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1 Introduction

Reports highlighting the degradation of soils in Europe and worldwide are
flourishing (Akca et al., 2024; Pennock et al., 2015; Smith et al., 2024). These
reports emphasize that 33% of soils are moderately to highly degraded and
face significant threats, including biodiversity loss (Pennock et al., 2015). This
is particularly concerning as soils support 59% of all life on Earth (Anthony
et al., 2023). In this context, developing biological indicators for soil health is
essential for identifying strategies for soil monitoring and improvement. Sail
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2 Macrofauna as indicators of soil health: earthworms and enchytraeids

fauna, almost exclusively consisting of invertebrates, represent a substantial
portion of life in soils, i.e., around 23% of total species number (Decaéns et al.,
2006), and play a critical role in maintaining and enhancing soil quality and
providing ecosystem services (Lavelle et al., 2006). This chapter focuses on two
key soil faunal groups, earthworms and enchytraeids, as potential soil health
indicators.

Earthworms and enchytraeids both belong to the phylum Annelida and
the class Oligochaeta, and both are considered as ecosystem engineers
that play a crucial role in soil functioning and provide numerous ecosystem
services (Blouin et al., 2013; Conti & Mulder, 2022). Earthworm species are
often classified according to their feeding behavior and habitat in three main
ecological categories: epigeics that feed on litter at the soil surface, endogeics
that feed on soil organic matter, and form non-permanent burrows, and anecics
that feed on litter at the soil surface and live in permanent vertical burrows
(Bouché, 1972; Lee, 1985). Enchytraeids, also known as ‘potworms,’ are often
classified into two groups according to their reproduction strategy: r strategists
that have a high reproduction rate but high juvenile mortality, and K strategists
that have slower reproduction rates but longer life span (Graefe & Schmelz,
1999). The main difference between earthworms and enchytraeids is their size;
earthworms are classified as macrofauna (diameter > 2 mm) while enchytraeids
belong to the mesofauna (diameter: 200 pm to 2 mm) (Potapov et al., 2022).
Earthworms and enchytraeids are typically considered to have similar functions
in soils, albeit at different orders of magnitude and scale given their difference
in size, making it logical to treat both groups within the same chapter. While
the role of earthworms on soil functions has been extensively studied and
multiple high-quality reviews are available (Blouin et al., 2013; Lavelle et al.,
2006; Vidal et al., 2023), enchytraeids are particularly understudied (Pelosi &
Rombke, 2016).

For earthworms and enchytraeids to impact soil functions, they must be
present in the soil in sufficient amounts. Overall, earthworms and enchytraeids
are widely distributed in soils with abundances often reaching 500 and
100 000 ind. m™ respectively (Potapov et al., 2022). Yet, many agricultural
management practices and climatic conditions adversely affect earthworms
and enchytraeids, with populations often varying dramatically even in similar
soil types and climate conditions. The ubiquitous presence of earthworms and
enchytraeids in soils in combination with their sensitivity to anthropogenic
and climatic factors make them good candidates for soil health indicators
(Brussaard et al., 2004; Creamer et al., 2022; Turbé et al., 2010), the topic of
this chapter. We chose to focus primarily on agricultural soils, where concerns
for soil degradation and biodiversity loss are particularly pertinent, also given
their role in ensuring food security (Kopittke et al., 2019). However, we do not
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Macrofauna as indicators of soil health: earthworms and enchytraeids 3

exclude instructive examples from forest and urban soils, where earthworms
and enchytraeids also play important roles.

Figure 1 illustrates the structure of the chapter. It focuses on the impact
of land use, agricultural management practices and climate on earthworms
(Section 2) and enchytraeids (Section 3), as well as the interactions between
these two faunal groups (Section 4). Our ultimate goal is to discuss their
potential as indicators of soil health (Section 7). However, this is conditional
on the capacity to sample and quantity them efficiently (Section 5). It is also
important to emphasize that soil biota presence does not equate soil biota
being very active. Thus, we also present some methods to assess the activity of
earthworms and enchytraeids in soils (Section 6).

it i > Land use &

. Climate
Agricultural management

2. Earthworms 3. Enchytraeids

Figure 1 Structure of this chapter, which focuses on the role of earthworms and
enchytraeids as indicators of soil health. It examines the impact of land use, agricultural
management practices and climate on earthworms (Section 2) and enchytraeids (Section
3), as well as the potential interactions between these two soil organisms (Section 4). For
their effective use as soil indicators, it is essential to sample and quantify earthworms
and enchytraeids using efficient techniques (Section 5) and evaluate their activity in the
soil, as their mere presence does not guarantee activity (Section 6). Finally, the chapter
highlights the opportunities and challenges of utilizing earthworms and enchytraeids as
reliable indicators of soil health (Section 7).
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4 Macrofauna as indicators of soil health: earthworms and enchytraeids

2 Effect of land use, agricultural management, and
climate on earthworm communities

Earthworms serve as valuable indicators of soil health due to their sensitivity
to environmental changes, with land use, management practices, and climatic
conditions all being important. In terms of land use, this section primarily
compares grasslands and croplands. We subsequently explore management
practices, in particular those that increase or decrease earthworm density and
diversity by modifying the physical and chemical soil properties, as well as the
organic matter availability as food for earthworms (Fig. 2). The impact of these
management practices on earthworm populations may be exacerbated by
climate change, particularly through increases in droughts and flooding events
(Fig. 3), which are also examined in this section. The increase in atmospheric CO,
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Figure 2 Potential impact of various agricultural management practices on earthworm
density and diversity is categorized based on management type, with a primary focus
on croplands and grasslands. These effects are further classified into three categories:
chemical disturbance, physical disturbance, and the availability of food source. The
impact of some practices is also highlighted for enchytraeids, with the color of the
circle indicating the relative response compared with earthworms. However, studies on
enchytraeids are limited and less abundant compared to research on earthworms. It is
important to note that this figure is conceptual, designed to represent average effects of
practices, while substantial variability in responses has been observed depending on the
specific context and species studied. The initial idea of this figure is inspired from Brown
et al. (2006).
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Figure 3 Effects of flooding and drought conditions on earthworms and enchytraeids.
Frequent flood and drought events can lead to mortality in earthworms and enchytraeids
and halt cocoon hatching (dashed arrows), ultimately causing a decline in their
abundance and diversity. However, these organisms can also exhibit adaptive responses
(solid arrows) to extreme climatic conditions, such as horizontal or vertical migration,
aestivation, or alterations in reproductive dynamics. It is important to note that this
figure is conceptual, intended to illustrate average effects of floods and droughts, while
considerable variability in responses has been observed depending on the specific
context and species studied.

concentrations is not expected to directly affect earthworms and enchytraeid
populations, as these organisms are adapted to significantly higher CO, levels
within the soil (Blankinship et al., 2011; Goncharov et al., 2023). Potential
indirect effects, such as those influencing plant primary production and soil
microbial communities, and consequently habitat quality for earthworms and
enchytraeids, are not addressed in this chapter.

2.1 Temperate and continental grasslands and croplands

Earthworms are widely distributed across temperate and continental areas
and often dominate invertebrate biomass (Curry, 2004; Turbé et al., 2010).
The most abundant earthworm populations are typically found in managed
grasslands, with lower abundances found in croplands, forests, vineyards
and native pastures (Curry, 1993; King & Hutchinson, 2007; Lavelle, 1983;
Rutgers et al., 2016). Earthworm abundance and ecological diversity are both
impacted by land use and management. Even when earthworms are present
in significant quantities, one or two of the three ecological categories can be

Published by Burleigh Dodds Science Publishing Limited, 2025.



6 Macrofauna as indicators of soil health: earthworms and enchytraeids

absent or lacking, as widely observed with anecic species across grasslands
and croplands (Stroud, 2019; van de Logt et al., 2023b).

Agricultural soils in temperate and continental regions across the world
are dominated by earthworm species originating from Europe. Earthworms are
common across Europe and include Lumbricidae species, such as Aporrectodea
caliginosa, Allolobophora chlorotica and Lumbricus rubellus (Ashwood et al.,
2024; Rutgers et al.,, 2016). These lumbricid species have inadvertently or
purposely spread to many other temperate and continental regions. In northern
forests of North America, where indigenous earthworms are lacking (Hendrix
et al., 1986), the spread of invasive lumbricids (e.g. Lumbricus terrestris) and
Asian Megascolecids (e.g., Amynthas spp.) is impacting the structure and
function of temperate forest ecosystems through the removal of litter on the
forest floor (Bohlen et al., 2004; Chang et al., 2021). In other temperate regions
(e.g., Australia and New Zealand), indigenous earthworms such as Anisochaeta
gigantea are found in native forests but have not adapted to managed
grasslands and croplands (Dalby et al., 1998; Lee, 1961). In these agricultural
systems, the introduction of A. caliginosa improved pasture productivity by
28-113% (Stockdill, 1982).

