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ABSTRACT

The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is one of the most critical agricultural pests,
causing economic damage globally due to its wide range of fruit hosts. Conventional insecticides have brought environmental,
human health, and resistance challenges, driving interest in semiochemicals as sustainable pest management alternatives.
Potential molecular attractants can be assessed experimentally through methods such as electroantennography (EAG) or
behavioral assays. Odorant Binding Proteins (OBPs) have been recognized as crucial mediators in detecting these chemical
signals. Although isolated compounds can provide mechanistic insights, volatile blends more accurately reflect natural con-
ditions and typically elicit stronger behavioral responses. However, designing effective blends is challenging due to their
complexity and regulatory limitations. Therefore, curated molecular databases of potential attractants become essential to
accelerate the discovery and reduce cost in research programs, both in vitro and in vivo tests. The in silico molecular ap-
proaches, including Molecular Docking, Molecular Dynamics (MD) and Quantitative Structure-Activity Relationships (QSAR),
offer cost-effective methods to prioritize candidates and/or understand ligand-OBP interactions. In this study, computational
methodologies including Machine Learning (ML) based QSAR, molecular docking and MD simulations were integrated to
highlight molecular features of standard molecules and identify potential attractors for C. capitata, which are expected to be
good OBP binders. Initially, was applied a Bee Colony Algorithm, combined with an final XGBoost Machine Learning model,
enabled the identification of five essential molecular descriptors to explain the attractant effect of 20 standard compounds
recognized in the literature. Applying this model to an online database of natural products from Brazil (NuBBE—Nuclei of
Bioassays, Ecophysiology and Biosynthesis of Natural Products Database), 206 molecules were identified from over 2000
candidates. In a parallel front of investigation, docking-based virtual screening was performed using the same NuBBE database.
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Most promissory compounds were discussed based on binding energy, structure/geometry focusing on interactions and esti-

mated volatility, through the evaluation of vapor pressure. MD simulations with the gold standard compound (E,E)-a-farnesene

provided insights into ligand-protein interactions. Interestingly, 16 of the top 20 ranked compounds after dockings were
predicted as attractors by the XGBoost model. Finally, the curated database of 206 compounds, the great contribution of this
paper (beyond the model), can be used to assertively select molecules for experimental tests of future blends or isolated

compounds.

1 | Introduction

The Mediterranean fruit fly, Ceratitis capitata (Wiedemann)
(Diptera: Tephritidae), is globally recognized as one of the most
concerning agricultural pests (Liquido et al. 2017; Malacrida
et al. 2007). Its remarkable ecological adaptability and polyph-
agous capacity, attacking approximately 400 fruit varieties,
classify it as an invasive pest. The insect impacts significantly
the fruit production, both through direct damage and facilitat-
ing preharvest infections. In Brazil, particularly in the North-
east and Southeast regions with intense fruit cultivation, C.
capitata represents one of the economically most relevant pests,
complicating exports and requiring quarantine measures (Haji
et al. 1991; Araujo et al. 2022).

Conventional pest control in Brazil is predominantly chemical,
relying on synthetic insecticides such as organophosphates and
pyrethroids. However, indiscriminate pesticide use raises en-
vironmental concerns, human health issues, and insect resist-
ance (Isman 2020). As an alternative, biological control of
Ceratitis capitata has focused mainly on the use of parasitoids
and sterile insect technique (SIT). Parasitoids such as Dia-
chasmimorpha longicaudata have been successfully released in
several regions, reducing fruit fly populations through natural
parasitism (Montoya et al. 2000). The SIT, based on the mass
release of sterile males, has also been applied in integrated
programs worldwide, showing strong effectiveness when com-
bined with other measures (Enkerlin et al. 2015). More modern
strategies include the use of genetic technologies, such as
transgenic strains with conditional lethality or CRISPR-based
gene drives to suppress pest populations (Alphey 2014; Raban
et al. 2023). In addition, semiochemical-based strategies
(pheromone dispensers as well as attract-and-kill formulations)
represent environmentally sustainable tools complementing
classical control. These advances illustrate a shift toward pre-
cision, environmentally friendly, and target-specific approaches
in fruit fly management. The semiochemicals are signaling
compounds produced and released in minimal amounts, mod-
ulating essential insect behaviors such as food identification,
oviposition site selection, and partner location (Witzgall
et al. 2010). Manipulating chemical communication through the
identification of new attractants (or repellents) can offer a
promising and environmentally sustainable approach for fruit
fly population control.

Olfactory sensitivity is crucial for insect survival and repro-
duction. Odorants, including pheromones (produced by insects
for intersexual communication, such as the (E,E)-a-farnesene
released by male C. capitata), and host plant volatiles, are
detected by antennal olfactory sensilla. Odor perception
involves Odorant Binding Proteins (OBPs), small extracellular

proteins highly abundant in the sensillar lymph of antennae
(Pelosi et al. 2014). OBPs bind hydrophobic odorants, trans-
porting them to Olfactory Receptors (ORs) located in the den-
dritic membranes of olfactory sensory neurons, converting
olfactory signals into behavioral responses. OBPs also act as the
initial molecular filter for semiochemical discrimination. The
3D structure of OBP from Ceratitis capitata (PDB ID: 6HHE) is
available and is known for its high expression in females and its
role in intersexual olfactory communication (Siciliano
et al. 2014). Structurally, insect OBPs contain a domain of six -
helices forming a hydrophobic cavity stabilized by disulfide
bridges, while C. capitata OBP has an additional seventh
C-terminal o-helix enhancing its binding cavity (Falchetto
et al. 2019).

