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Abstract

Sphenophorus levis, commonly known as the sugarcane weevil, is one of the most important
pests affecting Brazilian sugarcane crops. It has spread to all sugarcane-producing regions
of Brazil, mainly through contaminated stalks. Effective control of this pest is difficult
due to the protection conferred by the host plant during the larval stage. As a result,
despite current control measures, S. levis populations continue to grow, and reports of
new infestations remain frequent. Biotechnological control measures, such as the use of
viruses, stands as a promising tool for pest control in agriculture. The aim of this study was
to explore the RNA virome associated with S. levis using a viral metagenomic approach.
Through the Read Annotation Tool (RAT) pipeline, we characterized, for the first time, the
gut-associated viral community in adult weevils, identifying several novel viral genomes.
Sphenophorus levis-associated virus (SLAV) had 12,414 nucleotides (nt); Sphenophorus levis
tombus-like virus (SLTV) had 4085 nt; and the four genomic segments of Sphenophorus
levis reo-like virus (SLRV) ranged from 2021 to 4386 nt. These genomes were assembled
from 65,759 reads (SLAV), 114,441 reads (SLTV), and 270,384 reads (SLRV). Among the
detected viral families, Partitiviridae was the most abundant. The identification of possible
viral pathogens lays the foundation for future research into their potential use as biological
control agents against S. levis.

Keywords: virome; reo-like virus; tombus-like virus; picorna-like virus; biocontrol

1. Introduction

The genus Sphenophorus (Coleoptera: Curculionidae) is found in several countries
across several continents, comprising a complex of species that are pests of essential
crops within the grass group [1]. In North America, where the genus is believed to have
originated, 75 species are recorded, 18 in South America, and six in Europe, North Africa,
and Asia. Twenty-six species are recorded in the remaining areas of Africa and the Pacific
region [2]. Fourteen species were described in Brazil, including S. levis Vaurie, 1978, with a
range that also extends to Argentina and Uruguay [1,2].

Sphenophorus levis is known as the sugarcane weevil, one of the most important pests
of Brazilian sugarcane crops [1,2], that has spread to all sugarcane-producing Brazilian
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regions via contaminated stalks [3]. The larvae of S. levis open galleries in the rhizomes,
resulting in symptoms of leaf and tiller yellowing and drying. The damage is reflected in
the number of final stalks for harvesting, and economic losses can be estimated based on
the reduction in the expected number of tons of sugarcane [4]. Adults have a long lifespan
and are primarily nocturnal insects, with most activities (walking, digging, and mating)
occurring at night [5].

With the change in the Brazilian harvesting system from manual harvesting of burnt
sugarcane to mechanical harvesting of green sugarcane, populations of S. levis rapidly
increased. In some regions, the insects decimated the sugarcane fields within one or two
harvests [3]. Controlling the sugarcane weevil is challenging because the insect is protected
inside the plant during the larval period. Nowadays, it is recommended to mechanically
destroy the stubble, establish a fallow period in the planting area, and use insecticides
on the planting furrow and sugarcane stubble [1,6,7]. Despite all the control measures
currently employed, the population of the weevil in sugarcane areas has still increased,
with records of newly infested areas being frequent over the years [1,3].

In the USA and Japan, some important species of Sphenophorus are efficiently con-
trolled using entomopathogenic nematodes [1]. In Brazil, studies indicate the use of the
nematodes of the genera Heterorhabditis and Steinernema (Nematoda: Rhabditidae) as a vi-
able alternative to control the larvae and pupae of S. levis inside rhizomes [1,8]. Steinernema
carpocapsae was found to cause natural infection in S. levis inside the root, resulting in up to
60% pupal mortality. The application of S. carpocapsae just after cane harvesting is suggested
to reduce the S. levis population in the next plant generation [8]. Entomopathogenic fungi
can also be used to control S. levis. There are studies on Metarhizium anisopliae, Beauveria
bassiana, and B. caledonica; however, their effectiveness in the field is not always consistent,
and there is a lack of information on application methods, doses, and formulations [9-11].

In the reviewed literature, no studies were found on the RNA virome of S. levis, and
thus potential viral biocontrol agents remain unidentified; however, some do describe viral
families and species in other Curculionidae (Table 1, [12-18]). Experimental infections
with Invertebrate iridescent virus 6 (IIV6) were conducted on Anthonomus grandis, the boll
weevil [19] and Diaprepes abbreviatus, the citrus weevil [20]. Additionally, Cypovirus sp. was
studied as a biocontrol agent for Rhynchophorus ferrugineus, the red palm weevil [21]. All
studies reported productive infections.

The objective of this work was to explore the diversity of RNA viruses associated with
the sugarcane weevil using a viral metagenomic approach. We characterized, for the first
time, the intestinal viral community present in this pest, including novel putative viruses
identified in adult weevils. The identification of possible viral pathogens is the first step in
investigating their potential as biological control agents.

Table 1. Viral families and species in other Curculionidae.

Host Common

Name Scientific Name Location Virus Name Taxonomy Accession Ref.
Czech Ips typographus .

