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ARTICLE INFO ABSTRACT

Keywords: Anthocyanins are secondary metabolites found in plants, commonly present in fruits such as strawberries, grapes,
Anthocyanins and blueberries. They act as antioxidants, protecting plant cells from oxidative damage, and are known for their
Bioavailability

potential role in chronic disease prevention. In studies, anthocyanins have been investigated both in food
matrices and in isolated forms. They neutralize free radicals, which can damage cells, and reduce inflammation
by downregulating pro-inflammatory cytokines involved in chronic diseases. Additionally, they have shown
potential in modulating tumor cell proliferation, making them valuable for human health. This review explores
the antioxidant, anti-inflammatory, and antitumor activities of anthocyanins, highlighting the methods used to

Biological effect
Gut microbiota
Human health
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assess these properties. Moreover, it discusses their interaction with the gut microbiota, which enhances
anthocyanin biological effect through the production of short-chain fatty acids and phenolic metabolites derived
from microbial metabolism. The review also addresses the challenges and future perspectives for the industrial-
scale application of anthocyanins.

Email:

1. Introduction

Anthocyanins are bioactive compounds that belong to the flavonoid
group. There are over 700 types of anthocyanins in nature (Ayvaz et al.,
2022; Wallace & Giusti, 2015). Anthocyanins play multifaceted roles
essential for plant metabolism and physiology. As potent antioxidants,
they neutralize reactive oxygen species (ROS) produced in response to
environmental stresses, such as ultraviolet radiation, protecting plant
cells from oxidative damage (Hoch et al., 2003; de Leonardis et al.,
2015; Zarrouk et al., 2016; Zhou et al., 2020). In addition, by absorbing
excess light, anthocyanins contribute to photoprotection, preventing the
photoinhibition of chloroplasts and ensuring the efficiency of photo-
synthesis under intense sunlight (Del Valle et al., 2020; Ko et al., 2020;
Mannino et al., 2021; Zhao et al., 2022).

These compounds also defend against herbivores and inhibit path-
ogens, thereby enhancing plant resistance to biological threats.
Ecologically, the vibrant coloration provided by anthocyanins is vital for
attracting pollinators and seed dispersers, promoting plant reproduction
and dispersion. Therefore, the functions of anthocyanins are inter-
connected supporting the adaptation and survival of plants in diverse
environments (Mannino et al., 2021; Zhao et al., 2022).

Fortunately, the benefits of anthocyanins extend beyond the plant
kingdom. Studies have demonstrated that these compounds can promote
human health primarily due to antioxidants (Alam et al., 2021), anti-
inflammatory, and antitumor effects (AlMadalli et al., 2024). These ef-
fects could support the treatment of noncommunicable diseases (NCDs)
(e.g., cardiovascular diseases, cancer, diabetes), which were reported by
the World Health Organization, 2020 as the seven leading causes of
death worldwide (Pan American Health Organization, 2020a). This
alarming statistic underscores the importance of seeking natural and
effective alternatives to prevent and combat these diseases (Fraga et al.,
2019).

In this context, this review aims to summarize the main aspects of
anthocyanins, addressing their role in modulation and their impact on
the gut microbiota, followed by an exploration of their antioxidant, anti-
inflammatory, and antitumor activities. This paper also describes the
main methodologies used to evaluate the biological effects (the potential
to exert physiological effects in the organism) of anthocyanins and dis-
cusses the limitations and future perspectives of their use in industrial
settings.

2. Source, biosynthesis and chemical structure of anthocyanins

Anthocyanins are present, for example, in strawberries, cranberries,
blackberries, blueberries, pomegranates, red radish, grapes, agai, purple
and black cereals, such as purple corn, wheat and rice and some forages
such as sorghum (Sorghum bicolor), and elephant grass (Cenchrus pur-
pureus) (Zhou et al., 2019). They are responsible for the red, purple,
orange, blue, and violet colors and can be present in various parts of
plants, such as fruits, leaves, stems, and roots, with variable contents
depending on the source (de Pascual-Teresa & Sanchez-Ballesta, 2008;
Salehi et al., 2020; Husain et al., 2022).