Although testing isolated compounds can offer mechanistic
insights, the behavioral responses of C. capitata are often
stronger when exposed to volatile blends, which more accu-
rately reflect natural odor profiles (Ng et al. 2021). These blends
tend to act synergistically, but their formulation and validation
remain complex due to the diversity of natural emissions and
regulatory constraints. Therefore, the availability of curated
databases containing molecules with known or predicted
olfactory activity is essential to accelerate the discovery of new
attractants. In this context, in silico strategies such as molecular
docking, virtual screening, and Quantitative Structure-Activity
Relationship (QSAR) modeling are powerful tools to prioritize
candidate ligands, investigate their interactions with OBPs, and
support the rational design of behavioral assays (Ouabane et al.
2023; Ouabane, Zaki, Alagarbeh et al. 2024; Naanaai et al. 2025;
Zaki et al. 2024).

Machine Learning (ML) algorithms can be integrated to model
and predict the relationship between molecular descriptors and
biological activity, guiding compound selection more efficiently
(Wu et al. 2021; Oliveira Neto et al. 2025; Ouabane, Zaki, Tabti
et al. 2024), characterizing a QSAR. Feature selection plays a
critical role in QSAR modeling, by reducing dimensionality and
improving model generalization. Among modern heuristic
strategies, the Artificial Bee Colony (ABC) algorithm has gained
attention due to its effectiveness in exploring large and complex
search spaces, mimicking the intelligent foraging behavior of
honeybee swarms (Lin et al. 2021). When combined with Best-
First Search (BFS), a greedy algorithm that prioritizes descriptor
subsets with optimal evaluation scores, this hybrid method
enables the identification of a reduced yet highly informative set
of molecular descriptors.

For model training, eXtreme Gradient Boosting (XGBoost) has
emerged as a powerful ML algorithm for classification tasks in
cheminformatics. It is based on an ensemble of decision trees
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Summary

+ Bee Colony + Best First Search algorithms demonstrated
high variable filtering power, followed by a XGBoost
QSAR model with excellent validation parameters for
predicting natural attractants of Ceratitis capitata
medfly.

Structure-based virtual screening (docking and molec-
ular dynamics) in the NuBBE natural products database
identified potentially promising compounds and had
good correspondence with the QSAR results.

The application of the Machine Learning-based QSAR
model to the NuBBE natural products database (> 2000
compounds) allowed the construction of a database of
365 molecules classified as potential attractants, 206 of
which had a higher probability (> 0.7), for in vitro and
in vivo tests.

trained sequentially to minimize classification error, offering
high performance, scalability, and resilience to overfitting
(Chen and Guestrin 2016). The integration of ABC-BFS feature
selection and XGBoost modeling reflects the state-of-the-art in
QSAR workflows, enhancing both interpretability and predic-
tive accuracy in virtual screening studies.

In another perspective, Structure-Based Virtual Screening
(SBVS) enables selecting compounds from large databases with
high interaction potential for target proteins. Molecular dock-
ing, central to SBVS, predicts the preferred conformation and
orientation of a ligand in the binding site of a macromolecule,
calculating their binding energies (Meng et al. 2011; Zrinej
et al. 2025). To validate and refine docking outcomes, Molecular
Dynamics (MD) simulations evaluate the temporal profiles of
ligand-target complexes, accounting for their flexibility and
aqueous environment interactions, providing more accurate
analysis (Hollingsworth and Dror 2018; Naanaai et al. 2024).

This study aimed to build a database of Brazilian natural prod-
ucts predicted as most likely attractors for Ceratitis capitata, also
making notes on chemical affinity in OBP and structure-activity
relationships. A Bee Colony Optimization algorithm, combined
with XGBoost machine learning model, was applied to a data set
of standard attractants and related compounds, resulting in a
QSAR model that identified five important molecular descriptors
to discriminate attractant and non-attractant small compounds.
This model was used to determine 206 promising natural com-
pounds from an initial pool of over 2000 from NuBBE online
database, being suitable for experimental validation either indi-
vidually or as components of attractant blends. Additionally,
virtual screening via molecular docking was performed in the
same NuBBE database to verify the compounds with the greatest
affinity for the OBP of Ceratitis capitata, comparing the structure-
based results with the ligand-based ones. Specific objectives
included identification of promising compounds, analysis of
intermolecular interactions, and perform molecular dynamics
simulations to refine inferences with the standard attractant
((E,E)-a-farnesene).

The machine learning method proved to be powerful in dis-
criminating attractor compounds and, together with the

generated database (206 compounds), can be used in the
arduous task of identifying potential compounds and under-
standing the semiochemical mechanism for Ceratitis capitata.