Republic entomopoxvirus (ItEPV) Poxviridae NA (12l

E Coleopteran

uropean spruce Ips typographus orthomyxo-related virus
bark beetle OKIAV196

Germany Orthomyxoviridae PRJNA183205 [13]

Coleopteran

orthomyxo-related virus
OKIAV200




Viruses 2025, 17,1312 30f18
Table 1. Cont.
Host Common C e . . .
Name Scientific Name Location Virus Name Taxonomy Accession Ref.
Ips virga-like virus 1 and 2 Virgaviridae OR537183, OR537184
Ips tombus-like virus 1, 2 Tombusviridae OR537185, OR537186,
and 3 OR537211
Ips spici-like virus 1 Spiciviridae OR537187
Ips narna-like virus 1 and 2 Narnaviridae OR537188, OR537189
- . . OR537190 to
Ips partiti-like virus 1 Partitiviridae OR537193
E Ips sobemo-like virus 1 Solemoviridae OR537194, OR537195
“Lzliiaé‘eseg?ce Ips typographus Finland Ips phenui-like virus 1 and 2 OR537196, OR537198  [14]
Ips phenuiviral-like M Phenuiviridae OR537197, OR537199
segment 1 and 2
Ips phenuiviral-like M OR537200
segment 2
A . L OR537201 to
Ips erranti-like virus 1 to 6 Metaviridae OR537206
. . OR537207 to
Ips quenya-like virus 1 NA OR537209
Ips beny-like virus 1 Benyuviridae OR537210
Colegptergr;( (fgl\ll—lrgated Chuviridae
Lesser knapweed Larinus minutus e i
flower weevil Coleop'teran phenui-related
virus OKIAV293 Phenuiviridae
Coleopteran phenui-related
virus OKIAV287
Maize weevil Sitophilus zeamais USA Coleopteran PRJNA183205 [13]
orthomyxo-related virus Orthomyxoviridae
OKIAV158
. . Diaprepes Coleopteran hanta-related iy
Citrus root weevil abbreviatus virus OKIAV221 Hantaviridae
Gonipterus platensis
. ! NA MT435497, MT43549,
Euca]yptus snout Gonint . bunya—lee virus (GPV) 35 4 35498
pterus spp. Brazil . . [15]
beetle Gonipterus platensis Tymoviridae MT435496
macula-like virus (GPMV) Y
. . Lo . Weevil wasp positive-strand .
Rice weevil Sitophilus oryzae China RNA virus 2 (WWPSRV-2) Iflaviridae MW864601 [16]
Hypera postica associated L
alphaflexivirus (HpaAV) Alphaflexiviridae MW676130
Hypera postica associated
iflavirus 1 (HpalV1) [flaviridae MW676131
Hypera postica associated
iflavirus 2 (HpalV2) MW676132
Hypera postica asgoaated Permutotetraviridae MW676133
permutotetravirus
. . Hypera postica associated . L
Alfalfa weevil Hypera postica France yP sinaivirus Sinhaliviridae MW676134 [17]
Hypera postlca. associated MW676135
sobemovirus 1 Solemoviridae
Hypera postlca. associated MW676136
sobemovirus 2
Hypera poshca associated MW676137
sobemovirus 3
Hypera postica associated
virus 1 (HpaV1) NA MW676138
Cotton boll Anthonomus . Anthonomus grandis .
weevil grandis Brazil iflavirus 1 (AgIV-1) Waviridae OK413669 (18]

NA = not assigned.

2. Materials and Methods
2.1. Insect Collection

Adult specimens of Sphenophorus levis were collected in March 2023 from sugarcane
plantations in the city of Sdo Joaquim da Barra, SP (—20.48266667 S, —47.87330556 W)
(Figure 1), using baits made from sugarcane billets. Groups of live insects collected were
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placed in plastic containers (14.5 x 10.0 x 5.0 cm) with perforated lids and transported by
motor vehicle under controlled conditions (25 °C, complete darkness) for 3 h 30 min to the
Laboratory of Entomology and Phytopathology (LEF) of Embrapa Environment (CNPMA)
in Jaguaritina, SP. Upon arrival, 30 individuals were randomly selected and fasted for 72 h
in a BOD incubator maintained at 25 °C with a 24 h scotophase. The intestines of these
insects were then removed and immediately stored in RN Alater (Sigma-Aldrich, St. Louis,
MO, USA), resulting in 3 pools of 10 intestines each [22]. Samples were frozen at —20 °C,
following the manufacturer’s instructions, until RNA extraction.

Séo Joaquim da Barra municipality |:|
Séo Paulo state [

Brazil [ ]

Minas Gerais

Mato Grosso
do Sul

Parana

geociencias.html). Accessed on 17 June 2025. Basemap: OSM Standard layer accessed via QuickMapServices plugin in QGIS 3.32.2 (© OpenStreetMapcontributors, https:/
www openstreetmap.org). Accessed on 17 June 2025.

Figure 1. Sampling location of Sphenophorus levis adults. Specimens were collected in March 2023
from sugarcane plantations in the municipality of Sao Joaquim da Barra, Sao Paulo state, Brazil.