Earthworm populations of over 1200 ind. m= have been observed
in managed temperate grasslands although lower abundances are more
common (Curry, 1993; Rutgers et al., 2016). A positive relationship between
pasture production and earthworm abundance has been observed, with
earthworm numbers increasing in response to both the quantity and quality
of the plant biomass available to soil fauna. The increased earthworm activity
in turn improves soil quality and pasture productivity. Increases in earthworm
populations as a result of increased pasture productivity have also been
reported in systems amended with synthetic fertilisers (Curry et al., 2008;
Schon et al., 2008). In both grasslands and croplands, larger increases in
earthworm populations are often observed with the combined application of
synthetic fertiliser and organic amendments (Curry, 1987; Leroy et al., 2008).
Improvements in pasture quality through the addition of legumes can also
benefit earthworm populations (Van Eekeren et al., 2009) (Fig. 2).

Conversely, the application of some fertilisers can contribute to soil
acidification, which is detrimental to earthworm populations (Pelosi et al.,
2020) as they prefer soils of neutral pH. The long-term Park Grass Experiment
at Rothamsted, running since 1856, showed that earthworms were absent in
soils with a pH < 4 (Edwards & Lofty, 1974), resulting in an accumulation of
undecomposed organic matter forming a layer on the soil surface (Silvertown
etal., 2006). However, soil acidification can be remediated with the application
of lime, and liming is known to increase earthworm populations (Holland et al.,
2018; Springett & Syers, 1984) (Fig. 2).
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Macrofauna as indicators of soil health: earthworms and enchytraeids 7

Typically, increased pasture production also leads to increases in livestock
numbers, liveweight loading and treading pressure. Increased treading
pressure can lead to soil compaction, especially on vulnerable and/or heavier
soil types when wet. These conditions make the soil physical environment more
challenging for earthworm presence (Schon et al., 2012). Surface-dwelling
epigeic earthworms are most sensitive to the treading pressures of livestock
(Cluzeau et al., 1992; de Bruyn & Kingston, 1997; Schon etal., 2011,2012). With
cattle treading pressure greater than that of sheep (Drewry, 2006), earthworm
populations are more abundant under the latter (Schon et al., 2011). Rotational
grazing practices appear to benefit earthworm populations under pastures
compared to continuous grazing (Alvarez et al., 2024; Voisin, 1960).

The disruption of the soil physical environment and food supply through
cultivation can have major detrimental impacts on earthworms. Hence,
earthworm populations are generally less abundantin annual cropping systems
in comparison to grasslands (Fraser et al., 1996; van Eekeren et al., 2008)
(Fig. 4). The intensity of cultivation (e.g., frequency of interventions, length of
rotations) is an important factor. Practices such as no-till, strip-till, conservation
and minimum tillage reduce the level of soil disturbance (Fig. 2). No-tillage and
conservation tillage systems have been observed to sustain higher earthworm
abundances (+137%) than conventional ploughing (Briones & Schmidt,
2017). However, even a one tillage event during pasture renewal can have a
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Figure 4 Changes in earthworm abundance, biomass, and species diversity under
improved pasture, mixed cropping, and continuous arable use in the Canterbury Plains
of New Zealand, which has a temperate climate. Abundance is expressed as number of
individuals per meter square and biomass as gram per meter square. Source: Adapted
from: Fraser et al. (1996).
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8 Macrofauna as indicators of soil health: earthworms and enchytraeids

detrimental impact on earthworms, taking more than a year to recover to pre-
cultivation levels (Bell et al., 2009).

Decreases in earthworm abundance in cropping systems often coincide
with reduced species diversity (Briones & Schmidt, 2017; Fraser et al., 1996)
(Fig. 4). In particular, anecic earthworms, with their (semi-)permanent burrows
that are vulnerable to cultivation, are often found at low densities or are
completely absent from arable fields (Edwards, 1983; van Eekeren et al.,
2008). A global meta-analysis reports also epigeic earthworms to be sensitive
to cultivation (Briones & Schmidt, 2017). The reduction in two of the three
earthworm ecological groups under cropping systems has obvious implications
for soil functions mediated by earthworms, including decomposition of organic
material and maintenance of soil structure (Blouin et al., 2013).

It is not only the physical disturbance of cultivation in cropping systems
that has a negative impact on earthworm populations. Edwards and Lofty
(1982) reported a continuous decline in earthworm populations under no-till
treatments during 8 years of continuous cereal cropping. Similar declines in
earthworm populations under conventional tillage were reported where corn
was continually cropped, although the decline was slowed by the addition of
manure (Whalen et al., 1998). Other practices that can mitigate the impacts
of cropping systems on earthworm communities include the management of
crop residues, the use of cover crops and the addition of organic amendments
(Briones & Schmidt, 2017). D'Hose et al.(2018) reported increases in earthworm
abundance when applying either farmyard manure (+151%), slurry (+103%)
or compost (+63%), in comparison to synthetic fertiliser addition. Often,
tillage treatments and crop residue inputs change simultaneously between
systems, making it difficult to determine the role of either factor. For example,
Blanco-Canqui (2022) found that the combination of cover crops with low C/N
ratios (e.g., Pisum sativum L.) promote earthworm abundance under no-till
or reduced-till systems, as compared to a combination of lower quality cover
crops (e.g., Sinapis alba L.) under conventionally tilled systems.

Pesticides have been reported to alter the growth, reproduction, behavior,
essential enzymes and DNA of earthworms (Yatoo et al., 2022). In a review by
Pelosi etal.(2014), insecticides and fungicides used in agricultural systems were
found to have the greatest detrimental impact on survival and reproduction of
earthworms. No significant effect of glyphosate was observed on earthworm
populations in cropping systems (Briones & Schmidt, 2017). However, a
recent comprehensive review on the subject highlighted that glyphosate
and glyphosate-based herbicides can have negative effects on earthworms
at the recommended application rate. These effects may not always manifest
themselves after a single application or when focusing solely on adult mortality.
However, when evaluating sensitive endpoints such as reproduction and growth,
and considering field-relevant species subjected to multiple applications per
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year, negative effects were observed at sub-individual, individual, population
and community levels (de Lima E Silva & Pelosi, 2024).

Since earthworms breathe through their skin, they need to always keep
it moist, and the availability of water in the soil plays a fundamental role
in their activity, life cycle, reproduction and abundance. Earthworms are
therefore most abundant in the upper soil profile when soil moisture is not
limiting. When irrigation is used to overcome seasonal soil moisture deficits,
higher earthworm populations during the drier summer period are expected
(Fraser et al., 2012). Drought or flooding conditions can affect earthworm
population negatively for several years (Curry, 1993; Kiss et al., 2021; Plum
& Filser, 2005). They have developed mechanisms to survive dry conditions,
moving deeper into the soil profile and entering a state of aestivation (Fig. 3).
For instance, A. caliginosa is known to be particularly sensitive to drought,
responding by entering aestivation, drastically decreasing its metabolic rates
(Bayley et al., 2010). For species such as L. rubellus, laying cocoons that hatch
when conditions are more favorable is another adaptive response (Edwards
& Bohlen, 1996). When soil moisture is not limiting, increasing temperatures
in cooler temperate regions may benefit earthworm activity, with earthworm
burrowing increasing from 15°C to 20°C. During flooding events, earthworms
may migrate horizontally to find unflooded areas or vertical structures (e.g. trees
or poles) (Singh et al., 2019). The success of these adaptations depends on
the scale and frequency of the weather events. As the frequency and intensity
of extreme climatic conditions will increase as a result of climate change, the
ability of earthworm populations to recover may be reduced, especially if the
time interval between two extreme events is less than the development time
from cocoon to the adult stage of the earthworm life cycle (i.e., about 6 months
for many lumbricid earthworm species) (Plum & Filser, 2005). For instance, at
sites subject to frequent flooding, earthworms matured at a lower weight and
at a younger age, and cocoons were unable to hatch (Klok et al., 2006; Thonon
& Klok, 2007). Managed grasslands which have a higher earthworm abundance
and diversity may be better placed to buffer adverse environmental conditions
than croplands (Kiss et al., 2021; Liu et al., 2025). These results emphasize the
importance of examining the interactive effects of climate factors, land use and
management practices on earthworms to improve system resilience, an area
that remains largely understudied (Singh et al., 2019).

2.2 Tropical grasslands and croplands

In tropical regions, native species have high endemism levels with limited
geographical distributions, mainly due to habitat variability and restricted
dispersal ability (Lavelle & Lapied, 2003). Preferences for particular soil
conditions are commonplace in earthworms, and some have very restrictive
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10 Macrofauna as indicators of soil health: earthworms and enchytraeids

distributions, such as Glossoscolex ibira, a large species found only in a low
pH sandy Acrisol, near the town of Ibird, in Sdo Paulo state, Brazil (Caballero,
1976). On the other hand, very successful pantropical species like Pontoscolex
corethrurus display a very wide tolerance for soil types, as well as chemical and
physical conditions (Taheri et al., 2018), attributes also found in several other
widespread earthworm species, such as those in the Amynthas genus (Steffen,
2012). Very few of the 2000 or more tropical earthworm species have been
the object of detailed studies. Nevertheless, earthworms have been proposed
as bioindicators of land use disturbance and/or change in several tropical
countries including Ivory Coast, India, Mexico, Peru and Brazil (Fragoso et al.,
1997; Guéi & Tondoh, 2012; Tondoh et al., 2007). Furthermore, they have been
used as indicators of soil management practices, such as no-tillage systems,
particularly in Brazil (Bartz et al., 2014).

