
Available online at www.sciencedirect.com

Pathways to sustainability in Brazilian agriculture: 
technological drivers, governance, and policy linkages
Maurício A Lopes1 and Geraldo B Martha Jr2

The rapid expansion of Brazilian agriculture, although centered 
on productivity gains, has brought challenges to the forefront, 
influencing food systems at national, regional, and global 
scales. Looming threats such as climate change, deforestation, 
and land degradation cast shadows of uncertainty over the 
sustainability and resilience of Brazilian agriculture. This paper 
explores how technological and non-technological drivers can 
further strengthen sustainability pathways in Brazilian 
agriculture. Achieving the vision of strengthened sustainability 
pathways necessitates a reevaluation of the multifaceted 
governance measures that harmonize technological 
advancements with environmental and social responsibilities. 
The integration of science, innovation, and governance is 
essential, but it additionally requires novel approaches, such as 
interdisciplinary dialogue, public–private partnerships, and 
international collaboration to effectively move towards 
meaningful sustainability outcomes at multiple levels.
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Introduction
The growth of Brazilian agricultural production from the 
late twentieth to early twenty-first centuries is one of the 
most expansive and rapid agricultural transformations 
throughout history, with direct impacts on national, re
gional, and global food systems [1]. Globally, for millennia, 

agricultural development has involved the substitution of 
forests and other forms of native vegetation to establish 
food, feed, and fiber crops, as well as pastures. While this 
was the case for most of Brazil’s history as well, the 
country has, to a certain extent, been able to decouple this 
long-standing ‘deforestation–agriculture’ model. Over the 
past decades, the predominant strategy to expand agri
cultural output in Brazilian agriculture, centered on pro
ductivity gains [2,3], has been fundamental to minimizing 
the negative impacts of production on the environment. 
Much of the natural resource base in Brazil has benefited 
from the sizable land-saving effects over the past 70 years 
[3], and as of 2023, 65% of the enormous Brazilian terri
tory, with 850.7 million hectares, is still covered with na
tive vegetation [4].

However, a past of achievements and contributions to 
the multiple dimensions of sustainability does not 
guarantee, per se, a successful future for Brazilian agri
culture. Indeed, beneath Brazilian agriculture’s success 
lies a complex web of challenges that may threaten its 
long-term sustainability and resilience. Climate change, 
characterized by erratic weather patterns and more fre
quent extreme events, is a key factor that casts a shadow 
of uncertainty over the country’s future agricultural 
production [5,6]. In 2022, Brazil’s total greenhouse gases 
(GHG) emissions reached 2331.5 million metric tons, 
with land use change and forestry contributing 48%, and 
with the agriculture and livestock sector accounting for 
26% [7]. Significant land-use change has taken place 
over the past decades, and as of 2023, nearly half of the 
Cerrado biome and about 20% of the Amazon biome are 
already cleared [4], even though these changes are not 
solely attributable to agriculture [8].

Thus, deforestation and land degradation still persist in 
certain spots, and if not adequately solved, may com
promise the very foundations of the agricultural sector, 
jeopardizing the future potential of Brazilian agriculture 
[9]. The stakes could not be higher. Brazilian agriculture 
does not merely provide sustenance for its population. 
Brazil’s agricultural prowess is strategic to global food 
security. As the world population swells and urbanizes, 
with increased per capita incomes, the demand for food 
is likely to continue to increase [10]. Given its com
parative advantages in land and renewable resources, 
Brazil can contribute to global supply through relatively 
efficient, land-saving production systems, which, if 
governed sustainably, may help reduce pressure on more 
fragile ecosystems elsewhere.
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Yet, this role of Brazilian agriculture comes with im
mense responsibilities. The environmental con
sequences of unsustainable practices, from deforestation 
affecting biodiversity to greenhouse gas emissions ex
acerbating climate change, reverberate from local to 
global scales [6,9,11–13]. These challenges are not iso
lated; they are deeply interconnected and demand hol
istic solutions [14]. For example, the socioeconomic 
fabric of Brazil is deeply intertwined with agriculture. 
The agricultural sector fosters important spillover effects 
on the industry and service sectors. As of 2022, agri
cultural value chains — for example, the economic sec
tors linked to agriculture and livestock production, 
involving inputs, on-farm, industrial production, and 
distribution, and associated services — accounted for 
24.8% of Brazil’s gross domestic product (GDP) [15] and 
for 26.3% of total employment [16].