2.2. Total RNA Extraction, Library Preparation, and Next-Generation Sequencing (NGS)

At the Institute of Biotechnology (IBTEC) of UNESP in Botucatu, SP, total RNA was
extracted from each pool of intestines using a Cell Disruptor (Loccus, Cotia, Sao Paulo,
Brazil) and the Total RNA Purification Kit (Norgen Biotek Corp., Thorold, ON, Canada).
Total RNA was quantified with the Qubit RNA High Sensitivity (HS) Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA) and assessed for integrity using the High Sensitivity
RNA ScreenTape System (Agilent Technologies, Santa Clara, CA, USA). One aliquot of
total RNA from each sample was processed with the NEBNext Poly(A) mRNA Magnetic
Isolation Module (New England Biolabs Inc., Ipswich, MA, USA) for mRNA isolation.
Six RNA-seq libraries were constructed from total RNA (3) and mRNA (3) using the Zymo-
Seq RiboFree Total RNA Library Kit (Zymo Research, Irvine, CA, USA) and sequenced
paired-end using the NextSeq 500/550 High Output Kit v2.5 (150 Cycles) (Illumina) on the
NextSeq 500 system (Illumina, San Diego, CA, USA). All reagents were used according
to the manufacturers’ instructions. To monitor the potential contamination during the
workflow, a negative control consisting of a pool of Cosmopolites sordidus (banana weevil)
specimens was processed in parallel through all steps of nucleic acid extraction, library
preparation, and sequencing.



Viruses 2025, 17,1312

50f18

2.3. RNA-Seq Data Analysis

The obtained sequences were subjected to quality control using the programs FastQC
and MultiQC (https://github.com/s-andrews/FastQC. Accessed on 13 July 2023). Trimmo-
matic v0.39 [23] was used to remove adapter sequences and low-quality reads. High-quality
reads were used for de novo assembly using SPAdes 3.15.2 [24] for RNA sequences [25].
The resulting contigs were subjected to taxonomic classification and relative abundance
calculation using the Read Annotation Tool (RAT) pipeline [26], utilizing the NCBI non-
redundant protein database (nr) (version 2023-11-20). The data obtained were tabulated in
Excel for the preparation of tables and figures. Rarefaction curve analyses were performed
using the vegan R package v.2.7.1 in R [27]. Curves were computed for each library with
100 resampling steps, and richness values (viral families) were plotted as mean =+ standard
error (SE).

2.4. Viral Genome Analysis

Based on the RAT results, contigs with the highest relative abundance—each supported
by more than 200,000 mapped reads and classified as “not assigned (NA)”—were selected
for viral genome assembly. Contigs with minimum threshold of >500 nucleotides and an av-
erage coverage of >20x were aligned using Geneious Prime v. 2025.1.3 (Dotmatics, Boston,
MA, USA), and the longest contigs were subsequently used for molecular characterization
of putative novel viral genomes. Subsequently, putative Open Reading Frames (ORFs)
were identified using ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/. Accessed on
11 November 2024) with a length cutoff of >300 nt. The conserved domains were predicted
using InterProScan (http://www.ebi.ac.uk/interpro. Accessed on 11 November 2024) [28]
on amino acid sequence, as well as Conserved Domain Database (CDD) v. 3.21 and Pfam
v.35 on nucleotide sequences, both with a significance threshold of E-value < 10-3. The
classified contigs were subjected to BLASTx analysis against the non-redundant protein
database (nr) using an e-value cutoff of <10~ to eliminate likely false positives. Potential
novel genomes were further assessed based on their genomic organization and phyloge-
netic topology.

2.5. Phylogenetic Analysis

In order to obtain more insightful information about the classification of the puta-
tive novel viruses, the amino acid sequences of the complete polyprotein or sequences
that exhibiting similarity to RNA polymerase were used to construct phylogenetic trees.
For each set of sequences, a global alignment was performed using MAFFT v7.520 [29],
while phylogenetic tree construction was conducted with IQ-TREE 2 v2.2.0.3 [30] using
ModelFinder parameter for selecting the best statistical model. Bootstrap analysis was
performed with 1000 replications to assess the robustness of the tree. To visualize and edit
the resulting trees, the software FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree.
Accessed on 15 November 2024) was used.

3. Results and Discussion

The number of clean reads obtained from the 3 samples analyzed after the removal
of low-quality reads and adapters ranged from 64,836,018 to 73,325,198 (Table 2). To
improve the chance of viral detection, two RNA sequencing methods were used, mRNA
and Total RNA. Of the total number of reads, 205,722,814 were from mRNA sequencing
and 201,941,280 from total RNA. The total number of assembled contigs and scaffolds
ranged from 49,708 to 89,845, with 151,588 (36.30%) originating from mRNA and 265,960
(63.70%) from total RNA. The number of contigs classified as viruses, 239, was also lower
in the mRNA samples than in the total RNA samples, totaling 39 (16.32%) and 200 (83.68%)
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contigs, respectively. The number of reads from the contigs classified as viral, 1,907,762,
corresponds to 0.47% of the total clean reads, and of these, approximately half were assigned
a taxonomic category.

