ESTIMATIVA DE BIOMASSA DA VEGETAÇÃO SECUNDÁRIA EM LATOSSOLO VERMELHO DISTRÓFICO TÍPICO DA ZONA DA MATA/MG.

J.A.S. Lima¹*; C.A.S. Carmo¹; P.E.F. Motta¹; N.A. Meneguelli¹; S.G. Tosto¹; A.P. Alvarenga².

¹Centro Nacional de Pesquisa de Solos. Embrapa Solos. Rua Jardim Botânico, 1024. Rio de Janeiro, RJ. CEP: 22460-000.

² EPAMIG, Vila Giannete, 47, Campus da UFV. CEP 36571 – 000. Viçosa – MG. Email: jorge@cnps.embrapa.br,

Projeto financiado pelo PRODETAB

O acúmulo de gases de efeito estufa (GEEs) na atmosfera atingiu magnitude expressiva, levando as principais instituições internacionais de pesquisa ambiental e organismos multilaterais a dar o alerta sobre as possíveis consequências do aumento de temperatura da Terra, especialmente sobre todas aquelas populações que vivem ao nível do mar. Em virtude dessas preocupações, cerca de 175 países assinaram, durante a Eco 92, no Rio de Janeiro, o relatório do Painel Intergovernamental sobre Mudanças Climáticas que, decidiu responsabilizar um grupo de 29 países industrializados, que deveriam arcar com os encargos financeiros consequentes de suas emissões, além de reduzi-las. Entretanto, a necessidade desses países em flexibilizar essas reduções, devido a grande dependência econômica de fontes fósseis de energia resultou, na Conferência das Partes realizada em 1997 no Japão (Kyoto), na alternativa pela qual os países desenvolvidos poderiam compensar as reduções de emissões, financiando atividades capazes de seqüestrar quantidades significativas de carbono, nos países em desenvolvimento. Foi, então, desenvolvido o conceito de um mercado, ainda não implantado, para a negociação de créditos de carbono visando plantios, em grande escala, de árvores comerciais e restauração de ambientes florestais (Nani, 2002). Outra alternativa para o sequestro de carbono que, por outro lado, atende as demandas por maiores níveis de proteção à biodiversidade nos ecossistemas tropicais, pode vir a ser o incentivo à formação e preservação de fragmentos de vegetação secundária, que apresenta a vantagem comparativa do baixo custo e longo prazo de fixação de carbono, prestando ainda valiosos serviços como a proteção de encostas, nascentes e cursos d'água. Nesse trabalho apresentam-se estimativas de biomassa e carbono acima do solo, a partir de medições diretas, de uma amostra de vegetação secundária sob solo de baixa fertilidade, representativo do sudeste brasileiro.

Os trabalhos de campo foram realizados na Fazenda Experimental do Vale do Piranga, pertencente à Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIG, no município de Oratórios, Estado de Minas Gerais. Localiza-se a 20°30'S e 43°00'W. A altitude média é de, aproximadamente, 500 m em relação ao nível do mar, com temperatura média máxima anual de 21,8°C, mínima anual de 19,5°C e precipitação média anual de 1.250mm. Segundo o sistema de Köppen, o clima da região varia do tipo Cwa, tropical úmido, a Aw, semi-úmido, com verões quentes. A vegetação original, grande parte já substituída pela agropecuária, é a floresta tropical subcaducifólia da Mata Atlântica. Os solos foram caracterizados através de análises pedológicas em trincheiras, baseando-se no Sistema Brasileiro de Classificação dos Solos (1999). O solo está classificado como Latossolo Vermelho Distrófico típico, textura argilosa, A moderado. Situa-se no terço superior da encosta, com cerca de 30% de declive. Sua formação tem por base o intemperismo de Gnaisse do complexo cristalino que data do Pré-cambriano. É não pedregoso e não rochoso com relevo forte ondulado. Apresenta erosão laminar ligeira sendo acentuadamente drenado. A amostra de vegetação estudada é parte de uma capoeira

de cerca de 35 ha que se estende pelo terco superior do divisor de águas que percorre setores internos e limítrofes da fazenda. Entrevistas com os empregados mais antigos permitiram indicar o ano de 1965, como sendo o de início da sucessão quando, logo após extração de madeira da mata original da área, ateou-se fogo nos remanescentes para posterior plantio de café, que terminou por não acontecer. Visando futuras comparações, a parte amostrada foi deliberadamente localizada nas proximidades de um cultivo de seringueiras de 15 anos. Demarcaram-se quatro parcelas de 50 x 20 m, com uso de bússola, procurando-se manter a direção do nível, sendo duas em cada lado da colina. Todas as árvores com DAP (diâmetro a 1,30 m de altura do peito) ≥ 5 cm foram identificadas, no campo e no laboratório, com amostras dendrológicas, pelo menos ao nível botânico de família. As medidas de biomassa, foram realizadas por método direto abatendo a árvore com dimensões médias dentre as espécies de maiores densidade (nº de árvores/ha) e dominância (área basal/ha) (Tabelas 1 e 2). Pesaram-nas no campo usando-se uma balança com precisão de 10 g. As medições foram compartimentadas por "tronco" (do piso ao topo), "galho grosso" (> 2 cm), "galho fino" (<2 cm) e "folha". Cada compartimento, de cada árvore abatida, foi amostrado para estimativa de peso seco, secando-se a amostra em estufa com aeração forçada a 65°C, até atingir peso constante. As estimativas de biomassa realizaram-se por extrapolação simples, estimando-se para cada população, o obtido para o indivíduo abatido. A biomassa correspondente à massa arbórea das demais espécies, se fez pela média obtida para as árvores abatidas.

