
to the offspring through haplotype probabilities, enabling the re
construction of all individual haplotypes in the population 
(Mollinari et al. 2019).

The relatively low number of variants provided by the P. virga
tum genome coupled with its inability to detect the linkage pattern 
in this study, even considered its collinearity with the other gen
omes such as P. hallii (Lovell et al. 2018) and S. italica (Daverdin 
et al. 2014), drew our attention to the possible reasons for this out
come. Deo et al. (2020) chose the P. virgatum genome as a reference 
due to its phylogenetic proximity to M. maximus (Burke et al. 2016), 
highlighting that the species used belong to the Panicum genus. 
The authors also emphasize that P. virgatum has an allotetraploid 
genome, and using it as a reference would provide more informa
tion than a diploid genome, as it might share similar chromosom
al rearrangements with the autotetraploid genome (Deo et al. 
2020). On the other hand, Burke et al. (2016) found out that M. max
imus was phylogenetically closer to S. italica than P. virgatum, 
which also has a reference genome available. As highlighted by 
Deo et al. (2020), the species used to belong to the Panicum genus 
(subgenus Megathyrsus, Pilger 1931; Zuloaga 1987), but further in
vestigation supported its placement under the Urochloa genus 
due to morphological, biochemical, and genomic evidences 
(Webster 1987; Giussani et al. 2001; Aliscioni et al. 2003; Masters 
et al. 2024). Despite changes in its taxonomic placement, it re
mains evident that M. maximus is phylogenetically closer to 

Fig. 2. Heatmap of the estimated recombination fractions between markers produced by aligning the sequence data to the following reference genomes: 
U. ruziziensis, P. hallii, S. italica, and S. viridis. Chromosomes were rearranged among genomes to match linkage evidence.

Fig. 3. Distribution of markers and their estimated genetic positions (in 
cM) within each homology group. Colored bars represent different 
homology groups, while black lines within colored bars represent marker 
positions.
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Urochloa, followed by Setaria and Panicum species (Webster 1987; 
Zuloaga 1987; Duvall et al. 2001; Giussani et al. 2001; Aliscioni et al. 
2003; González and Morton 2005; Salariato et al. 2010; Grass 
Phylogeny Working Group II 2011; Morrone et al. 2012; Hunt et al. 
2014; Kellogg 2015; Burke et al. 2016; Tomaszewska et al. 2021). 
This could explain the better performance of the U. ruziziensis gen
ome to yield variants when compared with references from other 
genera, such as Setaria and Panicum.

The number of homology groups identified in the present study 
agrees with the basic chromosomal number of the species, which 
was previously reported by several investigations (Warmke 1951; 
Jauhar 1969; Savidan 1980; Hamoud et al. 1994; Jain et al. 2003; 
Akiyama et al. 2008). Interestingly, two chromosomes from all ref
erence genomes supported the same homology group in the M. 
maximus mapping population, with a strong and evident linkage 
pattern across all markers in these chromosomes. Moreover, the 
linkage pattern suggests that this homology group is formed by 
two pieces of a segmented chromosome located at its ends, with 
the other chromosome inserted in the middle of the homology 
group, between these two pieces, a pattern evidenced by all refer
ence genomes. We speculate that this pattern may be related to a 
chromosomal rearrangement that might have played an import
ant role in the evolutionary path of M. maximus and its related spe
cies, especially the ones with basic chromosomal numbers equal 
to eight and nine. To the best of our knowledge, the present study 
reports the first evidence of a chromosomal rearrangement in the 
evolutionary path of M. maximus and related species.

Most homology groups presented a relatively good collinearity 
between the physical orders from the reference genomes and the 
global order of the linkage maps. It is also possible to identify plat
eaus where no recombinations were observed near the center of 
the physical vs. map position plots (Supplementary Figs. 28–35). 
These regions are likely associated with centromeres, which 

suggests that the chromosomes are predominantly metacentric 
and submetacentric, and agrees with previous reports in the lit
erature for the species (Hamoud et al. 1994; Akiyama et al. 2008). 
There is an apparent map inflation for almost all homology groups 
that could be related to a local misplacement of closely linked 
markers, as well as the use of several markers produced by differ
ent reference genomes, which may have led to an accumulation of 
small genotyping errors. Almost all homology groups presented 
sizes between 157.01 and 233.48 cM, which also agrees with previ
ous studies with similarly sized chromosomes in M. maximus 
(Hamoud et al. 1994), except for homology groups 3 and 5. As pre
viously discussed, homology group 3 may be inflated due to the 
presence of 1,698 markers from eight reference sequences, pos
sibly in locally misplaced positions. For homology group 5, we 
speculate that it might be underrepresented in this study because: 
(1) a high portion of the sequence data (50% of sequence reads) 
was not mapped to any region in the reference genomes, and as 
such, not utilized in this study; (2) a very low number of markers 
supported it; (3) there is an absence of collinearity between the 
linkage map and the physical orders of markers in the reference 
genomes utilized. Thus, we speculate that although genomic re
gions from this chromosome (hereby represented by homology 
group 5) might have been properly sequenced in our study, the ab
sence of similar regions in the reference genomes utilized could 
have led to a lower representation of sequence reads coming 
from this specific chromosome, which also suggests its unique
ness to the M. maximus genome.

