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The rapid expansion of Brazilian agriculture, although centered
on productivity gains, has brought challenges to the forefront,
influencing food systems at national, regional, and global
scales. Looming threats such as climate change, deforestation,
and land degradation cast shadows of uncertainty over the
sustainability and resilience of Brazilian agriculture. This paper
explores how technological and non-technological drivers can
further strengthen sustainability pathways in Brazilian
agriculture. Achieving the vision of strengthened sustainability
pathways necessitates a reevaluation of the multifaceted
governance measures that harmonize technological
advancements with environmental and social responsibilities.
The integration of science, innovation, and governance is
essential, but it additionally requires novel approaches, such as
interdisciplinary dialogue, public—private partnerships, and
international collaboration to effectively move towards
meaningful sustainability outcomes at multiple levels.
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Introduction

The growth of Brazilian agricultural production from the
late twentieth to early twenty-first centuries is one of the
most expansive and rapid agricultural transformations
throughout history, with direct impacts on national, re-
gional, and global food systems [1]. Globally, for millennia,
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agricultural development has involved the substitution of
forests and other forms of native vegetation to establish
food, feed, and fiber crops, as well as pastures. While this
was the case for most of Brazil’s history as well, the
country has, to a certain extent, been able to decouple this
long-standing ‘deforestation—agriculture’ model. Over the
past decades, the predominant strategy to expand agri-
cultural output in Brazilian agriculture, centered on pro-
ductivity gains [2,3], has been fundamental to minimizing
the negative impacts of production on the environment.
Much of the natural resource base in Brazil has benefited
from the sizable land-saving effects over the past 70 years
[3], and as of 2023, 65% of the enormous Brazilian terri-
tory, with 850.7 million hectares, is still covered with na-
tive vegetation [4].

However, a past of achievements and contributions to
the multiple dimensions of sustainability does not
guarantee, per se, a successful future for Brazilian agri-
culture. Indeed, beneath Brazilian agriculture’s success
lies a complex web of challenges that may threaten its
long-term sustainability and resilience. Climate change,
characterized by erratic weather patterns and more fre-
quent extreme events, is a key factor that casts a shadow
of uncertainty over the country’s future agricultural
production [5,6]. In 2022, Brazil’s total greenhouse gases
(GHG) emissions reached 2331.5 million metric tons,
with land use change and forestry contributing 48%, and
with the agriculture and livestock sector accounting for
26% |[7]. Significant land-use change has taken place
over the past decades, and as of 2023, nearly half of the
Cerrado biome and about 20% of the Amazon biome are
already cleared [4], even though these changes are not
solely attributable to agriculture [8].

Thus, deforestation and land degradation still persist in
certain spots, and if not adequately solved, may com-
promise the very foundations of the agricultural sector,
jeopardizing the future potential of Brazilian agriculture
[9]. The stakes could not be higher. Brazilian agriculture
does not merely provide sustenance for its population.
Brazil’s agricultural prowess is strategic to global food
security. As the world population swells and urbanizes,
with increased per capita incomes, the demand for food
is likely to continue to increase [10]. Given its com-
parative advantages in land and renewable resources,
Brazil can contribute to global supply through relatively
efficient, land-saving production systems, which, if
governed sustainably, may help reduce pressure on more
fragile ecosystems elsewhere.
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Yet, this role of Brazilian agriculture comes with im-
mense responsibilities. The environmental con-
sequences of unsustainable practices, from deforestation
affecting biodiversity to greenhouse gas emissions ex-
acerbating climate change, reverberate from local to
global scales [6,9,11-13]. These challenges are not iso-
lated; they are deeply interconnected and demand hol-
istic solutions [14]. For example, the socioeconomic
fabric of Brazil is deeply intertwined with agriculture.
The agricultural sector fosters important spillover effects
on the industry and service sectors. As of 2022, agri-
cultural value chains — for example, the economic sec-
tors linked to agriculture and livestock production,
involving inputs, on-farm, industrial production, and
distribution, and associated services — accounted for
24.8% of Brazil’s gross domestic product (GDP) [15] and
for 26.3% of total employment [16].