2 | Computational Procedures
2.1 | Ligand-Based Approaches
2.1.1 | Training Data Set Selection

A total of 45 compounds were used for training Machine
Learning model (Table 1). Among them, 29 molecules were
retrieved from an specific paper (Tabanca et al. 2019), com-
prising aromatic compounds previously reported in olfactory or
behavioral assays against Ceratitis capitata. An additional 16
structurally similar or functionally relevant compounds were
selected through a comprehensive literature search in databases
such as PubChem (Kim et al. 2023), SciFinder, and Scopus,
focusing on volatiles with reported insect semiochemical
activity (Siciliano et al. 2014; Falchetto et al. 2019; Tabanca
et al. 2019; Tan et al. 2014; Ohinata et al. 1979; Jacobson
et al. 1973; Baker et al. 1990; Merli et al. 2018). In the paper by
Tabanca et al. (2019), only four compounds were considered
attractants. Together, 20 active molecules and 25 inactive
molecules were used for training. The first set was assigned
with the binary classifier 1 (attractant) and the second 0
(non-attractant).

2.1.2 | Molecular Descriptors Calculations

All the 45 compounds were converted to three-dimensional
molecular structures using ChemSketch software (ACD/
Labs 2022). Geometry optimizations were performed at PM3
semiempirical quantum level (Stewart 1989). The resulting
structures were submitted to Dragon 7.0 software (Talete 2025)
for the calculation of molecular descriptors. Only descriptors
that were defined for all the compounds and exhibited any
variance were retained. Then, a total of 2217 descriptors were
initially obtained, covering topological, geometrical, electronic,
and hybrid categories.

2.1.3 | Features Selection

To reduce dimensionality and select the most informative
variables, the Bee Colony Optimization (BCO) algorithm
(Random Forest based) was employed at Google Colab en-
vironment (Google 2025), using Python 3.10, scikit-learn and
xgboost libraries. A k-fold cross validation was made here using
k=5. The BCO was used in combination with a Best-First
Search (BFS) wrapper strategy to select subsets of descriptors
with highest relevance for classification. This approach was
recently applied by Lin et al. (2021), who demonstrated that a
Artificial Bee Colony (ABC) algorithm, combined with greedy
wrapper strategies, improves descriptor selection in QSAR
modeling.

All the python based codes applied at Google Colab environment
(Google 2025), used in this and in the next topics of the Machine
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Learning analysis, are available at GitHub (https://github.com/
rosalvoneto/supporting-material-insect-biochem-2025).

2.1.4 | Model Training and Validation

A selected subset of five molecular descriptors was used to train
a binary classification model using the XGBoost algorithm
(Chen and Guestrin 2016). Model development included five-
fold cross-validation and hyperparameters: n_estimators = 10;
max_depth = 2; learning rate =0.1; subsample =0.8; colsam-
ple_bytree = 1.0; reg_alpha =0.1; reg_lambda = 1.0; use_label
encoder = False; eval_metric = “logloss”; random_state = 42.
Internal validation metrics included: Accuracy, Sensitivity,
Specificity and the Area Under the ROC Curve (AUC).
Reinforcing this information, the model was built and tested in
a Google Colab environment, and all scripts were written in
Python using pandas, numpy, xgboost, sklearn, and matplotlib.

2.1.5 | Prediction and Output Evaluation

The trained model was used to predict the biological class
(attractant/non-attractant) of the molecules downloaded from
NuBBE (Pilon et al. 2017) database, in the.mol format. NuBBE
(Nucleus of Bioassays, Biosynthesis and Ecophysiology of Natu-
ral Products) is a research group that maintains an online data-
base containing > 2200 molecules isolated from Brazilian plants,
with a focus on the bioprospecting of compounds with biological
potential. The five molecular descriptors were obtained by
Dragon 7, the classifications as well as the resulting probabilities
were interpreted as the model's confidence in each classification.

The use of a natural product database for ligand and structure-
based virtual screening for Ceratitis capitata is grounded in both
evolutionary rationale and practical advantages for sustainable
pest management. Natural compounds, particularly those
derived from plants, represent chemically diverse scaffolds that
have co-evolved with biological systems over millions of years.
This coevolution has led to structural compatibility between
plant volatiles and insect olfactory receptors, making natural
products highly relevant candidates for modulating insect
behavior (Wink 2003; Bakkali et al. 2008).

Moreover, natural products offer advantages in terms of en-
vironmental safety and biodegradability, aligning with the goals
of integrated pest management (IPM) and sustainable agricul-
ture (Isman 2020). Unlike many synthetic insecticides, plant-
derived compounds often exhibit lower toxicity to nontarget
organisms and reduced persistence in ecosystems. Using a
curated virtual library such as NuBBE, which contains struc-
turally diverse molecules isolated from Brazilian flora, enables a
rational, targeted, and eco-conscious approach to developing
new attractants for C. capitata.