Table 2. Summary statistics of RNA-Seq libraries, de novo assembly and taxonomic classification by
the RAT.

Assembly Overview Classified as Virus
Sample_ Clean n° n®
Method Reads n° Total . . n° of Contig Length Family/Species
. Contigs Contigs N50  L50 . Reads
Contigs > 10% > 50% Contigs Range (bp) Level (%)
Slevis5_
polyA 66,576,852 49,708 45,113 16,515 1711 4237 12 223-4944 31,708 31,708 (100)
Sleviss_ 64,836,018 88,189 78,445 20,910 1647 5040 69 98-12,414 593,718 291,497 (49.1)
RNAtotal
S:i:{;sﬁ_ 65,820,764 52,098 46,845 16,879 1754 4271 17 170-5513 20,403 20,136 (98.7)
Slevisé_ 66,187,054 87,926 77,964 20,527 1655 4920 60 207-11,578 712,046 329,353 (46.3)
RNAtotal
S:;‘{;SZ_ 73,325,198 49,782 45,249 16,530 1707 4245 10 257-2552 29,589 29,589 (100)
Rsli?lzltic;l 70,918,208 89,845 79,265 20,892 1651 5008 71 73-6746 520,298 274,528 (52.8)
Total 407,664,094 417,548 372,881 112,253 239 1,907,762 976,811 (51.2)
3.1. Virome Composition
Among those classified as viral, 26 contigs, with sizes ranging from 232 to 5256 bp,
corresponding to 930,951 (48.80%) of the “viral” reads, could not be identified by RAT
at any taxonomic level, which reaffirms the fact that very little is known about insect
viruses. Of the remaining 213 contigs, those resulting from 963,752 reads were assigned
to 10 families and six putative species of RNA viruses (98.66%), and from 13,059 reads
to five families and three putative species of DNA viruses (1.34%) (Figures 2 and 3, and
Table 3 and Table S1). As shown by the rarefaction curves of the three samples reaching the
asymptote (Supplementary Figure S1), the sequencing depth was sufficient to capture the
viral community at family level. The family Partitiviridae was observed in samples 5 and
6, Tombusviridae in sample 7, Virgaviridae and Benyviridae in sample 6, and Nudiviridae in
sample 5 only. The remaining 10 families occurred in all samples. The presence of reads
attributed to DNA viruses may be due to the sequencing of both residual DNA and mRNA
in the total RNA extracted from the samples.
Sample 5 Sample 6 Sample 7

m DNA Virus = DNA Virus m DNA Virus

0,
no support no support el

M RNA Virus

# RNA Virus || ®RNA Virus

Figure 2. Percentage of reads either unclassified or assigned to RNA or DNA virus families or species.
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Figure 3. Abundance of reads either assigned or not assigned (NA) to various viral families, in both
treatments of each analyzed sample.

Table 3. Characteristics of the genome and hosts of the viral families observed in S. levis.

Family Genome Genome Size Host Range
Partitiviridae [31] linear bipartite dsRNA 3-4.8 kbp Plants, fungi and protozoa
Totiviridae [32] linear monopartite dsSRNA 4.6-6.7 kbp Fungi and protozoa
iy linear or circular, monopartite or Arachnids, barnacles,
Chuviridae [33] . . 9.1-12.2 kb crustaceans, insects, fish and
bipartite ssSRNA(—) .
reptiles
Aliusviridae [33] linear monopartite ssSRNA(—) 9.9-15.3 kb Insects
Phasmaviridae [34] linear tripartite sSRNA(—) 9.7-15.8 kb Insects
Orthomyxoviridae [32] linear multipartite ssSRNA(—) ~13.5 kb Aquatic birds, human, pig,

horse and seals

linear monopartite or bipartite Vertebrates, invertebrates

Rhabdoviridae [35] sSRNA(—) 10-16 kb and plants
. linear monopartite or bipartite
Tombusviridae [32] sSRNA(+) 3.7-4.8 kb Plants
) . linear monopartite or multipartite
Virgaviridae [36] sSRNA(4) 6.3-13 kb Plants
Benyuviridae [37] linear multipartite ssSRNA(+) ~15.8 kb Plants
multiple copies of segmented Parasitoid wasps
Polydnaviriformidae [32] whp pies of 8¢ ! 150-250 kbp (Ichneumonidae and
circular supercoiled dsDNA Braconidae) of Lepidoptera
Eupolintoviridae [38] linear dsDNA 15-40 kbp Eukaryotic genomes
Iridoviridae [39] linear dsDNA 140-303 kbp Fiff;e iggi‘g’gﬂ;ﬁgﬂ?
Nudiviridae [40] circular dsDNA 96-232 kbp Insects and crustaceans
Parvoviridae [41] linear ssDNA 4-6 kb Vertebrates and

invertebrates
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Despite occurring in two of the three samples analyzed, the highest abundance of reads
among those categorized into families was classified as Partitiviridae, which corroborates
the findings for the alfalfa weevil Hypera postica (Coleoptera: Curculionidae), where only
Iflaviridae was more abundant [17]. Partitiviridae are associated with latent infections of
their fungal, protozoan, and plant hosts, and there are no known natural vectors [31].
However, among the unclassified Partitiviridae, there are those observed in insects. A high
viral abundance, represented by 11,419 reads, was detected in the total RNA library from
sample 6 and was classified by RAT as homologous to Drosophila biauraria male-killing
partitivirus 1 (Table S1), a maternally inherited virus belonging to the family Partitiviridae
(designated DbMKPV1) that was reported to induce male-killing in Drosophila (Diptera:
Drosophilidae) [42]. Totiviridae are also dsRNA viruses and similarly associated with latent
infections of their fungal or protozoan hosts.