The biosynthesis of anthocyanins in plants, initiated by the conver-
sion of phenylalanine into p-coumaric acid by the enzyme phenylalanine
ammonia lyase (PAL), involves a series of enzymatic reactions, including
the action of chalcone synthase (CHS), chalcone isomerase (CHI),
dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS),

culminating in the production of these crucial molecules (Ayvaz et al.,
2022; Passeri, Koes, & Quattrocchio, 2016; Sui et al., 2018; Zhao & Tao,
2015).

Its structure consists of a flavylium cation core, comprising an aro-
matic ring with several hydroxyl and methoxyl groups attached, typi-
cally at positions C3, C4, C5, C6, and C7. This flavylium cation (AH+)
imparts these pigments their characteristic color, which can range from
red to blue-violet depending on the matrix pH (Ayvaz et al., 2022).
These compounds are water-soluble and can be classified according to
their unique and characteristic chemical structure based on the number
of hydroxyls, methylation level, and number of sugar molecules
attached to the phenolic group (Chen et al., 2023; Enaru et al., 2021;
Merecz-Sadowska et al., 2023).

Anthocyanins are glycosylated forms of anthocyanidins, in which
one or more sugar residues are attached to the aromatic nucleus.
Anthocyanidins constitute the basic skeleton of these molecules, known
as the flavylium ion. Glycosylation, particularly at the C-3 position of the
flavylium core, is a common feature of anthocyanins and is associated
with enhanced pigment stability. The most frequently involved mono-
saccharides are glucose, rhamnose, galactose, arabinose, and xylose
(Zhang et al., 2014).

Additionally, there are methylated anthocyanins, which contain one
or more methoxy groups attached to the aromatic ring, a modification
that may also contribute to increased stability. Acylated forms occur
when the sugar residues are esterified with aromatic acids (such as p-
coumaric, caffeic, ferulic, sinapic, gallic, or p-hydroxybenzoic acid) or
with aliphatic acids (such as malonic, acetic, malic, succinic, tartaric, or
oxalic acid). Acylation also plays a significant role in the structural
stabilization of anthocyanins (Zhang et al., 2014).

This unique molecular configuration and its ability to assume
different pH-dependent forms are responsible for the antioxidant prop-
erties of anthocyanins and their wide range of vibrant colors (de Pascual-
Teresa & Sanchez-Ballesta, 2008; Zhang et al., 2014).

Among the main types of anthocyanins, we can highlight pelargo-
nidin is associated with a bright red hue; cyanidin and its methylated
derivative exhibit a red to reddish-purple coloration; while delphinidin
and its methylated derivatives, malvidin and petunidin, display blue to
violet tones (Fig. 1) (de Pascual-Teresa & Sanchez-Ballesta, 2008; Zhang
et al., 2014).

The synthesis of anthocyanins occurs in the vacuoles of plant cells,
organelles responsible for storing various substances, including pig-
ments, enzymes, sugars, and minerals (Ayvaz et al., 2022). The
biosynthesis of anthocyanins is a complex, multi-step, and highly
regulated process involving the activation of specific genes by tran-
scription factor complexes and the action of specialized enzymes in
synthesizing these pigments.

3. Bioavailability and intestinal microbiota

Anthocyanins have attracted increasing scientific attention due to
their potential health benefits. However, their clinical and nutritional
application faces a fundamental challenge related to their low systemic
bioavailability. This concept involving both bioaccessibility (the ability
to withstand adverse gastrointestinal conditions such as pH variations,
digestive enzymes, and diverse fluids) and biological effect (Rein et al.,
2013). This process is influenced by several interrelated factors, such as
the compound’s structure, its interaction with the food matrix and
microbiota, and individual physiological or genetic characteristics (Gull
et al., 2021; Khoo et al., 2017).
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Fig. 1. Main classes of anthocyanins and their respective food sources.