2.2 | Structure-Based Approaches
2.21 | Target Protein Preparation

The three-dimensional structure of the Ceratitis capitata
Odorant Binding Protein (OBP), PDB code 6HHE, was obtained

from the Protein Data Bank (RCSB PDB 2024; Berman 2000).
This macromolecule was chosen because it is the only one from
the fruit fly (Ceratitis capitata) with a crystallographic structure
available in the PDB, ensuring greater reliability for docking
and ligand design, in the initial perspective of this paper. Pro-
tein preparation involved the removal of water molecules using
Chimera software (Pettersen et al. 2004) and the calculation of
electrostatic analysis with pH adjustment to 6.5, considered
optimal for macromolecule interaction, via the ABPS virtual
platform (Jurrus et al. 2018). The grid box dimensions for
docking were defined using the graphical interface of AutoDock
Tools (Morris et al. 2009), with coordinates X = 18.082A,
Y =3.943A, and Z=—7.219A, and a box size of 20 x 20 X 204,
with the standard Vina spacing of 1.0A, at light of the defini-
tions for the binding site of OBP present in the work of
Falchetto et al. (2019). Although the OBP 6HHE did not contain
co-crystallized ligands for redocking, (E,E)-a-farnesene was
selected as a reference molecule for comparisons of binding
energy and most important amino acid residues in the
recognition, based on evidence from the literature (Falchetto
et al. 2019; Guimardes et al. 2025).

2.2.2 | Molecular Docking Virtual Screening and
Validation

Virtual screening was performed through molecular docking
using compounds from the NuBBE database (Pilon et al. 2017).
The software AutoDock Vina (Eberhardt et al. 2021; Trott and
Olson 2010) was used for all docking procedures. All molecules
were downloaded in “.ZIP” format, extracted, and converted to
“.pdbqt” format using the PyRx software (Dallakyan and
Olson 2015).

In the case of C. capitata, which relies heavily on olfactory cues
for host localization and mating, plant-derived volatiles are key
components in chemical communication (Light et al. 1988; Ng
et al. 2021). Odorant Binding Proteins (OBPs) play a crucial role
in this process, acting as the first molecular interface between
environmental odorants and olfactory sensory neurons. There-
fore, screening compounds from natural sources (especially
those originating from native or ecologically relevant flora)
enhances the chances of identifying ligands that effectively
interact with OBPs and influence behavior in a biologically
meaningful way (Pelosi et al. 2018; Ouabane, Alagarbeh, Hajji
et al. 2024).

After docking virtual screening, the 20 molecules with the
highest binding affinities were highlighted. From this group,
five molecules were selected as best solutions, prioritizing
those with the most negative binding energy and vapor
pressure parameters, indicative of volatility. In the study of
semiochemicals, evaluating the volatility of a compound,
alongside its binding affinity to the target protein, is essen-
tial, as both properties influence its ability to reach and
activate olfactory receptors under natural conditions. En-
thalpy of vaporization and boiling point values were obtained
from the ChemSpider platform (Pence and Williams 2010),
and vapor pressure was calculated using the Clausius-
Clapeyron equation through the online Omni Calculator—
Vapor Pressure Calculator.
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TABLE 1 | True attractant ligands considered as standard compounds.
True ligands 2D structure Source (doi)
1 Phenyllactic acid . '0 10.3390/molecules24132409
~0 H
F H
2 Estragole 10.3390/molecules24132409
(o]
Vd
3 o-Eugenol 0" 10.3390/molecules24132409
4 2-Allylphenol 10.3390/molecules24132409
H o
5 (E,E)-a-Farnesene \y/A/\%i\/r%/\ 10.1016/j.ibmb.2014.02.005
6 Trimedlure 10.3390/molecules24132409
o} (0]
Cl
7 Ceralulre B1 10.1007/978-94-017-9193-9_2
0 N~
8 Ethyl (E)-oct-3-enoate O T]/\/\/\/ 10.1007/978-94-017-9193-9_2
|-
9 (Z)-Beta-ocimene i 10.1016/j.ibmb.2014.02.005
10 Geranyl acetate \H/OM 10.1016/j.ibmb.2014.02.005
o
11 Methyl (E)-6-nonenoate | 10.1093/jee/72.4.648

o
~
H

o

(Continues)

5of 14

85UB01 SUOWIWIOD SAIER.D 3|1 jdde 3L Aq peuenof 8.1 3N YO ‘SN JO S9N 104 ARIQIT BUIIUO /8] 1M UO (SUONIPUD-PUB-SWLSYLI0D" A3 1M ARe1q 1 BU1UO//SdIY) SUORIPUOD PUE SWB L 8U) 89S *[SZ02/0T/0T] Uo ARiqiT8ulluo Aojim elendedo.By esinbsed ap el seig esaidws - vd Vg NG Ad 6002 U02e/Z00T OT/10p/wod AB] 1mAzeiq1euljuo//Sdny wo.y papeojumoq ‘T ‘G202 ‘2289025T



TABLE 1 | (Continued)

True ligands

2D structure Source (doi)

12 (E)-6-Nonen-1-ol

13 2,3-Dimethylpyrazine (2,3 DMP)
14 2,5-Dimethylpyrazine (2,5 DMP)
15 (E)-B-Farnesene