Earthworms are particularly affected by land use and management
practices. As an example of the potential differences between earthworm
populations in various agricultural and natural habitats in the tropics, Fig. 5
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Figure 5 Earthworm abundance was evaluated across 468 sites in Brazil under various
land-use systems. Abundance is reported as the number of individuals per meter square.
Significant differences between land uses are indicated by different letters. Details of
species composition are provided in Fig. 6. Significant differences between land uses
are indicated by different letters as a result of a Kruskal-Wallis test followed by a post-hoc
Dunn test. Values represent the mean and bars the standard deviation.
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summarizes the content of an unpublished database of one of the authors
(G. Brown) on the total earthworm abundance and species richness across
468 sites in Brazil. Land use included annual and perennial crops, pastures,
and integrated production (agroforestry and agropasture) systems, as well
as native vegetation and forestry plantations. Earthworm abundance was the
highest in pastures (Fig. 5). The species most commonly encountered in these
Brazilian agroecosystems were in the genus Dichogaster, representing small,
exotic earthworms native to Africa; and P. corethrurus, the most abundant
species encountered (Fig. 6). Only one of the ubiquitous species may be native
to Latin America: a small and thin earthworm in the Ocnerodrilidae family
(Nematogenia panamaensis), commonly associated with annual cropping
systems.

There are only a few publications describing potential impacts of
pesticides on tropical earthworms in the laboratory, and even fewer reporting
field studies. Most studies focused on vermicomposting species like Perionyx
excavatus, which are not the aim of this chapter. Some common ubiquitous
endogeic species, such as P. corethrurus and Amynthas gracilis, were evaluated

Land use Earthworm No. sites Abundance Range
systems species (%) (ind. m?) (min - maxind. m?)
Annual crops Dichogaster saliens 37(30) 16+3 3-225
including tillage Dichgaster gracilis 33(26) 13+2 5-100
and no-tillage Nematogenia panamaensis? 32 (26) 15+3 5-220
systems Pontoscolex corethurus 25 (20) 60+ 12 5=320
(n=127) Dichogaster affinis 24(19) 1M1£2 3-65
X i Dichogaster bolaui 22(18) 15+3 5-208
Integrated systems  Pontoscolex corethurus 29 (59) 170+ 12 1-300
including
agroforestry and
agropastoral
systems
(n=49)
A AN
Perennial crops Pontoscolex corethurus 21(81) 144 +30 4-765
(n=26)
Fasture)s Pontoscolex corethurus 25 (80) 155 +29 4-419
n=31

Figure 6 Mean abundance (individuals m™) of the most frequently encountered
earthworm species across various land-use systems (i.e. species present at more than
15% of all sampled sites; percentage occurrence is indicated in parentheses), along with
the range of abundance (minimum and maximum values) observed across 468 sites in
Brazil.

Published by Burleigh Dodds Science Publishing Limited, 2025.



12 Macrofauna as indicators of soil health: earthworms and enchytraeids

in the lab (Awaknavar & Karabhantanal, 2004, 2005; Buch et al., 2013; Cantelli,
2011; Chang & Bruno, 1970; Khalil, 2013, 2015; Morowati, 2000; Mostert,
2001; Mostert et al., 2002; Parelho et al., 2018). Unfortunately, very few
studies have addressed impacts of pesticides on native earthworm species.
Observed effects ranged from almost absent (Brazil; insecticide lambda-
cyhalothrin and the fungicide carbendazim (Garcia, 2004)) to slightly negative
(India; insecticide malthion; Panda & Sahu, 2000; Senapati et al., 1992, 1994)
or strongly negative(Mexico, Glyfos®, Classical Faena®, and Faena Fuerte®)
(Garcia-Pérez et al., 2014). Garcia-Perez et al. (2020) emphasized the growing
evidence that epigeic, endogeic and anecic earthworms are vulnerable to
repeated applications of glyphosate. More detailed and, at the same time,
broader field tests, which would help us understand the potential short- and
long-term effects of pesticides on tropical earthworm communities are still
largely missing. There is also a need for studies comparing different species
under identical test conditions and a range of contaminants. Finally, very little is
known about the effects of mixtures of pesticides (Pelosi et al., 2021b).

The impact of other agricultural management practices such as soil tillage
have been reviewed globally, but always with few results from tropical countries
(Briones & Schmidt, 2017). Two recent reviews (Bartz et al., 2024; Demetrio etal.,
2020) clearly showed higher populations in no-tillage sites although the type
and frequency of the soil management employed is critical: periodic tillage
can be very detrimental, and the lack of crop rotation was also highlighted as
a limiting factor (Fig. 2). Nonetheless, few experiments have addressed crop
rotation effects, particularly the inclusion of legumes in cropping systems.
Oluko et al. (2014) and Guéi et al. (2019) highlighted the importance of
external N inputs into the system for increasing earthworm populations and
optimizing their roles in crop production. Long-term no-tillage can cause major
soil compaction when there is too much traffic or no adequate cover cropping,
and both have been associated with lower earthworm populations in Southern
and Southeastern Brazil (Dudas et al., 2020).

Organic matter additions via manure deposition on the surface or
incorporated into the soil have helped increase earthworm populations in
several locations in the tropics (Oliveira Filho et al., 2018; Senapati et al., 1999)
(Fig. 2). However, the long-term impacts of high heavy metal concentrations
(particularly Cu, Ni or Cd) brought with these wastes is a concern and must be
monitored to avoid a decrease in earthworm populations (Cotton DCF & Curry
JP,1980). Similar concerns are associated with antibiotics in some wastes (such
as ivermectin), as high concentrations of this acaricide can lower reproduction
rates (Ma et al., 2023), though other studies have shown little to no non-target
effects (Kaneda et al., 2006; Scheffczyk et al., 2016). Further, many highly
weathered tropical soils, particularly in the wetter regions, are highly acidic and
require liming in order to be useful and productive for agricultural purposes.
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Similar to temperate soils, acidification is expected to negatively impact
earthworm populations and liming likely remediates this effect (Fig. 2), but very
few studies on tropical soils exist.

As noted earlier (Section 2.1), earthworms are particularly sensitive to climatic
factors, and especially moisture levels. Among the 40 species collected in the
Manaus region of the Amazon (database G.Brown), 33 lived strictly in areas close
to watercourses, while four inhabited soils with large moisture variations. The
remainder lived in rotting tree trunks (Ayres & Guerra, 1981). In environments
with seasonal rainfall, such as tropical Savannas, many species enter aestivation
and/or seek deeper soil layers with higher moisture contents (Fig. 3). For
instance, Rhinodrilus alatus enters aestivation for more than 6 months, at an
average depth of 30 cm (Drumond et al., 2015), while Glossoscolex paulistus is
normally active in 30 cm deep U-shaped burrows but aestivates in chambers at
50 cm depth (Abe & Buck, 1985). An Amazonian species Chibui bari undergoes
diapause for around 6 months at approximately 1 m depth (Guerra, 1988).

Earthworms also have evolved responses to flooding events. When
the tropical grassland plains of Colombia (Orinoco Llanos) are flooded,
earthworms, primarily Andiorrhinus species, construct surales. These are large
mounds composed mainly of casts, built by earthworms searching for aeration
(Zangerlé etal., 2016b). Interestingly, similar structures have also been observed
in a solar park located on temperate flooded grasslands in the Netherlands.
These mounds appear to be primarily constructed by Aporrectodea caliginosa
(Ron de Goede, personal communication, 01-09-2024). Given the increasing
frequency of rainfall events due to climate change, these mounds could play a
growing role in both temperate and tropical regions.

The potential impact of climate change on tropical earthworms has not
yet been adequately determined. Two recent literature reviews, for instance,
did not contain any data on tropical climates and earthworm species (Ghosh,
2021; Singh et al., 2019). Only one study was found, which evaluated the
impact of predicted climate change on the distribution of a widely used fish-
bait species, R. alatus (Hughes et al., 2018). The authors concluded that, undera
realistic scenario of climate change for 2070, the distribution of this earthworm
species would become restricted, and its habitat fragmented. This would lead
to a decline in earthworm populations, the collapse of harvesting activities and
severe impacts on the local community that relies on this traditional practice
for subsistence. The global analysis by Phillips et al. (2019), though based on
limited data from tropical regions, revealed that climate is one of the most
significant factors influencing earthworm abundance, biomass and species
richness worldwide. It may also further contribute to earthworm invasion.
This finding suggests that any potential changes in global climate could have
substantial impacts on these parameters.
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3 Effect of land use, agricultural management, and
climate on enchytraeid communities

Enchytraeids are regarded as valuable indicators of land use and management
practices, particularly in agriculture (Pelosi & Rombke, 2016, 2018) due to
their abundance across various ecosystems, their essential role in ecosystem
functioning and their sensitivity to a wide range of environmental stresses.
The first section focuses on the effect of different land uses on enchytraeid
communities, comparing forests, grasslands and arable soils. A next section
is dedicated to agricultural practices, highlighting how population size
and species composition are affected by ploughing, pesticides, and other
factors (Fig. 2). In a final section, we review how climate parameters influence
enchytraeids, which, in turn, significantly affects ecosystem processes.