Among the ssSRNA(—) viruses, Chuviridae and Aliusviridae belong to the order Jingchu-
virales [33,43] and, together with Phasmaviridae, are families of insect viruses observed
in the total RNA of the three studied samples. Chuviridae was discovered using viral
metagenomics, and the virion is unknown, presumably non-enveloped. Viral sequences
homologous to the unclassified Coleopteran chu-related virus OKIAV151 were obtained
from total RNA libraries, with a total of 4608 reads mapped (Table S1). This virus was
also observed in Larinus minutus (Coleoptera: Curculionidae) [13], a weevil that has been
released in the USA as part of a biological control program to manage spotted and diffuse
knapweed (Centaurea maculosa Lam. and C. diffusa Lam.) [44]. Phasmaviridae are viruses
maintained in and/or transmitted by blattodean, coleopteran, dipteran, hemipteran, hy-
menopteran, neuropteran, and odonatan insects [34]. Viral abundances were assigned
to the family Phasmaviridae, with 2106 reads mapped from total RNA libraries. Among
these, 1339 reads, detected exclusively in samples 5 and 6, exhibit homology to the genus
Orthophasmavirus (Table S1).

Orthomyxoviridae and Rhabdoviridae are also ssSRNA(—). The former have a wide range
of hosts, including invertebrates, and are associated with acute febrile respiratory tract
infections and zoonosis. Viral abundances were assigned to the family Orthomyxoviri-
dae with 1279 reads mapped, including 1137 reads showing similarity to Coleopteran
orthomyxo-related virus OKIAV200 (Table S1). This virus was also found in the transcrip-
tome of the weevil Ips typographus (Coleoptera: Curculionidae) [13], which is one of the
most economically important species associated with spruce in Central Europe [12]. The
family Rhabdoviridae is ecologically diverse, with members infecting plants or animals,
including mammals, birds, reptiles, amphibians, or fish. Rhabdoviruses are also detected
in invertebrates, including arthropods, some of which may serve as unique hosts or may
act as biological vectors for transmission to other animals or plants [35].

Tombusviridae, Virgaviridae, and Benyviridae are ssSRNA(+) families of plant viruses.
Numerous tombus-related viruses have recently been described in non-plant hosts, such as
marine invertebrates and terrestrial arthropods [45]. These viruses exhibit a high degree of
genetic diversity and branch basal to the plant-associated Tombusviridae [46] CPMoV (cow-
pea mottle virus), bean mild mosaic virus, and TCV (turnip crinkle virus) are transmitted
by beetles (Coleoptera) [32]. Three distinct tombus-like viruses—Ips tombus-like viruses 1,
2, and 3,—two different virga-like viruses—Ips virga-like viruses 1 and 2—and one partial
sequence affiliated with beny-like viruses, named Ips beny-like virus 1, were identified
in the RNA-Seq library of the European spruce bark beetle, Ips typographus (Coleoptera:
Curculionidae) [14].

Endogenous viral elements (EVEs) are viral genomes or fragments of viral genomes
of non-retroviral origin that are integrated into the genomes of their hosts. The currently
known insect EVEs belong to at least 28 viral families [47]. Polydnaviriformidae are viruses
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of parasitic Lepidoptera wasps (Ichneumonidae and Braconidae), which are vertically
transmitted to their offspring. The wasp injects one or more eggs into its host along with
a quantity of virus which does not replicate (non-replicative host) but the expression of
viral genes prevents its immune system from killing the wasp’s egg and causes other
physiological alterations that ultimately cause the parasitized host to die [48]. From the
total RNA and mRNA enrichment of the three samples analyzed, 5368 reads were attributed
to the Bracoviriform facetosae.