16 3-Methylbutanol

17 2,3-Butanediol

18 (E)-B-Myrcene

19 (E)-Beta-ocimene

20 2-Ethylhexanoic acid

H
H O/\/\/\/\/
[‘

10.1021/jm00261a018

10.1093/jee/83.6.2235

10.1093/jee/83.6.2235

10.1111/imb.12559

10.1111/imb.12559

10.1111/imb.12559

10.1111/imb.12559

10.1016/j.ibmb.2014.02.005

10.1007/510886-018-0939-z

The possible interactions between the selected ligands and the
OBP were visualized using BIOVIA Discovery Studio software
(BIOVIA 2015), which generates 2D diagrams of the bonds
between ligand atoms and protein amino acid residues, as well
as three-dimensional representations of the complex.

At this stage, it is important to clarify that the interaction mech-
anism between pheromones and insect olfactive structures is both
subtle and diffuse. Although farnesene is considered a reference
for affinity, theoretical calculations tend to overestimate interac-
tion energies due to the absence of polar functional groups. In
other words, while apolar interactions are relevant in this context,
they often result in moderate to low docking scores. This should be
kept in mind when interpreting the results. In this case, we believe
that the geometries and interacting amino acid residues may
provide more meaningful insights than the binding energy values
alone. In the semiochemical context, we consider that ligand-
centered approaches, such as QSAR, are more likely to yield
successful predictions in future studies than docking-dynamics
outcomes. Therefore, these structure-based methods should be
used from complimentary viewpoint.

2.2.3 | Molecular Dynamics Simulations

Molecular dynamics simulation procedures were carried out for
the reference molecule, (E,E)-a-farnesene, aiming to refine the

molecular docking observations and support future inferences
for other compounds. Calculations were performed using
GROMACS version 5.1.2 (Hess et al. 2008; Abraham et al. 2015)
with the GROMOS 54a7 force field (Schmid et al. 2011).
Topological parameters for the ligands were obtained via the
Automated Topology Builder (ATB) online platform (Stroet
et al. 2018). Protein-ligand complexes were solvated in a cubic
box filled with SPC (Simple Point Charge) water molecules
under periodic boundary conditions (Berendsen et al. 1984) to
simulate a realistic aqueous biological environment.

The ligand choice serves as a well-established reference, and
MD was prioritized for farnesene to gain deeper insights into its
interaction dynamics with the OBP, considering the computa-
tional cost of MD and the exploratory nature of the screening.

Long-range electrostatic interactions were handled using the
Particle Mesh Ewald algorithm (Darden et al. 1993), ensuring
system charge neutrality. Bond lengths were constrained using
the P-LINCS algorithm (Hess et al. 1997). The system under-
went energy minimization, followed by NVT (constant tem-
perature, constant volume) and NPT (constant temperature,
constant pressure) equilibration phases at 300 K, with a time
step (dt) of 2 fs over 100 ps, using a modified Berendsen ther-
mostat and a Parrinello-Rahman barostat (Parrinello and
Rahman 1981). The production phase of the MD simulation was
conducted for 100 ns at 300K and 1bar pressure, with a 2fs
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integration time and data collection every 10 ps. Simulations
were executed on the CENAPAD/UFC computing cluster.

The average binding free energy (AG) of the complexes was
estimated using the MM/PBSA method (Molecular Mechanics/
Poisson-Boltzmann Surface Area), analyzing frames collected
from 90 to 100 ns at 10 ps intervals (1 000 frames). Calculations
were performed using the “g mmpbsa” executable (Kumari
et al. 2014), a tool compatible with GROMACS.

2.3 | Use of Artificial Intelligence Tools

Some parts of the manuscript in Introduction and Discussion
sections were written with the assistance of ChatGPT (OpenAl,
San Francisco, CA, USA, GPT-4, May 2025), to improve clarity
and grammar. Similarly, some scripts for algorithms were
written with the assistance of ChatGPT. All content was re-
viewed and revised by the authors to ensure accuracy and
originality.

3 | Results
3.1 | Machine Learning Based QSAR

The application of the ABC algorithm combined with Best-First
Search (BFS) as a wrapper method resulted in an optimal subset
of five molecular descriptors from the initial pool of over 2,000
variables calculated using Dragon 7.0. This hybrid feature
selection approach significantly reduced dimensionality while
retaining the most relevant features for classification of active
compounds against Ceratitis capitata. The selected descriptors
were Mor27v (a 3D-MoRSE weighted by van der Waals vol-
ume), Hls (atom-centered fragment descriptor representing
hydrogen at position 1), Eig09_AEA(bo) (eigenvalue of the
autocorrelation matrix weighted by bond order), P_VSA_e_1
(sum of van der Waals surface areas with low electronegativity),
and R6p+ (GETAWAY descriptor reflecting the influence of
atomic polarizability in topological space). Each descriptor
captures distinct aspects of molecular topology, geometry, and
electronic behavior, which can also explain the interactions
with odorant-binding proteins (OBPs) and olfactory receptors:

Mor27v (a 3D-MoRSE descriptor weighted by van der Waals
volume) encodes information about the spatial distribution of
atomic van der Waals interactions within a defined distance
class (27A). These descriptors, developed from electron dif-
fraction functions, encapsulate molecular geometry and bulki-
ness, which are crucial for optimal accommodation within the
hydrophobic cavity of an OBP.