3.1 Land use and enchytraeid communities

Enchytraeidsare often consideredtypical forest-dwelling organisms, butthey are
also commonly found in agroecosystems. Their abundance - often dominated
by Cognettia sphagnetorum — is generally higher in forest than in grasslands
and croplands, likely due to the low pH levels of forest soils, which enchytraeids
tend to prefer (Beylich & Graefe, 2009; Pelosi & Rémbke, 2018). However,
this pattern does not always hold. For instance, Springett et al. (1996) found
higher enchytraeid abundance in kiwifruit orchards and hill pastures than in a
dairy pasture and native forest. As microbivorous and saprovorous organisms
(Didden W A M, 1993), enchytraeids often find greater food availability and
encounter fewer disturbances in grasslands, which generally results in higher
populations compared to arable fields (Barbercheck et al., 2009). Yet, some
studies suggested that land use tends to affect species composition more
strongly than total abundance (Beylich & Graefe, 2010; Nowak, 2004).

3.2 Agricultural management practices and enchytraeid
communities

In grasslands, enchytraeids are influenced by livestock grazing and mowing,
with grazing having a more negative effect than mowing, likely due to sail
compaction induced by animal trampling (Maraldo et al., 2015). In arable fields,
most studies have focused on the effects of soil tillage, particularly ploughing,
on enchytraeid communities. Ploughing alters the vertical distribution and
composition of enchytraeid community, but the overall impactis unclear due to
contrasting findings. Some positive effects of ploughing on enchytraeids may
offset the mechanical damage caused by conventional tillage. For instance, the
incorporation of crop residues within the soil profile can provide enchytraeids
with food (Lagerldf et al., 1989; Manetti et al., 2010; Severon et al., 2010);
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promote bacterial growth, which favors bacterial-feeding organisms with high
metabolic activity like enchytraeids (Hendrix et al., 1986); and increase pore
space, which facilitates enchytraeid movement through the soil (Lagerl6f et al.,
1989). As a result intermediate disturbance, such as non-inversion tillage, has
been reported to favor enchytraeids (Chan & Heenan, 1995) (Fig. 2).

As with earthworms, many laboratory studies report harmful effects of
pesticides on enchytraeids (Rémbke et al., 2017). However, these controlled
tests often lack ecological relevance due to factors like test duration, use
of artificial soils, model species and single-species tests. The response of
enchytraeids to pesticides at the community level can be studied using semi-
field methods, such as Terrestrial Model Ecosystems (Burrows & Edwards, 2004;
Scholz-Starke et al., 2013) or by directly sampling communities in the field.
Harmful effects of pesticides on enchytraeids were reported in both field and
semi-field studies, though rarely at the recommended application rate (Pelosi
& Rémbke, 2016). Results vary due to numerous interacting factors, and more
studies are needed on the long-term effects of pesticide mixtures applied at
agronomically recommended doses.

Other practices, such as inorganic fertilization and organic matter inputs,
also affect enchytraeid community abundance and composition, though
data on these effects remain limited. Generally, organic matter inputs appear
beneficial to enchytraeid communities (Andrén & Lagerlof, 1983; Mitchell
et al.,, 1978). The effects of inorganic fertilization are more variable and may
be negative (Birkhofer et al., 2008) possibly due to changes in soil pH and
electrical conductivity following fertilizer applications (Lagerlof et al., 1989)
(Fig. 2). Contrasting results when assessing effects of land use and management
on enchytraeids may also arise from annual climatic variations in enchytraeid
communities (Maraldo et al., 2015).

3.3 Climate and enchytraeid communities

Enchytraeids are soft-bodied organisms highly dependent of soil moisture for
survival, reproduction and activity. Vulnerable to drought, they are typically
confined to moist habitats (Didden, 1991). Severe droughts can dramatically
alter enchytraeid water content, reproduction and survival, affecting their
abundance, diversity and composition (Beylich & Achazi, 1999; Coyle
et al., 2017; Maraldo & Holmstrup, 2010). Like earthworms, enchytraeids have
different strategies to cope with drought (Fig. 3). Studies from over 50 years
ago (Dozsa-Farkas, 1973, 1977; Willard, 1972) reported that enchytraeids, such
as Stercutus niveus, enter aestivation during dry summer periods. Dézsa-Farkas
(1973) observed in laboratory conditions that enchytraeids cluster in small,
dense, inactive groups in response to dry soil conditions, a phenomenon that
remains largely overlooked in the literature. When conditions are unfavorable,
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enchytraeids can also survive in a cocoon stage (Christensen, 1956; Lagerlof
& Strandh, 1997) or migrate to more humid microhabitats (Didden, 1991;
Maraldo, 2009; Springett et al., 1970). However, due to their small size,
enchytraeids cannot migrate as deep as earthworms. Maraldo and Holmstrup
(2009) identified Cognettia sphagnetorum in 5-10 cm deep layers below the
surface, during dry periods, whereas Lumbricus terrestris can reach depths of
up to 2 m under similar conditions (van de Logt et al., 2023a).

Optimal conditions of 20% gravimetric water content (-2.57 kPa) were
found for E. albidus, supporting high survival, feeding activity and reproductive
rates. As for earthworms, overly moist soil conditions may reduce enchytraeid
reproduction by preventing cocoons laying (Cécile Serbource, personal
communication, 01-09-2024) (Fig. 3). Temperature also influences enchytraeid
activity, productivity and reproduction (Briones et al., 2007; Dial et al., 2016;
Maraldo et al., 2010; Patricio Silva et al., 2014). For instance, freeze tolerance in
the enchytraeid Fridericia ratzeli relies on glucose accumulation, a mechanism
similar to that of freeze-tolerant earthworm species (Holmstrup & Sjursen, 2001).
Optimal temperatures for enchytraeids, such as model species Enchytraeus sp.,
are around 18°C. In a meta-analysis, Briones et al. (2007) found that a mean
annual temperature above 16°C can limit the presence of C. sphagnetorum.
Some enchytraeid species can live in areas with very dry summers and severe
winters, indicating distinct physiological or behavioral adaptations (Grongroft
& Miehlich, 1983; Pedersen & Holmstrup, 2003; Willard, 1974). Other species,
such as Fridericia galba and Enchytraeus buchholzi, can tolerate dry conditions
as long as temperatures remain moderate (Abrahamsen, 1971; Dézsa-Farkas,
1977).

In conclusion, enchytraeids in agricultural fields are sensitive to both
management practices and climatic variability. Climate change is expected
to increase the frequency and intensity of heavy rainfall events and extend
drought periods, posing challenges for enchytraeid populations (Holmstrup
etal., 2012). These effects may be subtle at the level of total abundance, making
genus- or species-level indicators more informative.

4 The interaction between earthworms and
enchytraeids

4.1 An unclear relationship

Enchytraeids and earthworms can provide similar benefits to the soil, but at
different scales. However, there is still limited data on interactions between
these two groups under natural conditions. Some studies revealed a
competitive relationship, as both inhabit the same soil horizon and consume
similar food sources (Gajda et al., 2017; Larsen et al., 2016). Beylich and Graefe
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(2010) highlighted that enchytraeid populations tend to increase in areas
with low earthworm activity, suggesting a potential exclusion relationship.
The authors also demonstrated that smaller earthworm species or juveniles
of medium-sized species (belonging to endogeic or epigeic groups) exhibit
more antagonistic relationships with enchytraeids compared to larger anecic
species. The presence of invasive earthworm species has also been shown to
decrease the enchytraeid densities (Schlaghamersky et al., 2014). However,
earthworms and enchytraeids may also display positive relationships. For
instance, Schlaghamersky et al.(2014) and Nuutinen et al. (2017) demonstrated
that the presence of Lumbricus terrestris may facilitate the presence of
enchytraeids by increasing macroporosity. Schrader and Seibel (2001) and
Beylich and Graefe (2009) suggested that the casting of anecic earthworms
near the soil surface may locally improve conditions for enchytraeids and other
soil organisms. Karaban and Uvarov (2014) observed a positive influence of
Aporrectodea caliginosa on enchytraeid abundance, attributing this to its non-
trophic activities such as burrowing, cast deposition and mucus release. Several
authors underlined that, in the absence of resource limitation, earthworms and
enchytraeids can coexist without competitive exclusion (Beylich & Graefe,
2010; Makulec & Pilipiuk, 2000; Ricci et al., 2015).