Eupolintoviridae is a new family name for Polintons, also known as Mavericks, connot-
ing similarities to adenovirus virion proteins and the presence of a retrovirus-like integrase
gene. Many polintons encode possible capsid proteins and viral genome-packaging AT-
Pases, supporting the inference that at least some polintons are viruses capable of cell-to-cell
spread [49]. Of the 2363 reads identified as belonging to the family Eupolintoviridae, 2073
were attributed to Drosophila-associated adintovirus 2 and were detected exclusively in
total RNA libraries. Extended bracovirus sequences, including Bracoviriform facetosae, were
also found in the reference genome of the Colorado potato beetle, Leptinotarsa decemlin-
eata (Coleoptera: Chrysomelidae), and in the genomes of several other representatives of
Coleoptera. The presence of bracovirus sequences in the genetic material isolated from
both imago and larval insect tissues, as well as from sterile eggs of L. decemlineata, was
demonstrated, suggesting the integration of bracovirus genomic sequences within the
Colorado potato beetle genome. Additionally, in this Coleoptera, more than 1000 contigs,
primarily obtained from genomic data, were annotated as belonging to different members
of the family Eupolintoviridae. The alignments indicate homology not only in terms of
retrovirus-like integrase and polymerase B but also in terms of structural proteins of the
family Eupolintoviridae [38,50]. Drosophila-associated adintovirus 2 was also described in
Drosophila collected in Austria [51] and observed in sequences derived from bat feces [52].

Although reads were also mapped to other double-stranded DNA virus families,
their abundances were considerably lower than Polydnaviriformidae and Eupolintoviridae.
Among these were Iridoviridae and Nudiviridae, which infect invertebrates, represented by
348 and 121 mapped reads, respectively. Members of both families have been studied for
biological control purposes. Invertebrate Iridescent Virus 6 (IIV6), also referred to as Chilo
Iridescent Virus (CIV), has been studied as a potential biological control agent, including
for the boll weevil, Anthonomus grandis (Coleoptera: Curculionidae), and for Phyllophaga
vandinei (Coleoptera: Scarabaeidae), a pest of tropical fruit trees [19,53,54]. The Oryctes
Rhinoceros Nudivirus (OrNV), in turn, has been successfully used in the control of the
Coconut rhinoceros beetle Oryctes rhinoceros L. (Coleoptera: Dynastidae), one of the major
pests of coconut and oil palms in the Asia-Pacific region [55].

Of the 976,811 reads assigned by RAT to RNA and DNA virus families based on highest
similarity, approximately 0.1% (981) were classified as belonging to ssDNA virus, including
members of the family Parvoviridae. The two subfamilies, Parvovirinae and Densovirinae, are
distinguished primarily by their respective ability to infect vertebrates (including humans)
versus invertebrates. An outbreak of densovirus with high mortality was recently described
in a commercial farm of Tenebrio molitor (Coleoptera: Tenebrionidae) [56].

3.2. Characterization of Novel Viral Genomes
3.2.1. Sphenophorus Levis Associated Virus (SLAV)

The deduced viral genome of a picorna-like virus, provisionally named Sphenophorus
levis associated virus (SLAV), is 12,414 nt long and was assembled from 65,754 reads from
sample 5 (total RNA library), showing a mean coverage of 381 x and a maximum coverage
of 1853 x. The BLASTx analysis showed 32.62% of identity (Query Cover: 68%; E. value: 0.0)
with Hypera postica associated virus 1 (Genbank accession number: MW676138), which was
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described in Hypera postica (Coleoptera: Curculionidae), a weevil that primarily feeds on
alfalfa (Medicago sativa) [17]. In total, 17 additional contigs ranging from 170 to 11,578 bp
were recovered from total RNA and mRNA enriched libraries from all samples, showing
98.8% and 100% of identity with SLAV.

The SLAV genome included a single open reading frame (ORF) encoding a 4071 amino
acid product. Conserved structural domains typically found in members of the Picornavi-
rales order were identified, including the RNA helicase, RNA-dependent RNA polymerase
(RdRp), protease and picornavirus capsid protein domain-like (RHV) (Figure 4A).
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Figure 4. (A) Graph of depth coverage per base position and genetic structure of Sphenophorus
levis associated virus. RNA helicase, RARp; RNA-dependent RNA polymerase, RHV-like; (B) The
maximum likelihood phylogenetic tree of Sphenophorus levis-associated virus and previously reported
members of the order Picornavirales based on amino acid sequences of polyprotein. The phylogenetic
tree was reconstructed using the best-fit model chosen according to BIC (Q.fam + F + I + I + R5)
determined by ModelFinder. The bootstrap analysis consisted of 1000 replicates, and the virus
reported in this study is marked in red. Scale bar represents the number of amino acid substitutions
per site.

To investigate the genetic relationships between SLAV and other arthropods and
plant viruses belonging to the Picornavirales order, a phylogenetic tree was constructed
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based on the complete coding region of SLAV and 44 sequences from viruses belonging
to the families Solinviviridae, Secoviridae, Iflaviridae, and unclassified picorna-like viruses.
Phylogenetic analyses based on amino acid sequences indicated that SLAV has a close
relationship with unclassified ssSRNA viruses, such as Hypera postica associated virus
1 (Genbank accession number: MW676138) [17] and Diabrotica undecimpunctata virus 1
(Genbank accession number: MN646770), found in that spotted cucumber beetle [57]
forming an unclassified group closely related to members of the family Solinviviridae
(Figure 4B). It is also included in this last family the Diabrotica virgivera virgivera virus 2,
identified in the Western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera:
Chrysomelidae), known to cause severe economic losses in maize.

Viruses belonging to the order Picornavirales are frequently described in arthropods,
with picorna/calici-like viruses representing a significant proportion of the viral reads
detected in viromes of the class Insecta [45], as observed for SLAV, which total RNA libraries
showed a relative abundance of reads mapped ranging from 28,654 to 66,987.