The present study reports for the first time the complete set of 
haplotypes for parents of a population in M. maximus. Almost all 
homologs inside each parent were fully distinguished from each 
other by using the information contained in all dosage markers. 
There was only one pair of almost identical homologs inside 
each parent: homologs c and d from homology group 8 for parent 
Miyagui (Supplementary Fig. 26); and homologs f and h from hom
ology group 5 for parent S12 (Supplementary Fig. 23). The high 
similarity between these homologs was captured through the 
GIC plot (Fig. 4), where GIC values were close to or <0.5, and repre
sents the inability of the markers to capture distinct regions be
tween homologs within parents. Specifically for parent S12, this 
could be related to the speculated underrepresentation of hom
ology group 5, which was supported by only 114 markers. On the 
other hand, all homologs from both parents in the remaining 
homology groups presented high GIC values, which reflects their 
ability to carry enough information to distinguish homologs along 
the linkage maps. We also assessed the probability of each pos
sible pairing configuration between parental homologs during 
meiosis. Supplementary Fig. 27 shows that there was no evidence 
of preferential pairing in the formation of the mapping 

Table 4. Overview of the final linkage maps, including their respective sizes, densities, number of markers for each category, and 
maximum gap size.

HG Genomic sequence Size (cM) Markers/cM Simplex D-simplex Multiplex Total Max. gap

1 UR1,PH9,SI9,SV9 233.48 7.65 1,527 55 20 1,786 4.14
2 UR2,PH2,SI2,SV2 157.01 5.22 728 7 12 820 3.87
3 UR3,9,PH1,4,SI1,4,SV1,4 324.41 5.23 1,456 47 22 1,698 4.98
4 UR4,PH3,SI3,SV3 180.98 3.23 515 11 8 585 7.55
5 UR5,PH8,SI8,SV8 93.43 1.22 103 0 1 114 4.98
6 UR6,PH7,SI7,SV7 173.64 3.24 484 5 15 563 6.25
7 UR7,PH5,SI5,SV5 225.9 4.93 952 8 36 1,113 4.99
8 UR8,PH6,SI6,SV6 184.46 2.26 349 23 14 416 5.6
Total 1,573.31 4.12 6,114 156 128 7,095 5.3

HG, homology group. Genomic sequences: UR, U. ruziziensis; PH, P. hallii; SI, S. italica; SV, S. viridis. Superscripts represent contigs.

Table 5. Number of markers in the final linkage maps by reference 
genome. All referenced species are diploids with 2n = 2x = 18 
chromosomes.

HG S. viridis P. hallii S. italica U. ruziziensis Total

1 431 394 417 544 1,786
2 201 147 204 268 820
3 436 367 428 467 1,698
4 132 131 131 191 585
5 33 14 30 37 114
6 140 124 127 172 563
7 278 245 260 330 1,113
8 114 61 116 125 416
Total 1,765 1,483 1,713 2,134 7,095

HG, homology group.
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population, suggesting that pairing occurs randomly and mostly 
in the bivalent form, which reinforces the autopolyploid nature 
of the M. maximus genome. This result agrees with previous re
ports in the literature regarding the predominant autopolyploid 
nature of the genome, the absence of preferential pairing, and 
the predominant occurrence of random bivalent pairing during 
meiosis in M. maximus (Warmke 1951; Jauhar 1969; Jain et al. 2003).

Having fully estimated haplotypes for parents and individuals 
in a population, such as the ones generated in this study, provides 
a much more informative framework for further genetic studies, 
such as QTL mapping, and enable their use in several downstram 
applications, including genomics-assisted selection and genomic 
prediction. The highly informative genetic linkage map generated 
hereby can also serve as a basis for the assembly of a reference 

genome for the species, where fully-phased haplotypes can be 
especially helpful to resolve the multiple challenges involved in 
autopolyploid, highly heterozygous genomes such as M. maximus. 
The genetic knowledge presented hereby, together with all 
possibilities that are enabled with it, can help pave the path 
towards the adoption of novel technologies and allow for 
genomics-informed decisions that can help increase the efficiency 
of M. maximus breeding programs.

Conclusion
We were able to detect DNA variants and map them to the densest 
and most informative linkage map of M. maximus up to date. We 
also provided phased haplotypes for all individuals in the 

Fig. 4. GIC for all haplotypes in both parents.
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mapping population and studied the type of genetic inheritance in 
M. maximus.

The present investigation provides new insights into the gen
omic behavior and evolutionary pathway of M. maximus, produ
cing more evidence for its evolutionary placement among other 
relative grasses, and providing more support to the latest taxo
nomic classification of the species. Thus, new speculations can 
be drawn over the genomic origin and relatedness between M. 
maximus and other related species, helping to solve the puzzle of 
the relationship between the basic chromosomal number and 
the evolutionary pathways between Panicoidae species.

The linkage map can help to assemble a reference genome 
for the species, thus encouraging and providing better information 
for future studies. This study also provides the basis for further in
vestigation that can help unravel the genetic behavior of complex 
traits, including QTL mapping, and support the development of a 
framework to support breeding programs of M. maximus, which in
clude marker-assisted selection and genomic prediction.

Data availability
The raw genotype data of the entire mapping population is divided 
into five VCF files, one for each reference genome utilized, and 
made available as Supplementary Material at figshare: https:// 
doi.org/10.25387/g3.27208329. The final genetic linkage maps and 
estimated parental haplotypes can be accessed through an inter
active Shiny app available at: https://statgen.esalq.usp.br/ 
megathyrsus-map/.
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