4.2 Diverging responses to external factors

Very little isknown aboutthe factors driving the interactions between earthworms
and enchytraeids, including climate, food resources and agroecological
practices. Few studies have documented differing responses between
earthworms and enchytraeids to external factors. For instance, Bart et al. (2017)
and Kobetic¢ova et al. (2010) demonstrated that earthworms are more sensitive
to contaminated soils and pesticides exposure than enchytraeids, using
avoidance tests. However, Serbource et al. (2024) compared the sensitivity of
earthworms and enchytraeids to different stressors under similar test conditions
and found them to be equally sensitive to chemical stressors regardless of the
studied endpoint (mortality or reproduction). This study also underlined the
lack of studies (1) on environmentally relevant (i.e. representative of natural
soils) enchytraeid and earthworm species and (2) on other driving factors than
chemicals such as agricultural practices and climate change. Topoliantz et al.
(2000) found that after tillage, the activity of enchytraeids increased when
earthworm activity declined (Fig. 2). Further, while this has not been tested,
enchytraeids' preference for acidic soils suggests they may be less affected
by fertilizer-induced soil acidification than earthworms. These few studies
point toward the need to quantify both earthworms and enchytraeids when
assessing soil health, as enchytraeids could partially maintain the soil functions
performed by earthworms.
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5 How to sample and monitor earthworm and
enchytraeid populations

Sampling earthworms and enchytraeids in an efficient, reliable and reproducible
way is a crucial step in assessing the effects of land use, management practices and
climate on these soil organisms and for developing reliable soil health indicators.
Below, we summarize the most common methods for sampling earthworms and
enchytraeids. We also direct readers to key references for further information.

5.1 How to sample earthworms

There is a wide diversity of earthworm sampling methods, which often makes
comparing studies challenging. This variation is partly due to the fact that not
every sampling method is suitable for all soil conditions or earthworm species.
We can broadly distinguish two main groups of methodsto systematically sample
earthworms: the ethological methods that mainly rely on the earthworms being
stimulated to come out of the soil themselves, and the excavation methods
followed by hand sorting approaches with or without wet sieving (Bouche,
1969; Satchell, 1969; Singh etal., 2016) (Fig. 7). Ethological approaches include
the use of electricity, i.e., the octet method (Eisenhauer et al., 2008; Schmidt,
2001a; Weyers et al., 2008) and the use of chemicals such as formaldehyde
(Raw, 1959), hot mustard (Gronstol et al., 2000; Lawrence & Bowers, 2002),
onion solution (Steffen et al., 2013) and allyl isothiocyanate (AITC) (Pelosi et al.,
2009; Zaborski, 2003). Another less well-known approach involves actively
searching for earthworms within specific habitats, such as beneath dead logs in
forests, within and under dung pats in pastures, or in wetter environments like
stream margins, alongside or inside marshes, in bromeliads and in suspended
soils (Bartz et al., 2014; Decaens et al., 2016; James, 1996). If needed, these
specific niches should be considered in addition to soil sampling.

The effectiveness of each method varies between ecological categories
of earthworms. Hand sorting is more effective in detecting small individuals,
including endogeics and juvenile anecics, which are often underestimated
with ethological methods due to their lower mobility (Bartlett et al., 2006;
Callaham Jr & Hendrix, 1997; Chan & Munro, 2001). Larger anecics with deeper
burrowing strategies are often missed with hand sorting. Among ethological
methods, the octet approach has the advantage of not disrupting the soil
biogeochemistry, which can be a significant advantage in urban areas where
the use of chemicals and excavation may not be viable options (Pelosi et al.,
2021a) or in manipulative experiments where imposed treatments should
not be disturbed. The downside of this method is that it requires specialized
equipment (Schmidt, 2001a), and itis highly dependent on adequate soil water
contentto transmit the electric signal. When a chemical approach is used, Pelosi
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¥

Excavation methods Ethological methods
Octet method Chemical extractant
- Formaldehyde
- AITC

- Hot mustard

Figure 7 Overview of earthworm sampling methods, divided into two main categories:
excavation methods (left) and ethological methods (right). Excavation methods involve
removing a block of soil and hand-sorting earthworms. Ethological methods utilize
external stimuli, such as electricity (e.g. the octet method) or chemical extractants applied
to the soil surface, including formaldehyde, allyl isothiocyanate (AITC) and hot mustard.
Excavation methods tend to favor the collection of smaller individuals, such as juveniles
and endogeic earthworms but often miss species that burrow deeper. Conversely,
ethological methods are more effective for collecting epigeic and anecic species, while
underestimating smaller species due to their lower mobility. Field sampling is generally
discouraged during very cold or very dry weather conditions. We do not aim to provide
an exhaustive list of sampling methods; instead, we direct readers to key references in
the text for further information.

et al. (2009) advocate the use of AITC, which is not as toxic as formaldehyde
and is easier to standardize than hot mustard. Although considered to be the
most reliable approach, hand sorting is very labor intensive. To overcome the
challenges related to hand-sorting, Schmidt (2001b) suggests a time-limited
(40 minutes per 25 cm x 25 cm x 25 cm block) hand-sorting approach for large
and long-term monitoring campaigns. In Fig. 8, we provide a brief description
of the main methods used for earthworm sampling, together with their pros
and cons. Providing a detailed analysis of these approaches is beyond the
scope of this review. We refer readers to Singh et al. (2016) who performed a
thorough review of sampling methods.

Given all the pros and cons of each methods, the most reliable approach
might be to combine hand sorting with chemical extraction. In this line, the
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latest I1ISO norm 23611-1:2018(E) (ISO, 2018) recognizes the human and
ecosystem toxicity of formaldehyde and proposes hand sorting followed by
AITC extraction when deep burrowing earthworm species are present.

Regardless of the sampling method chosen, climatic conditions should
be considered when sampling earthworms, with a special focus on soil
moisture and temperature (Eggleton et al., 2009). Periods when earthworms
are inactive or suffering stressful conditions, i.e. winter and summer, should be
avoided (Section 2). In temperate regions, the activity of earthworms drastically
decreases when the soil temperature is below 5°C in winter and when the soil
moisture content is below the wilting pointin summer (Curry, 2004; Daugbjerg,
1988). In tropical regions, sampling is advised during the wet season, when
temperatures are relatively high without drought stress (Fragoso et al., 1999;
Fragoso & Lavelle, 1992; Singh et al., 2019).

5.2 How to sample enchytraeids

Enchytraeids are typically sampled using a soil corer with a diameter between
3 cm and 6 cm (Fig. 9). In agricultural soils, it is common to collect samples for

Sampling » Extraction

Wet funnel method

Figure 9 Different stages of enchytraeid sampling, from field collection. Sampling is
typically performed at a depth of 0-10 cm but can also include other depths where
enchytraeids are found, such as 10-20 cm and 20-30 cm. Two main methods are available
for extraction: the wet funnel method, which requires a heat source, and the ISO method,
which involves submerging samples in water and does not necessarily require heat.
Counting and identification are usually carried out using a petri dish placed under the
microscope when the enchytraeids are still alive.
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enchytraeid extraction up to 30 cm where most of the enchytraeids are thriving.
Enchytraeids are more abundant in the upper layers (0-10 cm) in plots under
reduced or no-tillage while under conventional tillage, they are more equally
distributed over the soil profile and therefore generally sampled at a soil depth
0-20 cm (Pelosi & Rombke, 2016).

After collection, soil samples can be keptrefrigerated at 4-6°C up to 2 weeks
after collection (ISO, 2019). The ISO norm 23611-3 recommends to extract
enchytraeids using a wet extraction approach which consists of submerging the
soil samples in water on a sieve (mesh size approximatively 1 mm) for 2-7 days
and collecting the sinking enchytraeids. Some variations of this approach exist,
notably the wet funnel method that uses a light bulb to create a source of heat
in order to increase the extraction efficiency and reduce the extraction time
(Fig. 9) (Kobeticova & Schlaghamersky, 2003; O’connor, 1955). In contrast to
earthworms, enchytraeids can only be identified alive as their transparent body
becomes opaque after death, which makes identification impossible (Schmelz
& Collado, 2010). Similar to earthworms, we strongly recommend sampling
enchytraeids at multiple times throughout the year (e.g. in autumn and spring),
in order to effectively evaluate the impacts of agricultural management on
enchytraeids, alongside natural climatic fluctuations (Maraldo & Holmstrup,
2009).

6 How to assess earthworm and enchytraeid activity

It is often overlooked that earthworms and enchytraeids, in order to influence
soil functions, not only need to be present but also to be active. In this section,
we therefore want to discuss approaches specifically focused on assessing the
activity of these soil biota (Fig. 10). While abundant earthworm populations are
likely to reflect conditions where earthworms are active and reproducing, more
direct measurements of earthworm activity can help us to better understand
the effects of agricultural management on earthworms.

Quantifying bioturbation is particularly challenging due to the opaque
nature of the soil matrix and the dynamic nature of bioturbation (Vidal
et al., 2023). This might partly explain why directly assessing earthworm and
enchytraeid activity have not yet been considered as indicators of soil health.
Here, we argue that some methods could be quick and efficient enough to
serve as biological indicators for soil health in the future.

6.1 How to assess earthworm activity

Ecotoxicological approaches - Earthworms have long been used as
bioindicators in ecotoxicological studies due to their widespread presence
in soil, sensitivity to contaminants and ease of handling (Sanchez-Hernandez,

Published by Burleigh Dodds Science Publishing Limited, 2025.