Fig. 1. The image presents the six major anthocyanins that make up anthocy-
anins, highlighting their chemical structures and the foods in which they are
naturally found.These include: (1) pelargonidin, presented in pomegranate,
berry plant and raspberries; (2) cyanidin, detected in apples, blueberries and
purple corn; (3) peonidin, found in grapes and blackberries; (4) delphinidin,
found in blueberries and eggplant; (5) malvidin, found in grapes, tomato,
blackberries and blueberries; (6) petunidin, presented in blueberries and dark
grapes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Notably, the digestive stability of anthocyanins can be influenced by
their glycosylation and acylation patterns. While disaccharide-
glycosylated anthocyanins may exhibit resistance to digestive pro-
cesses under specific conditions, their stability is not universally higher
than that of monosaccharide-glycosylated forms or aglycones. Acylation
and methylation generally enhance anthocyanin stability, protecting the
pigments against digestive degradation, pH fluctuations, and thermal
stress, likely through intramolecular copigmentation. However, acyla-
tion decreases anthocyanin polarity, hindering their interaction with
membrane transporters such as bilitranslocase (Yang et al., 2018; Zhao
et al., 2017). These structural characteristics profoundly influence ab-
sorption patterns along the digestive tract, which vary not only between
different molecules but also across experimental models.

Human studies have provided valuable insights into the metabolic
fate of anthocyanins, indicating that a substantial fraction of the
ingested dose—sometimes exceeding 80 %—may reach the colon, pri-
marily in a non-absorbed form (Kahle et al., 2006). The extent of this
passage, however, depends on structural characteristics such as the type
of conjugated sugar and the degree of methoxylation of the molecule
(Kahle et al., 2006). In ileostomized patients, the recovery of intact
anthocyanins after blueberry consumption ranged from 28 % to 85 %
within 2 h, with higher values observed for arabinose-conjugated de-
rivatives compared with glycosylated forms (Kahle et al., 2006). In a
study employing a '3C isotopic tracer, the fecal recovery of cyanidin-3-
O-glucoside (C3G) was approximately 32.1 + 6.1 % (Czank et al., 2013).
Similar results were observed following raspberry intake, with re-
coveries ranging from 40 to 75 % within 48 h (Gonzalez-Barrio et al.,
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Fig. 2. Impact of anthocyanin intake on gut microbiota and intestinal health.

Fig. 2. Interaction between anthocyanins and the gut microbiota. Anthocyanins of ingested anthocyanins reach the colon, where they are metabolized by commensal
microorganisms, resulting in the production of phenolic metabolites and SCFASs. These bioactive compounds positively modulate the intestinal environment by
promoting epithelial barrier integrity, reducing inflammatory processes, and improving insulin sensitivity.



E.F. Santos et al.

2010). In another study, individuals with an intact colon exhibited about
29.6 £ 6.2 % of total anthocyanins in feces after 8 h, along with higher
plasma and urinary concentrations compared to ileostomized patients,
demonstrating that the colon not only receives a significant proportion
of anthocyanins but also plays an active role in their metabolism and
absorption (Mueller et al., 2017) (Fig. 2).

Estimates obtained through conventional analytical methods often
reflect methodological variability and are influenced by factors such as
the specific chemical structure of each anthocyanin and the complexity
of the food matrix (Singh et al., 2020).

In the stomach, the highly acidic environment (pH 1.5-2.0) favors
the protonation of anthocyanins, stabilizing them in the flavylium cation
form (McGhie et al., 2003). In humans, a study evaluating the relative
bioavailability of cyanidin-3-O-glucoside (C3G) reported a value of
12.38 + 1.38 %. This estimate was based on the total elimination of the
absorbed 13C-labeled C3G dose. However, considerable interindividual
variability was observed in the recovery of the 13C tracer, ranging from
15.1 % to 99.3 % among participants. The authors suggest that this
variability may be associated with factors such as gastrointestinal transit
time, the composition and catabolic activity of the colonic microbiota, as
well as individual capacity for absorption and excretion of anthocyanin-
derived catabolites and metabolites (Czank et al., 2013).