Hence, the resilience and sustainability of Brazilian
agriculture hold the keys not only to food security but
also to economic stability and environmental conserva-
tion [1,6,17]. In this context, it is necessary to recognize
that despite the success of Brazilian agriculture over the
past decades, there are localized problems between
agricultural production and the environmental and social
dimensions that need to be appropriately identified,
understood, and solved in the next years [6,17,18]. While
these challenges are impressive, the potential benefits of
forging an increasingly sustainable and resilient agri-
cultural sector are equally compelling. In this vision of
the future, not only is food security bolstered, but eco-
systems are preserved [12,13,17], protecting the rich
biodiversity of the Amazon and other vital Brazilian
biomes. Moreover, such a path of transformation can fuel
economic growth, additionally creating new opportu-
nities for innovation and, ultimately, for improving the
population’s well-being and prosperity [11,12,17,19].

In this paper, we examine how Brazil can navigate climate
change, deforestation, and land degradation to ensure a
sustainable and resilient future for its agriculture. We first

assess key technological drivers — such as advanced
biology, digital transformation, climate risk management,
and sustainable intensification — and their potential

contributions. Next, we explore their integration with non-
technological and policy drivers, drawing attention to
governance challenges and opportunities. The distinction
between technological and non-technological drivers is
employed to clarify the dual nature of the factors shaping
sustainability pathways in Brazilian agriculture. This ana-
lytical separation helps highlight the specific roles of these
drivers in the innovation flow, without implying a rigid
divide, as their interplay is explicitly addressed. We also
outline actionable steps to strengthen science—policy in-
terfaces and collaborative efforts, including international
cooperation, for advancing sustainability in Brazilian agri-
culture. Finally, we present our concluding remarks.

Technological drivers for advancing
sustainability and resilience in Brazilian
agriculture

Technological pathways to sustainability in Brazilian
agriculture can be meaningfully grouped into four in-
terrelated domains: (i) advanced biology and genetics,
(i1) digital agriculture and cyberinfrastructure, (iii) cli-
mate risk management tools, and (iv) sustainable in-
tensification and novel food systems. This categorization
helps clarify how different technological advances align
with sustainability goals and interact with governance
and policy mechanisms addressed later in this paper.

Advanced biology and genetics

"The rapid evolution of technology, encompassing areas such
as genetic editing, synthetic biology, high-throughput phe-
notyping, and precision breeding, is revolutionizing access to
genetic variability to address agricultural challenges [20-23].
Advances in gene editing, such as CRISPR (short for clus-
tered regularly interspaced short palindromic repeats), also
offer potential to reduce input dependence — for example,
by developing varieties less reliant on herbicides like gly-
phosate — and to broaden the use of new genetic variability
in crop improvement. These advancements offer un-
precedented capabilities to accelerate the development of
desirable traits, understand the complex interactions be-
tween genes and the environment, and enhance the effi-
ciency and precision of crop improvement [24]. Leveraging
these tools effectively is crucial in an era characterized by
dynamic climatic patterns, evolving consumer preferences,
and emerging plant diseases and pests [21,22,25]. Climate,
population, and per capita income expansion, as well as
preference changes, increase pressures on agricultural pro-
duction and natural capital from both the supply and de-
mand side, and thus, sustainably achieving food security
presents complex interactions and effects that necessitate a
paradigm shift away from more traditional views of agri-
culture [10,12,14]. Plant breeders and seed producers play a
pivotal role in addressing these challenges, as they are re-
sponsible for developing resilient, high-yielding, and cli-
mate-smart crop varieties with new traits and characteristics.

Digital agriculture and cyberinfrastructure

In parallel with advanced biology achievements, the rapid
development of digital technologies has led to tre-
mendous advancements in processes, competencies, and
business models, with further leaps anticipated as artificial
intelligence (Al) and quantum computing emerge [26,27].
"This ongoing digital transformation is giving rise to so-
lutions that operate in synergy, facilitating ‘cross-fertili-
zation’ and accelerating technological leaps we have been
witnessing in social media, e-commerce, the Internet of
Things, Al, robotics, and more [28].

Digital transformation in agriculture involves the in-
tegration of cutting-edge technologies such as precision
agriculture, smart farming systems, and data-driven
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decision-making [11,27] and, of course, adequate digital
infrastructure  for the necessary improved con-
nectivity [29]. In Brazil, many of these digital solutions
have been pioneered by national research institutions
and Ag-Tech startups, with growing adoption by farmers
across different regions and production systems.