3.2.2. Sphenophorus levis Reo-like Virus (SLRV)

Two monocistronic genome segments with similarity to VP1 and VP2 proteins of a
member of the order Reovirales were found by RAT in the total RNA libraries of all three
samples. Through manual curation of unclassified contigs at the “viruses” superkingdom
level, as well as from total RNA libraries, we identified two additional putative reovirus
genome segments that likely encode VP6 and VP7 proteins. Pairwise nucleotide identity
analysis showed that the segments found in different pools are highly similar—99.4%
(4354 bp and 4377 bp), 99.3% (3279 and 3885 bp), 98.7% (2162 bp and 2147 bp) and 99.04%
(1984 bp and 2017 bp). These correspond to the largest contigs encoding VP1 (4361 bp),
VP2 (3907 bp), VP6 (2171 bp), and VP7 (2021 bp), respectively; therefore, the latter contigs
(Figure 5A) were used to characterize the novel viral genome detected in the RNA library.

The contig homologous to VP1 was assembled from 216,239 reads mapped from
sample 6 (total RNA library), showing a mean coverage of 4386 x and a maximum coverage
of 14,946 x. In contrast, the longest contigs with homology to VP2, VP6 and VP7 were
assembled from sample 7 (total RNA library). The putative VP2 segment was assembled
from 99,596 mapped reads, with a mean coverage of 1846 x and a maximum coverage of
5746. The putative VP6 segment was assembled from 49,029 reads mapped with a mean
coverage of 1648 x and a maximum coverage of 6172 x. Finally, the putative VP7 segment
was assembled from 56,005 reads with a mean coverage of 1648 x and a maximum coverage
of 9393 x (Figure 5A).

The BLASTx analysis of all viral segments revealed similarity with the Berke-Baary
Melophagus reo-like virus, previously described in the sheep ectoparasite Melophagus
ovinus (Diptera: Hippoboscidae) from Russia [58]. The percentage of amino acid iden-
tity was 34.06% (Genbank accession number: UJG27935.1, Query Cover: 82%, E-value:
9 x 10%) and 30.97% (Genbank accession number: UJG27936.1 Query Cover: 86%, E-
value: 7 x 107193) for VP1 and VP2, respectively. VP6 and VP7 showed 23.74% (Genbank
accession number: UJG27940.1 Query Cover: 85%, E-value: 00) and 30.7% (Genbank
accession number: UJG27941.1, Query Cover: 82%, E-value: 2 x 10~%) of amino acid
identity, respectively.
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Figure 5. (A) Graph of depth coverage per base position and genomic organization of putative
VP1, VP2, VP6, and VP7 genomic segments from Sphenophorus levis reo-like virus (B) The maximum
likelihood phylogenetic tree of Sphenophorus levis reo-like virus and previously reported members
of the Spinareoviridae family based on amino acid sequences of RdRp. The phylogenetic tree was
reconstructed using the best-fit model chosen according to BIC (Q.fam + F + I + I + R5) determined
by ModelFinder. The bootstrap analysis consisted of 1000 replicates, and the virus reported in this
study is marked in red. The scale bar represents the number of amino acid substitutions per site.

The partial genome of the provisionally named Sphenophorus levis reo-like virus (SLRV),
comprising four genomic segments, belongs to the order Reovirales. To investigate the ge-
netic relationship among SLRV and other reoviruses, a phylogenetic tree was constructed
based on the amino acid sequence of the putative RARp segment, using 54 prototype
sequences (Figure 5B). The phylogenetic analysis demonstrated that SLRV forms a diver-
gent branch in Spinareoviridae family, closely related to the clade composed of unclassified
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reoviruses identified in Diptera, such as Hubei diptera virus 20 (Genbank accession num-
ber: KX884693) [45] and Ceratitis capitata reo-like virus 1 (Genbank accession number:
OL957310) [59], as well as reoviruses identified in animal samples, including Bloomfield
virus, isolated from fecal samples of wild mice (Genbank accession number: MF416371) [60],
and the Burke-Barry Melophagus reo-like virus (Genbank accession number: OL420682
and OL420692) [58] already mentioned. Additionally, the unclassified reoviruses group
appears to form a sister clade to the genus Fijivirus.

Currently, the family Spinareoviridae comprises nine genera and 58 species recognized
by the ICTV [61]; however, novel viral genomes have been frequently described in metage-
nomic studies [62], and many of them remain unclassified, highlighting an as-yet unknown
diversity within the order Reovirales. Regarding members of the genus Fijivirus, only the
species Nilaparvata lugens reovirus—NLRV (Fijivirus nilaparvatae) is recognized as replicating
exclusively in insects [63]. Other members of the genus can infect plants, with insects
serving as the main vectors of infection [64]. Although we have not determined all the
segments of SLRYV, its average GC content was 41.8%, which differs from that observed in
members of the Fijivirus genus, whose GC content ranges from 34% to 36% [64].