In contrast, animal models such as rats exhibit absorption rates
(5-10 %), attributed to the expression of bilitranslocase transport pro-
teins in rodents (Passamonti et al., 2002; Passamonti et al., 2003). This
transport system demonstrates particular affinity for glycosylated an-
thocyanins, as evidenced by the detection of malvidin-3-O-glucoside in
rat portal plasma just six minutes post-administration (Passamonti et al.,
2003), and the identification of cyanidin-3-O-glucoside (C3G) in human
plasma 30 min after consumption (Felgines et al., 2007; McGhie &
Walton, 2007).

In the small intestine, where neutral pH (6.5-7.5) promotes the
conversion of flavylium cations into chalcones, quinoidal bases, and
carbinol pseudobases (Wahyuningsih et al., 2017), absorption reaches
more significant levels (5-10 % in human clinical trials) (Goncalves
etal., 2021), while animal studies (rats and pigs) indicate higher rates of
10-15 % (Ferrars et al., 2014). These interspecies discrepancies arise
from physiological and methodological factors, including the higher
density of transporters (e.g., sodium-glucose transporter 1 (SGLT1) and
glucose transporter 2 (GLUT2) in rodents, shorter intestinal transit times
in humans, and the greater complexity of food matrices in human diets
compared to standardized animal diets (Faria et al., 2009).

The colon emerges as the central site of anthocyanin metabolism,
where resident microbiota crucially transform these compounds. An-
thocyanins that reach the colon undergo extensive microbial meta-
bolism, resulting in the formation of a variety of phenolic acids with
demonstrated biological activity. In addition, polyphenols can positively
modulate microbial fermentation processes, indirectly influencing the
production of short-chain fatty acids (SCFASs) (Hidalgo et al., 2012)
(Fig. 2). Notably, butyrate production in humans exceeds animal models
by 30-50 % (Czank et al., 2013), with profound implications for intes-
tinal and systemic health. Microbial transformation yields structure-
dependent metabolite profiles: cyanidin derivatives predominantly
yield protocatechuic, vanillic, and p-coumaric acids (Chen et al., 2017);
malvidin derivatives produce syringic and homovanillic acids (Boto-
Ordonez et al., 2014); and pelargonidin-3-glucoside derivatives
generate tyrosol and p-hydroxybenzoic acid (de Lopez Las Hazas et al.,
2017).

Anthocyanin’s modulatory effects on gut microbiota composition
and function are well-documented. In vitro studies show that cyanidin-3-
O-glucoside and peonidin-3-glucoside from black rice selectively pro-
mote beneficial species (Bifidobacterium adolescentis, B. infantis,
B. bifidlum and Lactobacillus acidophilus) while reducing pathogens
(Clostridium perfringens and Escherichia coli) within 24 h (Zhu et al,,
2018). Similarly, peonidin from purple sweet potato inhibits Staphylo-
coccus aureus and Salmonella typhimurium (Sun et al., 2018). Human fecal
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cultures fermented with grape-derived anthocyanins increased Bifido-
bacterium spp. and Lactobacillus spp. while reducing C. histolyticum
(Hidalgo et al., 2012), and red wine consumption elevated Bifidobacte-
rium, Eggerthella lenta, and Enterococcus in middle-aged humans (Boto-
Ordonez et al., 2014). Additionally, the consumption of a functional
soup containing ‘Anthaplex’, an anthocyanin-rich ingredient, signifi-
cantly increased the abundance of lactic acid-producing bacter-
ia—particularly Bifidobacterium spp.—in the feces of healthy volunteers
(Wattanathorn et al., 2023).

In murine colorectal carcinogenesis models, blackberry anthocya-
nins enriched commensals (Eubacterium rectale, Faecalibacterium praus-
nitzii, Lactobacillus spp.) and suppressed Desulfovibrio spp. and
Enterococcus spp. (Chen et al., 2018).