H1s descriptor (H autocorrelation of lag 1, weighted by atomic
I-state) is a classical parameter from the GETAWAY family,
which integrates both topological and electronic information of
a molecule. It evaluates the autocorrelation between atoms
directly connected by a covalent bond (lag 1), weighting this
relationship by the I-state, a measure of the intrinsic electronic
capacity of each atom based on its valence and connectivity. In
this way, H1s reflects the degree of electronic similarity or

contrast between neighboring atoms, being higher in homoge-
neous structures such as simple hydrocarbons, and lower in
molecules with heteroatoms or polarized bonds, where differ-
ences in I-state are more pronounced. This descriptor thus
translates how local electronic distribution is organized along
covalent bonds, capturing subtle structural aspects that influ-
ence physicochemical and biological properties, such as polar-
ity, solubility, and reactivity patterns.

Eig09_AEA(bo) captures the ninth eigenvalue of the bond-
order-weighted adjacency matrix (electronic autocorrelation).
This topological descriptor integrates both bond order and
electronic connectivity, reflecting molecular rigidity and extent
of conjugation. Structures with higher resonance or conjugated
systems often display enhanced shape complementarity with
protein binding sites.

P_VSA_e_1 is part of the van der Waals surface area (VSA-
based) class, summing areas of atoms whose partial charge lies
within a specified range (e.g., low electronegativity). This
descriptor is associated with lipophilicity and surface exposure.
Elevated P_VSA_e_1 values suggest significant nonpolar sur-
face area, which favors interaction via hydrophobic forces
within OBP cavities.

Rép+ is a GETAWAY descriptor that assesses spatial distribu-
tion of atomic polarizability within a molecular framework. It
captures how polarizable atoms are topologically arranged over
six-bond paths. Enhanced polarizability may facilitate induced-
fit interactions with the OBP, improving binding dynamics and
specificity.

Together, these descriptors suggest that attractive activity may
be influenced by a combination of molecular size, shape, sur-
face lipophilicity, polarizability, and electronic distribution, all
of which are relevant for molecular recognition by olfactory
proteins. These findings are consistent with prior studies
highlighting the importance of hydrophobic interactions and
molecular volume in the binding of volatile semiochemicals to
insect OBPs (Leal 2013; Pelosi et al. 2018).

The final predictive QSAR model was built using the XGBoost
algorithm trained on the selected subset of five molecular
descriptors (Mor27v, Hls, Eig09_AEA(bo), P_VSA_e_1, R6p+).
The model was validated internally using fivefold cross-
validation, yielding a mean AUC of 0.963, with individual fold
AUCs consistent with good and balanced generalizations
(Table 2). After validation, the model was applied to a data set
of natural products from the NuBBE database. Out of over 2100
molecules evaluated, 365 molecules were classified as attract-
ants (class 1), where 206 compounds were predicted with higher
confidence (probability >0.7). A probability value>0.7 in
XGBoost classification indicates that the model is more confi-
dent that the sample belongs to the positive class. We hope that

TABLE 2 | Validation parameters for XGBoost ML modelling.

Fold
1 2 3 4 5

Mean

AUC 0.775 0950 0950 0.950 0.875 0.963
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this database will be used to save costs and time for experi-
mental research groups, to use the most convenient compounds
indicated by us for individual tests or the composition of blends.
A full list of the predicted attractants, along with their SMILES
representations, IUPAC or PubChem common names (when
available), predicted effect (attractant = 1) and probabilities is
available in .xlsx Supporting Information S1.

The target macromolecule for virtual screening was the Odorant
Binding Protein (OBP) of Ceratitis capitata, identified as 6HHE
in the Protein Data Bank, with a resolution of 1.52A (Figure 1).
The reference compound selected for comparison, (E,E)-o-
farnesene, exhibited a binding energy of -7.9 kcal/mol with the
OBP. The interactions observed included pi-sigma, alkyl, pi-
alkyl, and van der Waals forces, primarily involving nonpolar
and aromatic regions of amino acid residues such as PHE29,
PHE47, PHE119, PHE122, ILE48, THR104, VAL51, VALS]1,
TYR107, LEU115, LEU44, LEU52, LEU84, LEU69, LEU66, and
LEU118 (Figure 1).

Focusing on the Molecular Dynamics (MD) results for (E,E)-a-
farnesene, the parameters evaluated were the protein RMSD
(Root Mean Square Deviation) (Figure 2A); ligand RMSD
(Figure 2B) as well as the binding energy calculated
by MM/PBSA.