23

Macrofauna as indicators of soil health: earthworms and enchytraeids

"(/0'17/Aq/s95U821|/610 SUOWIWODBAIIESID
//:sd1y) @suedIq |euonewsau| 'y UOINGLNY SUOWWOYD) 8ANeal)) B Japun pasuadl| si yaiym Jaded |euibuo ayy wouy ¢ ‘614 pue | ‘614 jo sued
Buluiquod Aq (g10Z) '|e 1@ @1s02e] woly pardepe si ainbly suoissiWe 23SNode 8yl ((£zZ0Z) '|8 1@ |ePIA Wod) st ainbBly yoeoidde Buibewi sy 'synsal
[eanayiodAy 1o1dep 01 palesid aiem sainbly Juswssasse [ensia ay) pue Adodsoupeds paiesjul 8y "SWIOMULES [ENPIAIPUI PUB SSIHUNWIWOD
WwIoMyues 'sain1onulsolq suolediyinuenb Jo 198(qo syl uo paseq paijisse|d ‘Aliaioe wuomyues Ajnuenb 01 pasn seyoseoidde yusiayiq QL 24nbig

wanshs Suissad01d feuds
pue uosinboe 3y

J0suas 3y

yoeoudde |e2160]021x03027 Tenpne® poyidw paseq-AysuaQ meS?  SUOISSIWS dIISNOdY
WD s1squinuanepy

000z o00v 000 0008 00001 000zt
L L L ! h

esoujes y sujsaua) snouquiny

tovo

Foso
SnpunoIGns SNILPOSIN mioqn) Y 101eq e0ydoqopOly _ esayindng y.

090

yidag

Fozo

adueqlosqy

F-og0

Adodsouydads pasesju g r

KR
) NS
“Monns®

yoeoisdde buibew 1UDWISSISSe [BNSIA

Published by Burleigh Dodds Science Publishing Limited, 2025.



24 Macrofauna as indicators of soil health: earthworms and enchytraeids

2006; Velki & E¢imovi¢, 2017). In standardized testing protocols, both acute
(e.g. LC50 tests) and chronic (e.g. reproduction tests) effects on earthworms
can be assessed (ISO, 2023; OECD, 2016). For these tests, earthworms are
exposed to either artificial or natural soils for 2 weeks in acute tests or for
several weeks to months in chronic tests. Ecotoxicological assays typically
focus on a few model species, with Eisenia fetida, Eisenia andrei and Lumbricus
terrestris being the most frequently studied (e.g., Chelinho et al., 2011). These
assays primarily assess the risks of soil pollution as an indicator of soil health,
under controlled laboratory conditions. However, these tests can also be
used to assess the habitat function of a soil using non-spiked soils. Native or
ubiquitous earthworm species of interest can be keptin 500 g soil following the
recommendations of 1ISO (2023). Growth and reproduction is assessed using
juvenile or adult individuals, respectively, providing valuable information on
their ability to survive in and colonize a particular habitat. Tests like this have
been done using natural soils and several non-standard earthworm species like
A. caliginosa in the temperate region (Bart et al., 2018a) and P. corethrurus in
Brazil (Buch et al., 2017), though the duration of the test with the latter species
had to be expanded to 90 days in order to ensure reproduction. Nonetheless,
this approach does of course not fully capture the range of ecosystem functions
that earthworms perform as a community in soil, such as their substantial
influence on soil structure (Bartlett et al., 2010). Alternatively, the methods
described below emphasize evaluating the impact of earthworm activity on soil
through their bioturbation effects.

Visual assessment — Most existing methods for assessing the activity of
earthworms focus on assessing earthworm-made structures including casts
(Chevallier et al., 2006; Gerard, 1967; Perreault & Whalen, 2006) and burrows
(Capowiez et al., 2021; Perreault & Whalen, 2006). Quantifying these structures
can be done in the field using visual assessment of burrows and cast deposits
on the soil surface (Mueller et al., 2009; Peigné et al., 2013; Pérés et al., 1998).
A major drawback of this approach is that it fails to account for species that
rarely produce surface casts, such as endogeic species (Capowiez et al.,
2021) or for middens formed by anecics species in semi-permanent locations
(Rossi & Nuutinen, 2004). Some studies have attempted to assess earthworm
bioturbation at the profile scale, e.g., using the Soil-Structure-Pattern (SPP)
method (Piron et al., 2012), but this method has proven too complex for
larger monitoring streams or for providing practical management advice.
Consequently, it has been proposed to add a ‘earthworm bioturbation” item
within the more widely used Visual Soil Structure Assessment (VSSA). This
includes measuring the density and distribution of cast deposits, counting
burrow openings and assessing the freshness of cast aggregates. This would
result in a classification including four levels of bioturbation, from low to high
(Piron et al., 2017).
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Imaging approaches — To capture the activity of earthworms in soils, several
imaging approaches with various degree of sophistication have been used to
visually and quantitatively assess earthworm behavior, movement and their
effect on soil structure. Image capturing technologies such as digital cameras
or scanners have been used to monitor the temporal dynamics of soil biota,
including earthworms. These methods include imaging devices placed directly
in the field (Belaud et al., 2024), imaging within mesocosms (Djerdj et al., 2020;
Jangorzo et al., 2015) or imaging after sample collection and preparation
(Sauzetetal., 2023). X-ray tomography has often been used to create 3D images
depicting how earthworms influence soil porosity and structure, allowing for
monitoring burrow formation dynamics over time (Capowiez et al., 2011). A key
drawback of this approach, however, is that it requires destructive sampling
and access to advanced instrumentation.

Infrared spectroscopy — Approaches such as near infrared spectroscopy
(NIRS) (Bottinelli et al., 2013; Zangerlé et al., 2014, 2016a) and mid-infrared
spectroscopy (MIRS) (Bottinelli et al., 2021) show promise for rapidly and cost-
effectively dating certain biostructures and linking their composition to specific
earthworm species. In this approach, structures of interest can be collected
from the field and exposed to an infrared light while intensity of adsorption is
measured. The information extracted from the spectra enables to differentiate
earthworm-processed soil from surrounding soil. While these approaches
provide valuable insights into earthworm activity, they have not yet been
adopted as direct indicators of soil heath and require substantial calibration
measures. A more promising use of these infrared spectroscopic approaches
as a soil health indicator may be to assess general soil quality and specific
biological characteristics, such as soil microbial biomass or soil respiration
(Cécillon et al., 2009).

Acoustic emissions — A few recent studies have explored the acoustic
signatures of earthworms to monitor their activity (Keen et al., 2022; Lacoste
et al.,, 2018; Robinson et al., 2024). Under controlled laboratory conditions,
Lacoste et al. (2018) found a positive correlation between acoustic emissions
and earthworm burrow length. More recently, Keen et al. (2022) were able
to detect the acoustic emissions generated by invasive earthworm species
in Tundra soils during a field mesocosm experiment. Although still in initial
stages of development, this approach appears to be a promising, low-cost and
non-invasive method to assess the bioturbation induced by earthworms, and
possibly also other soil biota (Robinson et al., 2024).

Density-based method — Garamszegi et al. (2025) recently developed a
density-based method to quantify earthworm activity. This promising, easy and
quick method uses the fact that earthworms empty their gut when they enter
in aestivation. As a result, active earthworms can be separated from inactive
ones using a 1.08 g cm™ glucose solution, with active earthworms sinking
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and inactive earthworm with empty guts floating. In contrast to the previously
mentioned approaches, it has the advantage of capturing the current activity
of earthworms at the individual level, while other methods, when performed at
the field scale, reflect the presence of semi-permanent structures mostly at the
population level.

In conclusion, each method for assessing earthworm activity has its
advantages and disadvantages (Fig. 11). The primary criterion for a soil
health indicator is that it should be easy to implement in large-scale sampling
campaigns, meaning that the method used should not be overly time-
consuming or expensive while providing valuable information for practical
management decisions.

6.2 How to assess enchytraeid activity?

Ecotoxicological approaches — Enchytraeids have been used as models in
terrestrial ecotoxicology since the early 2000s as they were recognized as
indicator organisms for chemical stress in terrestrial ecosystems (Didden &
Rémbke,2001). Standardized protocols existto assess survival and reproduction
of enchytraeids when exposed to chemicals (ASTM, 2000; OECD, 2004). A few
ecotoxicological studies deal with enchytraeid activity through the assessment
of their feeding activity or avoidance behavior. For feeding behavior, the bait
lamina method (ISO, 2016) can be used both under field (Amossé et al., 2018)
and laboratory conditions (Bart et al., 2018b) as enchytraeids are considered
to be among the main consumers of the bait in the topsoil (Helling et al.,
1998). Moreover, avoidance test can be used to evaluate a specific locomotor
response of enchytraeids when exposed to a chemical (Amorim et al., 2008;
Kobeticové et al., 2010). These methods are informative and easy to implement
but do not allow studying physical consequences of enchytraeid activity in
soils.