Animal studies demonstrate dose-dependency: high-dose black rice
anthocyanins (100 mg/kg) shifted the Firmicutes/Bacteroidetes ratio
(57.02 % / 30.88 % to 44.61 % / 42 %) and enriched norank_f Mur-
ibaculaceae while reducing Candidatus Saccharimonas (Sun et al., 2025).
Cyanidin-3-rutinoside in high-fat-diet mice similarly increased Akker-
mansia and Bacteroides (Zhong et al., 2025). Human responses are more
variable: elderberry juice increased Ruminococcaceae, Faecalibacterium,
and Bifidobacterium in overweight adults within one week (Teets et al.,
2024), whereas blueberry extract had minimal effects in healthy elderly
(Wood et al., 2023). Obese individuals supplemented with Vaccinium
anthocyanins and prebiotic fibers (inulin/FOS) showed increased Bac-
teroidetes, reduced Firmicutes/Actinobacteria, and elevated short-chain
fatty acid (SCFAS) production (Hester et al., 2018). In vitro, cyanidin-3-
glucoside-dimalonylated (C3GdM) anthocyanin from black corn cob
enhanced microbial diversity in elderly (65-71 years) but not younger
(22-28 years) samples, underscoring age- and baseline microbiota-
dependent responses (Li et al., 2025).

SCFASs, the end products of microbial anthocyanin fermentation,
play multifaceted roles in intestinal and systemic homeostasis (Fig. 2).
Butyrate, a key metabolite, fuels colonocytes, strengthens the intestinal
barrier via tight junction proteins (occludin, claudins), and stimulates
goblet cell mucus secretion (Parada Venegas et al., 2019). SCFASs also
act as immunomodulators by inhibiting histone deacetylases (HDACs)
and activating G-protein coupled receptors 43/109 A (GPR43/
GPR109A), promoting regulatory T-cell differentiation and suppressing
pro-inflammatory pathways (Dalile et al., 2019). The resulting luminal
acidification (pH ~5.5-6.5) inhibits pathogenic Enterobacteriaceae while
favoring butyrate-producing commensals (Rios-Covian et al., 2016).
Additionally, SCFASs promote adipocyte lipogenesis and improve in-
sulin sensitivity by reducing inflammation and enhancing glucagon-like
peptide-1 / peptide YY (GLP-1/PYY) secretion, synergistically
improving glycemic control (Chambers et al., 2018).

Despite this promise, challenges remain. Limited systemic bioavail-
ability (<10 % as intact compounds) and interindividual variability
necessitate innovative delivery systems (e.g., purple potato anthocyanin
nanoparticles), which enhance Lactobacillus while reducing Actino-
bacteria (Zang et al., 2024). Disparities between experimental doses
(50-100 mg/kg in animals, ~500 mg/day human equivalents) and
habitual intake (15-215 mg/day) underscore the need for rigorous dose-
response studies.

Anthocyanins represent a bioactive class with remarkable potential
to modulate gut microbiota and extend benefits beyond the gastroin-
testinal tract. Realizing this potential requires advances in: (1)
bioavailability-enhancing technologies; (2) understanding interindi-
vidual response variability; and (3) evidence-based dietary recommen-
dations accounting for diet-microbiota-host interactions. Future
research must employ integrated multi-omics approaches and longitu-
dinal designs to elucidate mechanisms and translate findings into
personalized, accessible nutritional strategies for health promotion.

4. Biological properties

Anthocyanins are widely studied due to their diverse biological



E.F. Santos et al.

effects (Table 1). Among them, their potent antioxidant properties stand
out, neutralizing free radicals and protecting against cellular oxidative
stress (Tena et al., 2020). Additionally, they exhibit anti-inflammatory
activity by modulating the immune response and reducing the produc-
tion of inflammatory mediators (Kim et al., 2016; Speer et al., 2020).
They have also shown neuroprotective effects, proving promising in the
prevention of neurodegenerative diseases (Santos et al., 2019). In the
cardiovascular context, anthocyanins demonstrate cardioprotective ef-
fects through various markers of cardiovascular disease risk (Krga &
Milenkovic, 2019). The interaction of anthocyanins with the intestinal
microbiota has been studied, highlighting their potential to modulate
microbial populations and influence intestinal health (Igwe et al., 2018;
Tian et al., 2018). In addition to these effects, these bioactive com-
pounds also demonstrate antimicrobial activity against foodborne
pathogens such as Escherichia coli and Salmonella (Ma et al., 2019). This
article will specifically review the antioxidant, anti-inflammatory, and
antitumor activities of anthocyanins, deepening the understanding of
their benefits for human health.