3.2.3. Sphenophorus levis Tombus-like Virus (SLTV)

The deduced viral genome provisionally named Sphenophorus levis tombus-like virus
(SLTV) belongs to the order Tolivirales. It is 4065 nt in length and was assembled from
114,441 reads obtained from sample 6 (Total RNA seq 6), with an average coverage of 1955 x
and a maximum coverage of 9123 x. Additional contigs from samples Total RNA seq 5 and
Total RNA seq 7 (ranging from 1657 to 4085 bp) were also classified as Riboviria sp. and,
due to a pairwise identity of 99.1% when compared to SLTV, were considered to represent
the same viral genome.

The SLTV genome contains four open reading frames (ORFs): ORF1 (954 bp; 317 amino
acids), ORF2 (1548 bp; 515 aa), ORF3 (771 bp; 256 aa), and ORF4 (672 bp; 223 aa) (Figure 6A).
ORFs 1 and 4 encode hypothetical proteins with no detectable similarity to known pro-
teins in BLASTx. The BLASTx analysis of ORF2 revealed 64.67% identity to Riboviria sp.
(Genbank accession number: WKV34284.1, Query Cover: 97%, E-value: 0.0) identified in a
bird metagenome [65], and 52.33% identity to Soybean thrips tombus-like virus 3 (Genbank
accession number: QP18784.2, Query Cover: 90%, E-value: 1 x 10~161). The ORF3 also
showed 39.33% identity to Soybean thrips tombus-like virus 5 (Genbank accession number:
QQP18796.1, Query Cover: 58%, E-value: 3 x 1073%), both detected in Neohydatothrips
variabilis collected in the USA in 2018 [66]. It also showed 42% identity to Coleopteran
tombus-related virus (Genbank accession number: QTJ63624.1 Query Cover: 58%, E-value:
1 x 10) described in Ips typographus collected in Germany in 2012 [46].

Conserved domains were found, the ORF2 encodes the catalytic core domain of the
RNA-dependent RNA polymerase (RdRp) from the Calvusvirinae subfamily (cd23234; E-
value: 1.25 x 10~2). However, viruses belonging to the genus Umbravirus—the only genus
described so far within this subfamily—do not encode a coat protein (CP) [67], in contrast
to what is observed in SLTV, whose ORF3 encodes a capsid protein containing the S domain
(PF00729; E. value: 3.12 x 10~%), which is shared by a wide range of viral capsid proteins,
including those of the genus Tombusvirus. Although the overall genome organization of
SLTV resembles that of members of the Tombusviridae family, no evidence was found for a
translational readthrough mechanism or ribosomal frameshifting that would resultina —1
reading frame shift between ORF1 and ORF2, or for the presence of amber stop codons in
ORF1 that would lead to the expression of a larger protein encoding the RdRp [32]
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Figure 6. (A) Graph of depth coverage per base position and genetic structure of Sphenophorus levis
tombus-like virus. (B) The maximum likelihood phylogenetic tree of Sphenophorus levis tombus-like
virus and previously reported members of the Tombusviridae family based on amino acid sequences
of RdRp. The Flock House virus was used as an outgroup. The phylogenetic tree was reconstructed
using the best-fit model chosen according to BIC (LG + I + G) determined by ModelFinder. The
bootstrap analysis consisted of 1000 replicates and the virus reported in this study is marked in red.
Scale bar represents the number of amino acid substitutions per site.
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The genome of SLTV contains regions with overlapping ORFs, similar to tombus-
like viruses described in insect transcriptomes [46]. The phylogenetic analysis based on
amino acid sequences of RdRp domain (Figure 6B) demonstrated the close relationship
between Sphenophorus levis tombus-like virus and unclassified members of Tombusviridae,
such as Soybean thrips tombus virus 3 (Genbank acession number: MT240790) detected
in Neohydatothrips variabilis (Thysanoptera: Thripidae), as well as Hymenopteran tombus-
related virus (Genbank accession number: MW208794) described in the wasp Alastor atropos
(Hymenoptera: Eumenidae) [46]. The clade also includes Sclerotinia sclerotiorum umbra-like
virus 1 (Genbank accession number: NC_030203), an unclassified umbravirus described in
a fungal plant, the white mold Sclerotinia sclerotiorum [68] (Figure 6B).

4. Conclusions

This study revealed, for the first time, the viral community associated with the sug-
arcane weevil, a pest of great economic importance to Brazilian sugarcane crops. The
discovery of novel viral genomes, along with the high viral abundance, suggests the possi-
bility of viral replication in these hosts and highlights an as-yet-undescribed viral diversity
associated with these curculionids. These studies reveal promising avenues for identifying
potential biological control agents targeting Sphenophorus levis. However, further studies
are needed to assess the diversity of the viral community in different populations of S. levis
and throughout its developmental stages. Still, continued research is essential to investigate
the potential and applicability of these viruses in integrated pest management strategies.
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/ /www.mdpi.com/article/10.3390/v17101312 /51, Supplementary Table S1: Reads assigned by RAT
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S1: Rarefaction curves of viral communities at the family level (mean + SE), classified using RAT.
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