Visual assessment and imaging approaches — Similar to endogeic
earthworms, enchytraeids have low assimilation efficiencies which they
compensate by high ingestion rates (Didden, 1993; Scheu, 1991). Van Vliet
et al. (1995) calculated that every year, the enchytraeid community present
at an agricultural site ingested and transported more than 2 kg of mineral
soil per square meter, thereby considerably contributing to the evolution of
soil structure through bioturbation and production of fecal pellets (Sandor
& Schrader, 2012; Van Vliet et al., 1993). Some species such as Enchytraeus
lacteus also contribute to the modification of soil surface roughness due to
the production of casts (Schrader et al., 1997). Didden (1991) described the
physical remnant of enchytraeids as a 'spongy’ structure (Fig. 12a). The physical
activity of enchytraeids in soils can be assessed through photographs (Van Vliet
etal., 1993), determination of aggregate stability (Carrera et al., 2011) or using
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Figure 12 Effect of enchytraeids on soil structure. (a) Side and top views of a column
experiment showing soil sieved to 2 mm, with a bulk density of 0.8 g cm3, incubated
for 1 month without (left) and with (right) enchytraeids. The soil was inoculated with
Enchytraeus crypticus (biomass equivalent to 240 000 individuals per m?). Note the
juveniles visible along the edges of the column in the side view. Source: Adapted from:
Serbource et al. (2024). (b) X-ray microtomography images from another experiment
showing soil cross-sections. Soil was incubated for 40 days with Enchytraeus albidus and
Enchytraeus crypticus. Red squares represent the zones used to calculate indicators in
Serbource et al. (2025).

a laser relief meter for measuring surface roughness due to enchytraeids fecal
pellets (Schrader et al., 1997). Otherwise, thin soil sections have been used in
situ to study the small aggregates made by enchytraeids (Carrera et al., 2011;
Topoliantz et al., 2000). However, these structures can in turn be consumed by
other soil invertebrates (e.g., earthworms, collembola), strongly limiting their
visibility on thin sections. Another imaging approach that could, in principle, be
used to assess enchytraeid activity is X-ray microtomography, a non-invasive
and non-destructive imaging technique. So far, we are aware of only two studies
that used this approach to analyze the enchytraeid pore network (Porre et al.,
2016; Serbource et al., 2025) (Fig. 12b).

In conclusion, efforts to quantify the activity of enchytraeids in soils remain
very limited. Most studies use model species, though wild enchytraeid species
would provide more ecologically relevant insights. A major limitation remains
that, unlike earthworms, many enchytraeid species remain challenging to breed
due to the limited understanding of their specific needs.
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7 Earthworms and enchytraeids as soil health
indicators

7.1 Biological indicators, a recent history

Until recently, most soil health monitoring campaigns have primarily relied
on chemical indicators, often overlooking physical and even more biological
indicators (Binemann et al., 2018; van Leeuwen et al.,, 2017). Soil organic
carbon was the main biological indicator used until the late twentieth century.
Early in the twenty-first century, however, some studies began to introduce
more specific biological indicators (Bonilla-Bedoya et al., 2023), including
earthworm-related ones and, to a lesser extent, enchytraeids (Pulleman
etal, 2012). These soil animals, especially earthworms, were thus increasingly
integrated within large programs to monitor soil quality (Frind et al., 2010)
(Section 7.3).

7.2 Earthworms and enchytraeids, good indicators of soil
health?

A good indicator of soil health should (1) be sensitive to changes in land use,
management and climate; (2) reflect general soil functioning by integrating
its physical, chemical, and biological properties; and (3) be accessible and
useful for stakeholders, such as farmers and policymakers (Doran & Parkin,
1997). The sensitivity of earthworms and enchytraeids to changes in land use,
management and climate has been summarized in Sections 2 and 3, while
the contributions of earthworms, and to a lesser extent enchytraeids, to soil
functioning have been detailed in several reviews (Blouin et al., 2013; Briones,
2014; Coleman et al., 2024; Conti & Mulder, 2022; Vidal et al., 2023). However,
while it is clear that earthworms and enchytraeids are sensitive to external
factors and play essential roles in soil ecosystems, converting their functions
into a practical and accessible indicator for stakeholders remains a challenge
(Fig. 13). One reason for this is that effects on earthworms and enchytraeids are
generally obvious at the genus or species level rather than at the level of total
abundance, prohibiting easy access by non-specialists. Another challenge for
stakeholders is to choose the most relevant among all the existing biological
indicators. For instance, Zwetsloot et al. (2022) identified as many as 289 soil
biology methods for assessing soil multifunctionality. Among these, it has been
suggested that, for practical insights, measuring the key organisms (in this case,
earthworms and enchytraeids) is often easier than measuring the processes
they perform (Creamer et al., 2022). Based on this, Zwetsloot et al. (2022)
recommend four methods each for assessing earthworms and enchytraeids,
including morphological identification (Bouché, 1972; Schmelz & Collado,
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Figure 13 Opportunities and challenges of using earthworms and enchytraeids as
indicators of soil health. Although earthworms and enchytraeids are sensitive to external
factors and play essential roles in soil ecosystems (yellow circles), translating their
functions into practical and accessible indicators for stakeholders remains a challenge
(orange circle). To tackle this challenge, various aspects need to be considered (gray
circles with red borders).

2010) counting/biomass or metabarcoding (Bienert et al., 2012; Creer et al.,
2016; Pansu et al., 2015).

7.3 When to use earthworms and enchytraeids as indicators?

Thereis growing recognition thatthe selection of soil health indicators should be
context-specific (Creamer et al., 2022; Schreefel et al., 2024), and that biological
indicators alone are not sufficient to assess soil health and should be combined
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with physical and chemical indicators in order to capture soil multifunctionality
(Coyne et al., 2022). Consequently, earthworms and enchytraeids should be
incorporated as indicators only if they provide relevant insights for a specific
purpose. So, when are earthworms and enchytraeids valuable as indicators?
Creamer et al.(2022) note that earthworms and enchytraeids directly contribute
to six and five key soil processes (out of 25), respectively, and play active roles
in three of the four primary soil functions: ‘water regulation and purification,
‘nutrient cycling, and ‘carbon and climate regulation’; without direct effect on
‘disease and pest regulation’ (Fig. 14). Earthworms, in particular, are considered
essentialforassessingsoilfunctions, especiallyin relationto biodiversity (Griffiths
et al.,, 2016). Although enchytraeids are less often considered, they contribute
to soil biodiversity (van Leeuwen et al., 2017) and are recommended as soil
quality indicators in cases where earthworms are absent (Pulleman et al., 2012).
In addition, combining data on these two annelids can provide complementary
information, as earthworms and enchytraeids do not necessarily respond the
same way to stress in terms of abundance and diversity (Section 4) (Beylich &

Effect of a change in land use, agricultural management
practices and climate on soil health
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Figure 14 Why use earthworms and enchytraeids as soil health indicators? Main
processes in which earthworm and enchytraeids are involved, determining their role on
three key soil functions: water regulation and purification, nutrient cycling, and carbon
and climate regulation. An asterisk (*) indicates a process carried out exclusively by
earthworms, not enchytraeids. This classification is adapted from Creamer et al. (2022)
and Zwetsloot et al. (2022); with a special focus on earthworms and enchytraeids. The
function delivered thanks to one or more processes have the same color code. Processes
that deliver more than one function are multi-colored according to the functions they
deliver. The delivery of soil functions contributes to the provision of ecosystem services.
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Graefe, 2009; Frind et al., 2010). Although earthworms and enchytraeids are
involved in fewer soil processes than microorganisms (Creamer et al., 2022),
Delgado-Baquerizo et al. (2020) emphasize that larger invertebrates help keep
to multiple soil functions operating near peak capacity by regulating the flow of
resources to smaller organisms that operate at lower functional levels.

As a result, earthworms, and to a lesser extent enchytraeids, are being
incorporated in large frameworks to monitor soil health, as summarized in Frind
et al.(2010). For instance, the Biological Indicator system for Soil Quality (BISQ)
of the Netherlands Soil Monitoring Network (NSMN) has been monitoring
several biological indicators for 300 locations, including the abundance and
diversity of earthworms and enchytraeids, from 1997 to 2014, every 6 years
(Rutgers et al., 2009). In Germany, several federal states are involved in the
long-term monitoring of earthworms and enchytraeids in some of the 800
permanent soil monitoring sites (Rdmbke et al., 2013). The French Soil Quality
Monitoring Network has been monitoring earthworms in 109 locations in
Britany through the RMQS Biodiv from 2006 to 2008 (Cluzeau et al., 2012). Yet,
most of these initiatives take place in Europe, while there is still a strong data
gap in, e.g., the Americas, North Australia, Asia, Russia and Africa (Phillips et al.,
2019). To tackle this challenge, among others, the recent initiative ‘Soil BON
earthworm’ aims at gathering the community of earthworm experts to improve
the monitoring of earthworm distribution globally (Ganault et al., 2024).