Hence, the resilience and sustainability of Brazilian 
agriculture hold the keys not only to food security but 
also to economic stability and environmental conserva
tion [1,6,17]. In this context, it is necessary to recognize 
that despite the success of Brazilian agriculture over the 
past decades, there are localized problems between 
agricultural production and the environmental and social 
dimensions that need to be appropriately identified, 
understood, and solved in the next years [6,17,18]. While 
these challenges are impressive, the potential benefits of 
forging an increasingly sustainable and resilient agri
cultural sector are equally compelling. In this vision of 
the future, not only is food security bolstered, but eco
systems are preserved [12,13,17], protecting the rich 
biodiversity of the Amazon and other vital Brazilian 
biomes. Moreover, such a path of transformation can fuel 
economic growth, additionally creating new opportu
nities for innovation and, ultimately, for improving the 
population’s well-being and prosperity [11,12,17,19].

In this paper, we examine how Brazil can navigate climate 
change, deforestation, and land degradation to ensure a 
sustainable and resilient future for its agriculture. We first 
assess key technological drivers — such as advanced 
biology, digital transformation, climate risk management, 
and sustainable intensification — and their potential 
contributions. Next, we explore their integration with non- 
technological and policy drivers, drawing attention to 
governance challenges and opportunities. The distinction 
between technological and non-technological drivers is 
employed to clarify the dual nature of the factors shaping 
sustainability pathways in Brazilian agriculture. This ana
lytical separation helps highlight the specific roles of these 
drivers in the innovation flow, without implying a rigid 
divide, as their interplay is explicitly addressed. We also 
outline actionable steps to strengthen science–policy in
terfaces and collaborative efforts, including international 
cooperation, for advancing sustainability in Brazilian agri
culture. Finally, we present our concluding remarks.

Technological drivers for advancing 
sustainability and resilience in Brazilian 
agriculture
Technological pathways to sustainability in Brazilian 
agriculture can be meaningfully grouped into four in
terrelated domains: (i) advanced biology and genetics, 
(ii) digital agriculture and cyberinfrastructure, (iii) cli
mate risk management tools, and (iv) sustainable in
tensification and novel food systems. This categorization 
helps clarify how different technological advances align 
with sustainability goals and interact with governance 
and policy mechanisms addressed later in this paper.

Advanced biology and genetics
The rapid evolution of technology, encompassing areas such 
as genetic editing, synthetic biology, high-throughput phe
notyping, and precision breeding, is revolutionizing access to 
genetic variability to address agricultural challenges [20–23]. 
Advances in gene editing, such as CRISPR (short for clus
tered regularly interspaced short palindromic repeats), also 
offer potential to reduce input dependence — for example, 
by developing varieties less reliant on herbicides like gly
phosate — and to broaden the use of new genetic variability 
in crop improvement. These advancements offer un
precedented capabilities to accelerate the development of 
desirable traits, understand the complex interactions be
tween genes and the environment, and enhance the effi
ciency and precision of crop improvement [24]. Leveraging 
these tools effectively is crucial in an era characterized by 
dynamic climatic patterns, evolving consumer preferences, 
and emerging plant diseases and pests [21,22,25]. Climate, 
population, and per capita income expansion, as well as 
preference changes, increase pressures on agricultural pro
duction and natural capital from both the supply and de
mand side, and thus, sustainably achieving food security 
presents complex interactions and effects that necessitate a 
paradigm shift away from more traditional views of agri
culture [10,12,14]. Plant breeders and seed producers play a 
pivotal role in addressing these challenges, as they are re
sponsible for developing resilient, high-yielding, and cli
mate-smart crop varieties with new traits and characteristics.

Digital agriculture and cyberinfrastructure
In parallel with advanced biology achievements, the rapid 
development of digital technologies has led to tre
mendous advancements in processes, competencies, and 
business models, with further leaps anticipated as artificial 
intelligence (AI) and quantum computing emerge [26,27]. 
This ongoing digital transformation is giving rise to so
lutions that operate in synergy, facilitating ‘cross-fertili
zation’ and accelerating technological leaps we have been 
witnessing in social media, e-commerce, the Internet of 
Things, AI, robotics, and more [28].

Digital transformation in agriculture involves the in
tegration of cutting-edge technologies such as precision 
agriculture, smart farming systems, and data-driven 
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decision-making [11,27] and, of course, adequate digital 
infrastructure for the necessary improved con
nectivity [29]. In Brazil, many of these digital solutions 
have been pioneered by national research institutions 
and Ag-Tech startups, with growing adoption by farmers 
across different regions and production systems.