4.1. Antioxidant

The main mechanisms initiating the chronic disease process involve
oxidative stress (Sies et al., 2022). Oxidative stress represents an
imbalance between the production of ROS and the ability of the body to
neutralize or repair them. These free radicals are unstable molecules
containing unpaired electrons in their structure. These unpaired elec-
trons can react with other molecules, damaging healthy cells in the
body. This mechanism contributes to premature aging and the devel-
opment of diseases such as cancer, heart disease, and neurodegenerative
disorders (Dubois-Deruy et al., 2020; Singh & Manna, 2022; Tan et al.,
2018; Yang et al., 2024).

To neutralize the harmful effects of free radicals it is crucial to
maintain a balance between free radicals and antioxidants, their coun-
terparts. This redox balance is essential for protecting cells and ensuring
the proper functioning of the immune system (Lauridsen, 2018).

In this context, anthocyanins neutralizes free radicals, thereby pre-
venting cellular damage (Migliorini et al., 2019; Tena et al., 2020;
Vishnu et al., 2019). The specific mechanism of action can include: I)
hydrogen atom transfer (HAT), stabilizing the free radical through
hydrogen donation; II) electron donation to the free radical; III) chela-
tion of metal ions, forming stable bonds; and IV) activation of super-
oxide dismutase (SOD) and glutathione peroxidase enzymes (Fig. 3)
(Apak et al., 2016b; Fallah et al., 2020; Gulgin, 2011; Huang et al.,
2005).

In addition, anthocyanins can exert antioxidant function by modu-
lating cellular signaling pathways associated with oxidative stress and
inflammation. For example, these compounds can modulate the
expression of genes involved in antioxidant and anti-inflammatory re-
sponses, thereby aiding in maintaining redox balance and mitigating
inflammation related to oxidative stress (Tena et al., 2020).

In anthocyanins the presence of hydroxyl groups in the B ring and the
arylation of sugar residues by phenolic acids confer increased potential
to neutralizing free radicals. Moreover, hydroxyl groups in the C ring
enable anthocyanins to act as chelators of metal ions. This property
inhibits lipid peroxidation induced by free radicals attacking lipids in
cell membranes, preventing damage (Dangles & Fenger, 2018; Miguel,
2011; Navas et al., 2012).

This extract of Hibiscus sabdariffa L., tested at doses of 1000 and
2000 pg/mL of anthocyanins, demonstrated the ability to inhibit lipid
peroxidation and neutralize superoxide and hydroxyl radicals. The au-
thors emphasized the significant antioxidant potential of the anthocya-
nins present in the raw material. Furthermore, adding anthocyanins to
the culture medium before fermentation enhanced the overall antioxi-
dant efficacy of the fermented medium. This supplementation with an-
thocyanins also contributed to preserving the antioxidant activity of the
fermented medium over six months of storage at 4 °C (Simionescu &
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Petrovici, 2024).

Another study investigated the association between anthocyanin
supplementation and dyslipidemia in 169 participants. The findings
indicated that higher doses of anthocyanins, such as 320 mg/day,
significantly reduced oxidative stress and inflammation markers,
including C-reactive protein (CRP). Interestingly, the study suggested
that doses as low as 80 mg/day could also benefit participants (Zhang
et al., 2020).

In a study, the antioxidant potential of anthocyanins from various
Rubus species was evaluated based on their ability to inhibit lipid per-
oxidation. Methanolic extracts at 50 mg/mL exhibited 53 % inhibition
for R. jamaicensis (blackberry), over 80 % for R. racemosus and
R. acuminatus (black raspberries), while R. idaeus showed the highest
inhibition, reaching approximately 90 %. In parallel, isolated anthocy-
anins from R. idaeus (red raspberry), specifically pelargonidin-3-
glucoside and cyanidin-3-rutinoside, demonstrated 56 % and 60 % in-
hibition at a concentration of 10 mM, respectively. Additionally, the
hexane extract of R. jamaicensis exhibited 74 % inhibition, while the
ethyl acetate extracts of R. acuminatus and R. rosifolius (roseleaf rasp-
berry) demonstrated 84 % and 66 % inhibition, respectively (Bowen-
Forbes et al., 2010).