7.4 Remaining challenges
7.4.1 The need for fundamental knowledge and specialists

To advance the development of biological indicators, it is essential to deepen
scientific knowledge about the ecology and functional roles of earthworms and
enchytraeids. For instance, only about 20% of the estimated 30 000 existing
earthworm species have been identified (Decaéns et al., 2024) and the most
useful ways to classify them are still debated (Bottinelli & Capowiez, 2021).
Moreover, despite available identification keys (Schmelz and Collado, 2010),
morphological identification of enchytraeids is challenging as they must be
identified while alive, under a microscope. While the estimated diversity
of enchytraeids is at least ten times lower than that of earthworms (Anthony
etal., 2023), a significant share of these species remains unclassified (Decaéns
et al., 2006). Traditional identification of earthworms and enchytraeids rely on
dichotomous keys (Bouché, 1972; Schmelz & Collado, 2010; Sims & Gerard,
1999) which require specialist taxonomists — professionals who are increasingly
rare (Andre et al., 2001). New DNA-based methods, such as barcoding, are
increasingly used to assess biological diversity in soil samples (Dozsa-Farkas
etal., 2012; Epp etal., 2012). Although these molecular identification methods
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offer promising alternatives, they are still in development and not yet sufficiently
refined for widespread use (Decaéns et al., 2013; Dupont, 2009; Marchan
et al., 2022). In the context of agroecology in which agriculture will have to
rely on biodiversity to provide ecosystem services, a better quantification of
the role of the different species or categories of earthworms and enchytraeids
under different conditions is crucial. Moreover, understanding how land use,
management practices and climate factors impact this soil biota (Sections 2 and
3), and thus soil functions and ecosystem services will enable the development
of more sustainable agricultural systems that are adapted or resilient to future
climate scenarios.

7.4.2 The need for standardized sampling and analytical
approaches

Soil health cannot be effectively assessed using a single, standardized indicator;
instead, choosing the right indicators requires a clear understanding of specific
goals and context (Schreefel et al., 2024). When earthworms and enchytraeids
are selected as indicators to address particular research questions, it is essential
to define an appropriate measurement strategy for data collection. There is a
strong consensus on the need to harmonize sampling and analysis methods
across Europe and ideally worldwide (Ganault et al., 2024; Griffiths et al., 2016;
van Leeuwen et al., 2017). Of particular importance is the spatial and temporal
resolution of earthworm and enchytraeid sampling, which determines the
reliability of the data. The distribution of earthworms and enchytraeids at
field scale strongly varies between seasons (Section 5), but it is also strongly
spatially clustered (Rossi, 2003; Van Vliet, 2000). Rossi (2003) showed that two
earthworm species within a 45 x 45 m plot in a grass savanna in Céte d'lvoire
were clearly distributed in distinct patches within this plot. Valckx et al. (2009)
showed that the distribution of several juvenile and adult earthworm species
in a Belgium arable field was either overlapping or segregating. Rossi and
Nuutinen (2004) demonstrated that sampling unit size was key in modelling
the distribution of L. terrestris in a Finnish forest. While we fully support these
harmonization efforts, it is important to recognize that sampling and analytical
approaches for earthworms and enchytraeids may need adjustment based on
specific context, the spatial and temporal resolution required, and research
objectives (Section 4).

7.4.3 The need for reference systems/baseline/normal values

Once earthworm and/or enchytraeid indicators are chosen and implemented, it
needs to be compared to a reference system, a baseline or normal values (Blair
et al., 1997). For instance, once a management practice is applied, outcome

Published by Burleigh Dodds Science Publishing Limited, 2025.



34 Macrofauna as indicators of soil health: earthworms and enchytraeids

indicators are used to illustrate the potential success of a change over time
compared to a baseline (Schreefel et al., 2024). As trivial as this might sound,
these types of values are often not available, with the high variability across
seasons, land uses and soil types as a key constraint. The reference system
should thus be well adapted to the context and goals of the study. Considering
these needs, Kriger et al. (2018) laid the groundwork for establishing a
reference system for biological indicators, including earthworms, in Wallonia,
Belgium. To achieve this, the authors collected data on the number and
biomass of earthworms at four different times throughout the year from 60
sites with varied land uses and soil types. Reference ranges were established
by combining variances and calculating cumulative distribution functions. In
France, the ongoing LANDWORM project aims to quantify the current and
past (less than 50 years) effects of land use and management on earthworm
communities. The project takes into account the divers soil and climatic
conditions to better understand and predict earthworm community assembly
and to identify land management practices that support their population.
LANDWORM also aims to produce reference and threshold values to
contribute to the bio-monitoring of the French territory, which could be used
later at the European level. Ultimately, to efficiently use earthworms as soil
health indicators, it is also crucial to link the reference values obtained in the
types of projects mentioned above to their significance in terms of functions
and ecosystem services.

8 Conclusion

To effectively use earthworms and enchytraeids as soil health indicators, several
questions still need to be addressed in future research. Below, we conclude this
chaper by highlighting key challenges that need to be addressed for advancing
this field:

e Understanding combined effects of management practices, land use, and
climatic factors on earthworm and enchytraeid populations in order to
mitigate climate change effects. Specific management practices or land
uses that promote greater abundance and diversity of these organisms
are likely to enhance ecosystem resilience to adverse climatic conditions.
However, this area remains largely understudied (Section 2).

* Improving the accessibility and usefulness of indicators for stakeholders.
Stakeholders face a wide range of potential biological indicators to
choose from. Identifying earthworms and enchytraeids to the genus or
species level is challenging for non-specialists, despite being critical for
evaluating the effects of land use, management practices and climate on
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soil health. Enhancing the user-friendliness of these indicators is therefore
essential to their success (Section 7).

e Developing methods to assess activity of earthworms and enchytraeids.
The presence of soil biota does not necessarily indicate high biological
activity. In order to improve earthworm- and enchytraeid-based indicators,
we therefore recommend the further development and adoption of
methods to measure activity levels of earthworms and enchytraeids. These
methods may be based on various approaches, such as density methods,
visual assessments or acoustic approaches (Section 6).

e |dentifying unknown species of earthworms and enchytraeids. The
functionality of indicators is still severely hampered by lacks in the
knowledge of earthworm and enchytraeid species. The identification of new
species requires the expertise of specialist taxonomists, who are becoming
increasingly rare. The development of new DNA-based methods, such as
barcoding, offers promising support for species identification. However,
this approach still needs further refinement (Section 7.4).

e Studying interactions between earthworms and enchytraeids. Both groups
of soil biota coexist in natural environments but may respond differently
to changes in land use, management and climate. There is still much
knowledge on soil health to be gained by studying their interactions and
complementary roles in the soil (Section 4).

* Breeding more representative and relevant model species of earthworms and
enchytraeids for laboratory testing. Many studies on the effects of earthworms
and enchytraeids on soil properties rely on a very limited number of model
species. This is particularly true for enchytraeids, which are challenging to
breed due to limited knowledge of their specific requirements. Developing
better breeding techniques for various species of these faunal groups is
essential for more representative laboratory testing (Section 6).

e Testing effect of pesticides on earthworms and enchytraeids under realistic
conditions, at ecologically relevant dosages and accounting for interactions
between compounds. Controlled tests assessing the impact of pesticides
on these organisms often lack ecological relevance due to factors such as
short test durations, the use of artificial soils, reliance on model species
and single-species testing. More realistic test conditions are necessary for
relevant indicators (Sections 2 and 3).

9 Where to look for further information
9.1 Key book chapters, articles, and guides

e Frind, H.-C., etal.(2010). Earthworms as bioindicators of soil quality. In C. A.
Edwards & J. R. Lofty (Eds.), Biology of earthworms (pp. 261-278). Springer.
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Pelosi, C. & Rombke, J. (2016). Are Enchytraeidae (Oligochaeta, Annelida)
good indicators of agricultural management practices? Soil Biology and
Biochemistry, 100, 255-263. https://doi.org/10.1016/].s0ilbio.2016.06.030.
Singh, J., et al. (2016). Extraction of earthworm from soil by different
sampling methods: a review. Environment, Development and Sustainability,
18(6), 1521-1539. https://doi.org/10.1007/s10668-015-9703-5.

Singh, J., etal. (2019). Climate change effects on earthworms-a review. Soil
Organisms, 91(3), 114.

Vidal, A., et al. (2023). Chapter One - The role of earthworms in agronomy:
consensus, novel insights and remaining challenges. In D. L. Sparks (Ed.),
Advances in agronomy (Vol. 181, pp. 1-78). Academic Press. https://doi
.org/10.1016/bs.agron.2023.05.001.

Guide for enchytraeid identification - Schmelz, R.M. & Collado, R. (2010).
A guide to European terrestrial and freshwater species of Enchytraeidae
(Oligochaeta). Soil Organisms, 82, 1-176. Document freely accessible:
https://soil-organisms.org/index.php/SO/article/view/203.

9.2 International conferences

e The International Symposium on Earthworm Ecology — this conference

is held every 4 years and provide updates on all aspects of earthworm
research, as well as citizen science initiatives. The 13th edition of this
symposium will be held in Wageningen University and Research, the
Netherlands, in August 2026.

The International Colloquium on Soil Zoology is held every 4 years and
is one of the key scientific meetings on earthworms, enchytraeids as well
as other soil faunal groups. The most recent colloquium was held in Cape
town, South Africa, in August 2024,

9.3 Initiatives

e The Soil BON Earthworm - a global initiative aimed at gathering global

data and information on earthworms. Initiated by the German Centre
for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Soil BON
Earthworm — A global initiative on earthworm distribution, traits, and
spatiotemporal diversity patterns | Soil Organisms.
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