In Figure 2A, the blue line represents the evolution of the un-
bound odorant-binding protein geometry. After approximately
15,000 ps, the protein reaches an equilibrium state with an
RMSD value stabilizing around 0.1 nm (1A). The orange line
shows the protein complexed with (E,E)-a-farnesene, indicating
that the protein backbone remains closer to the original com-
plexed geometry for some time, only later reaching an equili-
brium conformation (after 50,000 ps). The presence of a ligand
can change the stabilization profile of a small protein, as is the
case here. Considering that a static crystallographic geometry
was used in the bound and unbound cases, it is plausible to
observe a longer delay until the bound protein stabilizes. The
most important aspect of dynamics is whether or not the system
reaches a satisfactory equilibrium after a certain period of time
(a range of no more than 0.2 nm of fluctuation).

The RMSD of the ligand (Figure 2B) shows that farnesene
remained relatively stable during the simulation, with a varia-
tion of less than 0.2 nm along the trajectory and with reaching
less than 0.2 nm (2A) from the source geometry (from docking).
This indicates that the representation provided by the docking
is maintained with the relaxation of the system, and its infer-
ences of interacting amino acids made above are relevant.

The calculated binding free energy obtained through
the MM/PBSA approach was —134.722kJ/mol, indicating a
highly stable and favorable interaction between the ligand and
the receptor. The value falls within the expected range for stable
ligand-receptor complexes, as reported in benchmarking stud-
ies (Hou et al. 2011). In molecular dynamics simulations,
binding energies lower than —100 kJ/mol are generally con-
sidered to represent strong and specific interactions. The sig-
nificantly negative value observed here suggests that the ligand
remains tightly bound within the binding site throughout the
trajectory, reflecting a thermodynamically stable complex likely
to persist under physiological conditions.

The predominantly lipophilic environment of the OBP binding
site may explain Table 3, favoring the accommodation of mole-
cules as farnesene. The overall binding was dominated by Van
der Waals contributions (—139.605 + 6.890 kJ/mol), consistent
with the hydrophobic and nonpolar nature of the ligand, a ses-
quiterpene hydrocarbon. Electrostatic interactions contributed
minimally (—1.648 +0.922kJ/mol), as expected. Although the
polar solvation term was positive (+23.374 + 3.905 kJ/mol)
(representing the energetic cost of desolvating polar groups)
the strong nonpolar solvation contribution (SASA,
—16.843 + 0.893 kJ/mol) helped offset this effect. These findings
suggest, in fact, that the binding is primarily driven by dispersion
forces and hydrophobic effects, leading to a stable complex
formation.

The virtual screenings via molecular docking using the NuBBE
database identified several molecules with higher binding affin-
ities than the reference compound ((E,E)-a-farnesene, being the
five first ranging from -9.2 to -8.5 kcal/mol (Table 4). Most of
these compounds belong to the sesquiterpene class. The top five

LEU

uU:44
\
PHE \
: LEU
u:47 \ U84
A
PHE v 52
uU:52 VAL
U:29 ILE \ LEU
R u:81
U PHE Uiis YR LEU
é \ U:107 LEU U:66
@ U:115
VAL & THR LEU
uU:51
u:104 u:69
Interactions
D van der Waals D Akyl (B)
I oo [ P

FIGURE1 | (A) 3D structure of farnesene binded to OBP from Ceratitis capitata; (B) 2D interactions map.
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RMSD Comparison from GROMACS Trajectories
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FIGURE 2 | Molecular dynamics simulation plots. (A) RMSD for free protein (blue) and bound to farnesene (orange); (B) RMSD plot for

farnesene as the moving average at 200 frames for better visualization (standard deviation in shaded).

TABLE 3 | Terms of energy from MD calculations for farnesene-OBP complex.
Van der Waals Electrostatic Polar solvation SASA Binding energy
—139.605 —1.648 23.374 —16.843 —134.722
+/—6.890 +/-0.922 +/-3.905 +/—0.893 +/-6.867
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TABLE 4 | Docking binding energies and physico-chemical parameters for the 20 best scored compounds after virtual screening (n.f. = not
found).
Binding Vapor Vapor
XGBoost energy enthalpy Boiling pressure
Entry Name class (kcal/mol) (kJ/mol) point (°C) (Pa)
1 (E,E)-a-Farnesene 1 -7.9 49.8 279.6 9.708
NuBBE_1945 -Longipinene -9.2 46.9 251.6 28.684
NuBBE_940 a-Copaene 1 —-8.8 46.6 248.5 32.2
NuBBE_1735 o-Humulene 1 —8.6 49.4 276.3 11.155
NuBBE_1936 B-Chamigrene 1 —8.6 49.1 273.2 12.53
NuBBE_1927 a-Selinene 1 —8.5 48.8 270.0 14.104
NuBBE_2289 Thujopsene 1 —8.4 47.4 256.5 23.777
NuBBE_2290 (—)-Cyperene 1 -84 48.7 268.9 14.68
NuBBE_1732 Alpha-cis-bergamotene 1 —-8.3 nf — —
NuBBE_2294 Guaiazulene 0 —8.2 52.4 305.4 3.602
NuBBE_1350 Guaiol 1 -8.1 68.3 288.0 0.24985
NuBBE_1499 Isocaryophyllene 1 -8.1 48.6 268.4 15.1
NuBBE_1933 (—=)-a-Himachalene 1 -8.1 48.6 268.4 15.1
NuBBE_2268* 1,4-Dimethyl-6-prop-1-en- 0 -8.1 n.f. — —
2-ylbenzo[a]phenazine
NuBBE_1733 (1Z,4E)-Germacrene B 1 —-8.0 50.5 287.2 7.344
NuBBE_2273 (E)-dihydrooccidentalol 1 -8.0 61.1 336.0 0.3473
NuBBE_1352 gamma-Eudesmol 1 -7.9 62.8 301.1 0.5199
NuBBE_1404 delta-Elemene 0 -7.9 47.6 258.2 22.173
NuBBE_1542 Bicyclogermacrene 1 -7.9 48.5 267.8 15.56
NuBBE_1922 B-Selinene 1 -7.9 48.1 262.9 18.52
NuBBE_2502° C=Cl1CC[C@@H]2 C(=C)C 0 -7.9 63.2 383.7 0.09106