These technologies allow farmers to optimize resource
management, including water, nutrients, and energy,
potentially resulting in more efficient and sustainable
farming practices [11,27,30]. Precision agriculture, for
example, enables accurate and precise application of
inputs based on real-time data, reducing waste and ne-
gative environmental impacts [27,31]. Smart-farming
systems utilize sensors and automation to monitor and
manage farm operations efficiently, while data-driven
decision-making empowers farmers to make informed
choices regarding crop rotation, pest control, and re-
source allocation [11,27,30]. More broadly, data, soft-
ware, analytics, modeling, Al, systems, and people —
the components of cyberinfrastructure ecosystems —
also need to be integrated and accessible to meet the
challenges presented to sustainability [27,29].

Therefore, embracing digital transformation can poten-
tially enhance resource efficiency, reduce environmental
impact, and improve the overall resilience of Brazilian
agriculture in face of changing conditions [17,27,30].
Given the benefits and growing availability of digital
solutions in the market, it is perhaps surprising that
there has not been a more widespread adoption of such
technologies by farmers, even in countries with a sci-
ence-based agriculture approach [31]. Lack of high-
quality access to communication networks and services,
at affordable prices, plays an important role [32]. How-
ever, these digital innovations are poised to amplify their
reach and impact the impending explosion of con-
nectivity [17,32].

Climate risk management tools

Massive data analysis (soil, crop, management), coupled
with agrometeorological data and projections, offers key
insights to improve agricultural climate risk management
approaches, which could be particularly useful for im-
proving yields and agricultural output resilience in the
tropics [5,33]. In Brazil, a tool called ZARC (an acronym
for ‘Agricultural Climate Risk Zoning’) helps farmers
and policymakers make climate-resilient decisions by
delineating suitable areas and planting times [34,35]. As
ZARC continues to develop and mature, it holds the
promise of becoming an even more powerful tool for
enhancing the resilience and sustainability of Brazilian
agriculture. With ongoing advancements in data analy-
tics, precision agriculture technologies, and climate
modeling [27,36], ZARC could evolve to offer increas-
ingly accurate and personalized insights to farmers, al-
lowing them to make timely decisions based on specific

local conditions, relative prices, and changing climate
patterns. Moreover, as international collaboration and
knowledge sharing grow, ZARC could serve as a valu-
able blueprint for similar initiatives in other regions of
the world, fostering a global network of climate-resilient
agriculture practices and contributing to a more sus-
tainable and food-secure future worldwide.

Sustainable intensification and novel food systems
Decisions on suitable areas and planting times are
boosted by improved management strategies.
Sustainable agriculture intensification (SAI) is a holistic
approach to agriculture [37-40] that can help Brazil to
increase agricultural productivity while reducing nega-
tive environmental impacts and avoiding pressures for
more deforestation [1,17]. SAI is sometimes also refer-
enced as regenerative agriculture, climate-smart agri-
culture, etc., as conceptually these terms aim to express
a very similar idea [40]. SAI integrates a range of prac-
tices, such as crop rotation, cover cropping and no-till
planting, integrated pest management, precision agri-
culture, crop-livestock-forest systems, and precision
management, that can help to improve soil health, re-
duce water pollution, increase biodiversity, and mitigate
and adapt to climate change [37-41]. By increasing the
efficiency of the land already allocated to agriculture,
SAI can help Brazil meet its food security needs without
the need to expand agriculture into new areas, thereby
minimizing impacts to forests and other natural ecosys-
tems [17,42,43]. Importantly, both SAI and digital tools
hold significant potential to support small- and medium-
sized producers by improving productivity, optimizing
resource use, and facilitating access to technical in-
formation and markets.

Novel food systems are also at the forefront of reshaping
how we produce and consume food, driven by evolving
consumer demands and demographic shifts [10,11].
These transformations are not merely about changing
what we eat but represent a profound shift in our per-
ception of food systems and their far-reaching impacts
on nutrition, health, and sustainability [44,45]. One of
the key elements of these innovations is the emergence
of alternative protein sources, such as plant-based pro-
teins mimicking meat’s protein, cultured proteins, and
insect-based foods that, in some circumstances, can
provide protein-rich food and feed with a lower en-
vironmental footprint [46,47].

However, several challenges still exist beyond con-
sumers’ preferences. For example, plant-based meat
may contain high amounts of sodium and additives,
lower amounts of B12, zinc, and iron (if not added), and,
additionally, is highly processed. Other alternative pro-
tein sources may be associated with allergies, and there
are cases in which little is known about their costs of
production, nutritional composition, and overall health
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effects [48]. Nevertheless, as societies become more
health-conscious and environmentally aware, dietary
choices are undergoing a transformation [46,49]. Con-
sumers, particularly in high-income countries, are al-
ready seeking foods that not only nourish but also align
with their ethical and ecological values. Despite major
short to medium-run barriers, this shift goes beyond
individual diets; it reflects concerns on the inter-
connectedness of our food choices with broader issues
like climate change and biodiversity loss [10,11,46,47].