These technologies allow farmers to optimize resource 
management, including water, nutrients, and energy, 
potentially resulting in more efficient and sustainable 
farming practices [11,27,30]. Precision agriculture, for 
example, enables accurate and precise application of 
inputs based on real-time data, reducing waste and ne
gative environmental impacts [27,31]. Smart-farming 
systems utilize sensors and automation to monitor and 
manage farm operations efficiently, while data-driven 
decision-making empowers farmers to make informed 
choices regarding crop rotation, pest control, and re
source allocation [11,27,30]. More broadly, data, soft
ware, analytics, modeling, AI, systems, and people — 
the components of cyberinfrastructure ecosystems — 
also need to be integrated and accessible to meet the 
challenges presented to sustainability [27,29].

Therefore, embracing digital transformation can poten
tially enhance resource efficiency, reduce environmental 
impact, and improve the overall resilience of Brazilian 
agriculture in face of changing conditions [17,27,30]. 
Given the benefits and growing availability of digital 
solutions in the market, it is perhaps surprising that 
there has not been a more widespread adoption of such 
technologies by farmers, even in countries with a sci
ence-based agriculture approach [31]. Lack of high- 
quality access to communication networks and services, 
at affordable prices, plays an important role [32]. How
ever, these digital innovations are poised to amplify their 
reach and impact the impending explosion of con
nectivity [17,32].

Climate risk management tools
Massive data analysis (soil, crop, management), coupled 
with agrometeorological data and projections, offers key 
insights to improve agricultural climate risk management 
approaches, which could be particularly useful for im
proving yields and agricultural output resilience in the 
tropics [5,33]. In Brazil, a tool called ZARC (an acronym 
for ‘Agricultural Climate Risk Zoning’) helps farmers 
and policymakers make climate-resilient decisions by 
delineating suitable areas and planting times [34,35]. As 
ZARC continues to develop and mature, it holds the 
promise of becoming an even more powerful tool for 
enhancing the resilience and sustainability of Brazilian 
agriculture. With ongoing advancements in data analy
tics, precision agriculture technologies, and climate 
modeling [27,36], ZARC could evolve to offer increas
ingly accurate and personalized insights to farmers, al
lowing them to make timely decisions based on specific 

local conditions, relative prices, and changing climate 
patterns. Moreover, as international collaboration and 
knowledge sharing grow, ZARC could serve as a valu
able blueprint for similar initiatives in other regions of 
the world, fostering a global network of climate-resilient 
agriculture practices and contributing to a more sus
tainable and food-secure future worldwide.

Sustainable intensification and novel food systems
Decisions on suitable areas and planting times are 
boosted by improved management strategies. 
Sustainable agriculture intensification (SAI) is a holistic 
approach to agriculture [37–40] that can help Brazil to 
increase agricultural productivity while reducing nega
tive environmental impacts and avoiding pressures for 
more deforestation [1,17]. SAI is sometimes also refer
enced as regenerative agriculture, climate-smart agri
culture, etc., as conceptually these terms aim to express 
a very similar idea [40]. SAI integrates a range of prac
tices, such as crop rotation, cover cropping and no-till 
planting, integrated pest management, precision agri
culture, crop-livestock-forest systems, and precision 
management, that can help to improve soil health, re
duce water pollution, increase biodiversity, and mitigate 
and adapt to climate change [37–41]. By increasing the 
efficiency of the land already allocated to agriculture, 
SAI can help Brazil meet its food security needs without 
the need to expand agriculture into new areas, thereby 
minimizing impacts to forests and other natural ecosys
tems [17,42,43]. Importantly, both SAI and digital tools 
hold significant potential to support small- and medium- 
sized producers by improving productivity, optimizing 
resource use, and facilitating access to technical in
formation and markets.

Novel food systems are also at the forefront of reshaping 
how we produce and consume food, driven by evolving 
consumer demands and demographic shifts [10,11]. 
These transformations are not merely about changing 
what we eat but represent a profound shift in our per
ception of food systems and their far-reaching impacts 
on nutrition, health, and sustainability [44,45]. One of 
the key elements of these innovations is the emergence 
of alternative protein sources, such as plant-based pro
teins mimicking meat’s protein, cultured proteins, and 
insect-based foods that, in some circumstances, can 
provide protein-rich food and feed with a lower en
vironmental footprint [46,47].

However, several challenges still exist beyond con
sumers’ preferences. For example, plant-based meat 
may contain high amounts of sodium and additives, 
lower amounts of B12, zinc, and iron (if not added), and, 
additionally, is highly processed. Other alternative pro
tein sources may be associated with allergies, and there 
are cases in which little is known about their costs of 
production, nutritional composition, and overall health 
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effects [48]. Nevertheless, as societies become more 
health-conscious and environmentally aware, dietary 
choices are undergoing a transformation [46,49]. Con
sumers, particularly in high-income countries, are al
ready seeking foods that not only nourish but also align 
with their ethical and ecological values. Despite major 
short to medium-run barriers, this shift goes beyond 
individual diets; it reflects concerns on the inter
connectedness of our food choices with broader issues 
like climate change and biodiversity loss [10,11,46,47].