(=0)0[C@H]2[C@@H]2C
(=C)CC[Ca@H]12

#SMILES notation due long name.

molecules were (-longipinene (-9.2kcal/mol), a-copaene
(-8.8kcal/mol), o-humulene (-8.6kcal/mol), B-chamigrene
(-8.6 kcal/mol), and o-selinene (-8.5kcal/mol) (Table 3). §-
longipinene (28.684 Pa) and a-copaene (32.2 Pa) were the most
volatile; a-humulene (11.155 Pa), 8-chamigrene (12.53 Pa), and a-
selinene (14.104 Pa) exhibited lower vapor pressures, closer to
farnesene. The molecular interactions were predominantly alkyl
and pi-alkyl, with additional contributions from pi-sigma and
Van der Waals forces, involving mainly the amino acid residues
VAL51, PHE119, PHE122, LEUS52, LEU118, ILE48, ILES5S5,
LEUS57, LEU115, PHE47, THR104, and TYR107, illustrated for §3-
longipinene (Figure 3).

It is important to state that 16 molecules of 20 highlighted were
classified as attractants in the ML model (Table 4). These mo-
lecules represent diverse structural classes and physicochemical
profiles and are now cataloged as high-priority candidates for
future in vivo evaluation and behavioral assays.

A notable strength of this study lies in the convergence between
the in silico screening results and some previously reported
biological data, even if indirectly. a-copaene and f-chamigrene,

sesquiterpenes identified as affinity ligands for C. capitata OBPs
and classified as attractant have already been associated directly
or indirectly in the literature with behavioral responses in fruit
flies or other Diptera insects (Kharrat et al. 2025; Guimaraes
et al. 2025). This agreement helps to trust the generalization
ability of the applied in silico methods. However, the com-
plexity in protein recognition of individual or blends, in a dif-
fuse manner, including different isoforms of receptors, makes
ligand-based methods such as ML-QSAR more suitable for even
more fruitful generalizations, by scanning the phase space for
intrinsic characteristics of compounds that have proven to be
good attractants, and are less subject to the imprecision inher-
ent in docking methods.

4 | Conclusion

This study integrated modern in silico techniques to identify
and prioritize potential semiochemicals with attractant prop-
erties for Ceratitis capitata. By combining molecular descriptor
generation with feature selection using the Bee Colony Opti-
mization algorithm followed by Best-First Search (BFS), a
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FIGURE 3 | (A) 3D binding representation of 3-longipinene in OBP; (B) superimposition of standard farnesene and f-longipinene (orange);

(C) 2D interactions map for $-longipinene.

reduced subset of five relevant descriptors was identified. These
variables effectively captured physicochemical and topological
characteristics associated with molecular ability in olfactory
mechanisms. The subsequent development and validation of an
XGBoost-based QSAR classification model enabled accurate
prediction of attractant activity, achieving robust performance
metrics, including high AUC scores in cross-validation. The
model predicted 206 natural compounds from the NuBBE da-
tabase as more potential attractants, and a downloadable
spreadsheet with prediction probabilities is provided to support
future experimental validation.

The integration of ligand-based descriptors, machine learning,
and curated chemical databases demonstrated an efficient
strategy for pre-screening bioactive candidates in the context of
olfactory protein targets. This workflow can significantly reduce
the time and resources required for in vivo bioassays.

Molecular docking calculations brought information about the
structural and energetic characterization of compounds in the
odorant protein. The hydrophobic profile of the standard repre-
sented by farnesene was evidenced mainly in molecular dynamics
simulations, reflecting a maintenance of the ligand in a region
similar to the starting geometry from docking, denoting stability.
An interaction energy value greater than 130 kJ/mol (in absolute
magnitude) can be attributed to the enhancement of the non-polar
contributions in the MM/PBSA calculation, due to the character-
istics of the ligand and OBP. Virtual screening via docking
revealed 20 molecules with high attractant potential by the affinity
criterion, satisfactorily confirmed by the Machine Learning model,
with the exception of four that were classified as non-attractants.

Overall, this study contributes to the field of chemical ecology
and pest management by providing a reproducible

cheminformatic framework and a curated library of potential
attractants for C. capitata, supporting the development of sus-
tainable monitoring and control strategies.
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