Non-technological and policy drivers for
advancing sustainability governance in
Brazilian agriculture

Governance plays a critical role not only in setting en-
abling conditions for the adoption of technologies, but
also in guiding their integration into socially and en-
vironmentally responsible agricultural systems. We or-
ganize the governance discussion into: (i) key legal and
policy frameworks, (ii) enabling conditions and institu-
tional challenges, and (iii) strategic governance innova-
tions to support sustainability outcomes.

Key legal and policy frameworks

Brazil has made significant strides in sustainability gov-
ernance, particularly in the realm of policies and regula-
tions [1]. Brazil’s Forest Code [50] stands out as the most
significant public environmental governance framework
for the regulation of agricultural production. In addition to
establishing the rules determining the conservation and
restoration of native vegetation within private lands, the
implementation of the law provides incentives to prior-
itize the intensive margin, for example, agricultural pro-
ductivity gains [51], thus creating stimuli for rural
producers to invest in technologies promoting in-
tensification and land-saving results [17,45]. Protected
areas [52], moratoriums on deforestation [53], and ongoing
efforts to define due diligence regulations, to ensure that
the goods other countries import from Brazil are legally
sourced and produced [54], are also key advances in the
sustainability governance realm. The implementation of
regulatory measures often depends on complex political
dynamics, and alignment among key stakeholders is not
always straightforward. In some cases, this has limited the
adoption of potentially beneficial governance solutions,
even when technically feasible.

Enabling conditions and institutional challenges

The greatest sustainability governance challenge for
Brazil still centers around the critical issue of defor-
estation and its impact on the environment and inter-
national perception [55,56]. Balancing the need for
agricultural expansion with environmental preservation,
mitigating climate change, and promoting biodiversity
conservation are pressing concerns [1,6,12]. Addressing
this requires clearer coordination mechanisms, stronger

incentives for compliance across the entire sector, and
inclusive dialogue that builds legitimacy among diverse
stakeholders. Achieving sustainable agricultural models
[17,44,45], adopting land-saving and greenhouse gas
emission-reducing technologies [5,10,11,42,45], and in-
tegrating carbon markets into agriculture [57] all pose
governance challenges. Social inclusion in agriculture,
effective environmental governance in the digital age,
and the stability of policies in face of changing political
dynamics are also significant issues [58,59]. Greater at-
tention is needed to the social pillar of sustainability,
particularly the challenges of improving smallholder li-
velihoods, promoting rural inclusion, and advancing
human development in agricultural regions.

Brazil’s role in the global environmental agenda and
trade relations [18,60] adds even more complexity to
governance efforts, requiring a delicate balance between
international demands and domestic needs for robust
sustainability outcomes. To ensure the effectiveness of
these policies is not diminished and to minimize their
vulnerability to short-term political influences, it is cru-
cial to consistently emphasize the importance of ongoing
public engagement and scientific research in advancing
sustainable outcomes. Nonetheless, despite the well-
known strategic role of agricultural research and devel-
opment (R&D) to advancing agricultural competitive-
ness, sustainability, and resilience, the decreasing R&D
expenditures over the past decade, especially in the
Global South, warrant urgent attention [2,17,61,62].

Strategic governance innovations to support
sustainability outcomes

Realizing the potential of technological drivers depends
heavily on effective governance, including regulatory
stability, policy alignment, public—private coordination,
and long-term investment in R&D, which are explored
in the next section. Nature-based sectors, such as agri-
culture and forestry, have strong links with the rest of
the economy with backward and forward multipliers
[12,15]. By recognizing the critical role of natural capital,
which encompasses the world’s resources and services
provided by nature, in underpinning economic progress
and societal development, we acknowledge the foun-
dation upon which sustainable agriculture rests
[5,12,13,63,64]. Innovative science and cutting-edge
models highlight the efficiency gap — where current
resource utilization falls short of what could be achieved
sustainably. Closing these gaps, especially in biodi-
versity, carbon storage, agriculture, grazing, timber, and
economic returns, can address pressing global challenges
like health, food security, water security, climate change,
and economic productivity [12]. As we grapple with the
intricate challenges of sustainability governance in agri-
culture, recognizing the value of natural capital and
harnessing nature-based solutions emerge as pivotal
strategies [12,13,19,63,64]. These approaches not only
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contribute to meeting climate and economic objectives
but also serve as crucial tools for securing a more resilient
and prosperous future [5].