Non-technological and policy drivers for 
advancing sustainability governance in 
Brazilian agriculture
Governance plays a critical role not only in setting en
abling conditions for the adoption of technologies, but 
also in guiding their integration into socially and en
vironmentally responsible agricultural systems. We or
ganize the governance discussion into: (i) key legal and 
policy frameworks, (ii) enabling conditions and institu
tional challenges, and (iii) strategic governance innova
tions to support sustainability outcomes.

Key legal and policy frameworks
Brazil has made significant strides in sustainability gov
ernance, particularly in the realm of policies and regula
tions [1]. Brazil’s Forest Code [50] stands out as the most 
significant public environmental governance framework 
for the regulation of agricultural production. In addition to 
establishing the rules determining the conservation and 
restoration of native vegetation within private lands, the 
implementation of the law provides incentives to prior
itize the intensive margin, for example, agricultural pro
ductivity gains [51], thus creating stimuli for rural 
producers to invest in technologies promoting in
tensification and land-saving results [17,45]. Protected 
areas [52], moratoriums on deforestation [53], and ongoing 
efforts to define due diligence regulations, to ensure that 
the goods other countries import from Brazil are legally 
sourced and produced [54], are also key advances in the 
sustainability governance realm. The implementation of 
regulatory measures often depends on complex political 
dynamics, and alignment among key stakeholders is not 
always straightforward. In some cases, this has limited the 
adoption of potentially beneficial governance solutions, 
even when technically feasible.

Enabling conditions and institutional challenges
The greatest sustainability governance challenge for 
Brazil still centers around the critical issue of defor
estation and its impact on the environment and inter
national perception [55,56]. Balancing the need for 
agricultural expansion with environmental preservation, 
mitigating climate change, and promoting biodiversity 
conservation are pressing concerns [1,6,12]. Addressing 
this requires clearer coordination mechanisms, stronger 

incentives for compliance across the entire sector, and 
inclusive dialogue that builds legitimacy among diverse 
stakeholders. Achieving sustainable agricultural models 
[17,44,45], adopting land-saving and greenhouse gas 
emission-reducing technologies [5,10,11,42,45], and in
tegrating carbon markets into agriculture [57] all pose 
governance challenges. Social inclusion in agriculture, 
effective environmental governance in the digital age, 
and the stability of policies in face of changing political 
dynamics are also significant issues [58,59]. Greater at
tention is needed to the social pillar of sustainability, 
particularly the challenges of improving smallholder li
velihoods, promoting rural inclusion, and advancing 
human development in agricultural regions.

Brazil’s role in the global environmental agenda and 
trade relations [18,60] adds even more complexity to 
governance efforts, requiring a delicate balance between 
international demands and domestic needs for robust 
sustainability outcomes. To ensure the effectiveness of 
these policies is not diminished and to minimize their 
vulnerability to short-term political influences, it is cru
cial to consistently emphasize the importance of ongoing 
public engagement and scientific research in advancing 
sustainable outcomes. Nonetheless, despite the well- 
known strategic role of agricultural research and devel
opment (R&D) to advancing agricultural competitive
ness, sustainability, and resilience, the decreasing R&D 
expenditures over the past decade, especially in the 
Global South, warrant urgent attention [2,17,61,62].

Strategic governance innovations to support 
sustainability outcomes
Realizing the potential of technological drivers depends 
heavily on effective governance, including regulatory 
stability, policy alignment, public–private coordination, 
and long-term investment in R&D, which are explored 
in the next section. Nature-based sectors, such as agri
culture and forestry, have strong links with the rest of 
the economy with backward and forward multipliers 
[12,15]. By recognizing the critical role of natural capital, 
which encompasses the world’s resources and services 
provided by nature, in underpinning economic progress 
and societal development, we acknowledge the foun
dation upon which sustainable agriculture rests 
[5,12,13,63,64]. Innovative science and cutting-edge 
models highlight the efficiency gap — where current 
resource utilization falls short of what could be achieved 
sustainably. Closing these gaps, especially in biodi
versity, carbon storage, agriculture, grazing, timber, and 
economic returns, can address pressing global challenges 
like health, food security, water security, climate change, 
and economic productivity [12]. As we grapple with the 
intricate challenges of sustainability governance in agri
culture, recognizing the value of natural capital and 
harnessing nature-based solutions emerge as pivotal 
strategies [12,13,19,63,64]. These approaches not only 
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contribute to meeting climate and economic objectives 
but also serve as crucial tools for securing a more resilient 
and prosperous future [5].