O estoque de biomassa seca variou um pouco em relação ao critério utilizado. Por densidade de árvores foi 64.005,2 Kg.ha⁻¹ e, por dominância, foi 66.126,9 Kg.ha⁻¹(Tabela 2). A esses totais correspondem, respectivamente, em quantidades de carbono, 28.802,3 Kg.ha⁻¹ e 29.757,1 Kg.ha⁻¹ considerando-se um fator de conversão de 0,45, utilizado para florestas secundárias (Fearnside, 1996). Esses resultados estão próximos das estimativas obtidas por Nelson et al., (2000) contudo, o autor aponta exemplos onde o nível de uso da terra e o tempo em que ficou exposto à exploração são causas determinantes de variação expressiva nesses valores, havendo casos de acumulação de biomassa até 10 vezes mais rápida, ou ainda menores, na Amazônia. Registrou-se o maior peso médio relativo do compartimento "tronco", (≈3/4 do total). As médias de dominância e densidade (Tabela 2) estão próximos dos obtidos por Drummond et al., (1996), para uma formação secundária de Mata Atlântica de 26 anos, ("Mombaça"), porém com origem em um corte raso, o que pode ser causa da maior taxa de crescimento, devido a brotação de tocos, enquanto que no caso presente, (37 anos), a vegetação original foi destruída pelo fogo. Outro aspecto de possível restrição ao crescimento da floresta secundária deste caso pode ser o acentuado efeito de borda, já que a forma relativamente estreita e a posição na paisagem a sujeita aos ventos freqüentes no alto da colina que ocupa. A espécie dominante é "Canudo de Pito" (Tabela 1). Os estudos prosseguem detalhando biomassa das raízes, da liteira e do solo.

Tabela 1. Identificação botânica das espécies mais representativas do sítio.

Nome vernacular	Espécie	Família		
Pimenteira	Xylopia sericea	Annonaceae		
Garapa	Apuleia leiocarpa	Caesalpinaceae		
Pau Fumo	Criptocarpa macroflora	Compositae		
Canudo de Pito	Mabea fistulifera	Euphorbiaceae		
Espeto	Casearia sp	Flacourticaceae		
Angico Vermelho	Anadenanthera peregrina	Mimosaceae		
Pau Jacaré	Piptadenia gonoacanthera	Mimosaceae		

Fonte: Embrapa Solos, Rio de Janeiro, 2002.

Tabela 2. Peso seco de biomassa, total e relativo, por compartimento, por espécie e totais, dominância (Do) e densidade (De) por espécie e por hectare

Espécies	tronco	galho grosso	galho fino	folha	total/arv	total/ha	Do (%)	Do (m ²)	De (%)	De
Canudo de Pito	44,2	3,6	0,8	3,9	52,5	25972,8	26,4	4,5	40,2	495,0
Espeto	27,5	1,3	1,0	0,9	30,6	3444,4	6,7	1,1	9,1	112,5
Garapa	53,3	2,4	2,0	3,5	61,1	6264,7	11,5	2,0	8,3	102,5
Jacaré	94,3	35,3	6,1	8,6	144,3	10461,3	17,3	2,9	5,9	72,5
Pau Fumo	10,7	0,0	1,2	0,8	12,6	821,1	2,7	0,5	5,3	65,0
Angico Vermelho	38,3	6,0	5,7	5,0	55,0	3572,0	14,4	2,5	5,3	65,0
Pimenteira	13,4	1,2	2,3	3,5	20,4	970,2	1,4	0,2	3,9	47,5
Estimativas gerais										
Soma	281,6	49,8	19,1	26,0	376,5	51506,5	80,5	13,7	77,9	960,0
Percentual	74,8	13,2	5,1	6,9						
Todas espécies							64005,2 Kg/ha*	17,0	66126,9Kg/ha*	1232,5

Fonte: Embrapa Solos, Rio de Janeiro, 2002. (*) Estimado por extrapolação simples a 100% a partir de Do (80,5%) e De (77,9%).

REFERÊNCIAS BIBLIOGRÁFICAS

DRUMMOND, M.A.; BARROS, N.F; SOUZA, A.L.; SILVA, A.F.; MEIRA NETO, J.A.A. Alterações fitossociológicas e edáficas na Mata Atlântica em função das modificações da cobertura vegetal. **Revista Árvore**, Viçosa-MG, v,20, n.4, p.451-466, 1996.

EMBRAPA. Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ). **Manual de métodos de analise de solo**. 2.ed. rev. e atual. Rio de Janeiro, 1997.

EMBRAPA. Centro Nacional de Pesquisa de Solos. **Sistema brasileiro de classificação de solos.** Brasília: Embrapa - Serviço de Produção de Informação; Rio de Janeiro: Embrapa Solos, 1999. 412 p.

FEARNSIDE, P. Amazonian deforestation and global warming: Carbon stocks in vegetation replacing Brazil's Amazon Forest. **Forest Ecology and Management.** 80:21-34

NANI, S. Quem será beneficiado pelos créditos de carbono? ANBio 2001. Disponível no site http://www.anbio.org.br/bio/biodiver_art77.htm. Acessado em 29/08/2002.

NELSON, R.F.; KIMES, D.S.; SALAS, W.A.; ROUTHIER, M. Secondary forest age and tropical forest biomass estimating using thematic mapper imagery. **Bioscience**, vol. 50, n.5, p. 419-431, 2000.