Synergies and holistic integration of drivers
As we contemplate the path forward for Brazilian agri-
culture, it becomes evident that the pursuit of sustain-
ability, innovation, and governance must not operate in
isolation but must be tightly woven together to address
the multifaceted challenges at hand. The advances in
science and innovation, as discussed in this review and
elsewhere [10,11,17,27,35,45], hold immense potential
to transform Brazilian agriculture, making it more re-
silient, efficient, and environmentally friendly. How-
ever, realizing such potential necessitates a parallel
advancement in sustainability governance that aligns
with these technological innovations.

The challenges are formidable. The complexities of
climate change, deforestation, and biodiversity loss de-
mand comprehensive solutions that go beyond the cap-
abilities of any single organization or sector [65].
Cooperation and alignment of purposes are paramount,
but the current landscape to advance on that path pre-
sents challenges. Firstly, existing organizations and in-
stitutions may not be adequately equipped to address
the intricate interplay of these drivers effectively. Many
traditional structures were not designed to adapt to the
rapid pace of technological and environmental changes
we are witnessing today. New models of collaboration
and governance are required to bridge the gap between
scientific progress and effective technological and
knowledge implementation [11,14,28]. Secondly, the
integration of advanced knowledge and technologies
into sustainable practices and associated governance
measures is not a straightforward task. It requires
breaking down silos and fostering interdisciplinary col-
laboration among researchers, policymakers, industry
stakeholders, and local communities. Achieving this
level of cooperation can be hindered by bureaucratic
processes and conflicting interests.

To overcome these challenges, it is essential to explore
novel approaches for cooperation and alignment of pur-
poses [11]. One promising avenue is the creation of
multidisciplinary task forces or consortia that could bring
together experts from various fields, including (but not
limited to) agronomy, biology, economics, data science,
and environmental governance. These task forces need
to work in synergy to develop integrated, multiscale
analyses and solutions that leverage the full potential of
technological drivers — advanced biology, digital trans-
formation, climate risk management tools, and SAI —
while adhering to robust environmental, social, and
governance principles.

Public—private partnerships that involve both govern-
mental bodies and industry players can facilitate the
adoption of cutting-edge technologies and sustainable
practices on a broader scale. Incentives and regulations
can be designed to encourage environmentally re-
sponsible behavior and the adoption of innovative so-
lutions [11-13,17]. International collaboration and
knowledge sharing should hold a central focus. Brazil’s
position as a global agricultural powerhouse means that
its experiences and solutions for strengthening sustain-
ability can have far-reaching impacts [1]. Establishing
partnerships among countries can lead to shared
knowledge and the development of novel strategies to-
wards global sustainability and the achievement of the
Sustainable Development Goals (SDGs). These efforts
should be guided by clear sustainability goals, including
those embedded in the SDGs, such as zero hunger,
climate action, responsible consumption, and life on land
— where agriculture plays a direct and strategic role.

Conclusion

The vision of advancing science and innovation in sync
with sustainability governance is not without its hurdles.
The stakes are high, and while the potential benefits are
immense, achieving them requires overcoming sub-
stantial challenges, such as political fragmentation, un-
even governance, and ensuring inclusive growth for all
stakeholders. Reaching a sustainable and resilient agri-
culture will not be easy and will demand coordinated,
long-term efforts across different sectors. Strengthening
such an approach is essential for the future of Brazilian
agriculture, global food security, and environmental
preservation. To succeed, we must reevaluate some of
the current policy and organizational structures, foster
collaboration among diverse stakeholders, in Brazil and
abroad, and embrace innovative approaches to address
the pressing sustainability challenges that lie ahead.

As the world looks on, Brazil stands at a pivotal crossroads,
presented with a unique opportunity to set a compelling
example. The country has the potential to demonstrate
how sustainable and resilient agriculture can thrive in the
face of unprecedented challenges. This is a resounding
call that requires revitalized collaborative actions, re-
sonating with the global imperative of feeding a growing
population while safeguarding the planet. The stakes are
high, but the potential benefits are even higher — an
agriculture that not only helps feed the world but also
nurtures our planet for generations to come.
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