Synergies and holistic integration of drivers
As we contemplate the path forward for Brazilian agri
culture, it becomes evident that the pursuit of sustain
ability, innovation, and governance must not operate in 
isolation but must be tightly woven together to address 
the multifaceted challenges at hand. The advances in 
science and innovation, as discussed in this review and 
elsewhere [10,11,17,27,35,45], hold immense potential 
to transform Brazilian agriculture, making it more re
silient, efficient, and environmentally friendly. How
ever, realizing such potential necessitates a parallel 
advancement in sustainability governance that aligns 
with these technological innovations.

The challenges are formidable. The complexities of 
climate change, deforestation, and biodiversity loss de
mand comprehensive solutions that go beyond the cap
abilities of any single organization or sector [65]. 
Cooperation and alignment of purposes are paramount, 
but the current landscape to advance on that path pre
sents challenges. Firstly, existing organizations and in
stitutions may not be adequately equipped to address 
the intricate interplay of these drivers effectively. Many 
traditional structures were not designed to adapt to the 
rapid pace of technological and environmental changes 
we are witnessing today. New models of collaboration 
and governance are required to bridge the gap between 
scientific progress and effective technological and 
knowledge implementation [11,14,28]. Secondly, the 
integration of advanced knowledge and technologies 
into sustainable practices and associated governance 
measures is not a straightforward task. It requires 
breaking down silos and fostering interdisciplinary col
laboration among researchers, policymakers, industry 
stakeholders, and local communities. Achieving this 
level of cooperation can be hindered by bureaucratic 
processes and conflicting interests.

To overcome these challenges, it is essential to explore 
novel approaches for cooperation and alignment of pur
poses [11]. One promising avenue is the creation of 
multidisciplinary task forces or consortia that could bring 
together experts from various fields, including (but not 
limited to) agronomy, biology, economics, data science, 
and environmental governance. These task forces need 
to work in synergy to develop integrated, multiscale 
analyses and solutions that leverage the full potential of 
technological drivers — advanced biology, digital trans
formation, climate risk management tools, and SAI — 
while adhering to robust environmental, social, and 
governance principles.

Public–private partnerships that involve both govern
mental bodies and industry players can facilitate the 
adoption of cutting-edge technologies and sustainable 
practices on a broader scale. Incentives and regulations 
can be designed to encourage environmentally re
sponsible behavior and the adoption of innovative so
lutions [11–13,17]. International collaboration and 
knowledge sharing should hold a central focus. Brazil’s 
position as a global agricultural powerhouse means that 
its experiences and solutions for strengthening sustain
ability can have far-reaching impacts [1]. Establishing 
partnerships among countries can lead to shared 
knowledge and the development of novel strategies to
wards global sustainability and the achievement of the 
Sustainable Development Goals (SDGs). These efforts 
should be guided by clear sustainability goals, including 
those embedded in the SDGs, such as zero hunger, 
climate action, responsible consumption, and life on land 
— where agriculture plays a direct and strategic role.

Conclusion
The vision of advancing science and innovation in sync 
with sustainability governance is not without its hurdles. 
The stakes are high, and while the potential benefits are 
immense, achieving them requires overcoming sub
stantial challenges, such as political fragmentation, un
even governance, and ensuring inclusive growth for all 
stakeholders. Reaching a sustainable and resilient agri
culture will not be easy and will demand coordinated, 
long-term efforts across different sectors. Strengthening 
such an approach is essential for the future of Brazilian 
agriculture, global food security, and environmental 
preservation. To succeed, we must reevaluate some of 
the current policy and organizational structures, foster 
collaboration among diverse stakeholders, in Brazil and 
abroad, and embrace innovative approaches to address 
the pressing sustainability challenges that lie ahead.

As the world looks on, Brazil stands at a pivotal crossroads, 
presented with a unique opportunity to set a compelling 
example. The country has the potential to demonstrate 
how sustainable and resilient agriculture can thrive in the 
face of unprecedented challenges. This is a resounding 
call that requires revitalized collaborative actions, re
sonating with the global imperative of feeding a growing 
population while safeguarding the planet. The stakes are 
high, but the potential benefits are even higher — an 
agriculture that not only helps feed the world but also 
nurtures our planet for generations to come.
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