The methanolic extract of violet glutinous rice (Oryza sativa L.), with
0.35 pg/mg of cyanidin-3-O-glucoside in its composition, was evaluated
for its antioxidant activity by different methodologies. The extract
showed free radical scavenging activity, with an ICso (inhibitory con-
centration 50 %) value of 32.31 + 1.28 mg/mL, as well as inhibiting
lipid peroxidation (ICso = 57.40 + 2.12 mg/mL) and demonstrating iron
ion chelating capacity (ICso = 85.05 + 5.43 mg/mL). These results
suggest that, despite the presence of cyanidin-3-O-glucoside, the extract
has moderate potency, which may be related to the low concentration of
the bioactive compound (Manosroi et al., 2020).

Crude and partially purified extracts obtained from black bean
(Phaseolus vulgaris L.) hulls showed significant antioxidant activity. An
ICso value of 149 + 2 pg/mL was observed in the crude extract and 40 +
1 pg/mL in the partially purified extract. Similarly, in the ABTS [2,2-
Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] assay, the ICso values
were 135 + 7 pg/mL for the crude extract and 44 + 5 pg/mL for the
partially purified extract. These results indicate that purification of the
extracts can concentrate bioactive compounds responsible for neutral-
izing free radicals, thereby increasing antioxidant efficacy (Kuasnei
et al., 2025).

In human subjects, it was observed that the administration of cap-
sules containing anthocyanins at doses higher than 80 mg/day, mainly
delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, was able to
attenuate lipid peroxidation, as indicated by the reduction in the levels
of the biomarker 8-isoprostane Prostaglandin F2a (8-isoPGF2a) (Guo
et al., 2020). Additionally, the administration of 60-120 mL of cherry
juice, containing 0.343 mg/mL of cyanidin-3-glucosylrutinoside and
0.143 mg/mL of cyanidin-3-rutinoside, in individuals with gout,
demonstrated the ability to increase the expression of the nuclear factor
erythroid 2-related factor 2 (NRF2) gene, a key regulator in the acti-
vation of endogenous antioxidant defenses (Brunetti et al., 2023).

These findings demonstrate the multifaceted antioxidant effects of
anthocyanins in cellular, animal, and human models, which reinforces
their therapeutic potential in mitigating damage related to oxidative
stress and the progression of chronic diseases.

4.2. Anti-inflammatory

In the inflammatory process, the immune system reacts to harmful
stimuli, such as infections or injuries, through a coordinated response
that aims to eliminate the threat and promote tissue repair (Samad &
Ruf, 2013). The organism’s exposure to pathogenic agents, environ-
mental toxins, or tissue injuries triggers this response, mediated by a
complex cascade of events that includes the release of cytokines, che-
mokines, and inflammatory mediators (Vendrame & Klimis-Zacas,
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Table 1
Analyses of the effects of anthocyanins from different sources and concentrations, detailing mechanisms of action.
Anthocyanin Source Effects Mechanism Model Reference
Cyd-3-O-soph, Cyd-3-O-glc and Isolated from raspberry Anti- Inhibited the activity of LOX (ICso 4,85 mg In vitro Szymanowska &
Cyd-3-O-rut (10-50 pL in 1.5 pomace (Rubus idaeus L.) inflammatory FW/mL) and COX-2 (ICsp 0,87 mg FW/mL); Baraniak, 2019

mL and 10-40 pL in 1 mL)

Dp3-Sam and Dp (50-200 pM —
in vitro; 15 mM/kg body
weight — in vivo)

Cyd-3-O-glc (4 mg per 100 g
body weight)

Cyd-3-O-glc (25 pM)

Cyd-3-glc and Peo-3-glc
(50-200 pg/mL — in vitro) (100
mg/kg/day - in vivo).

Cyd-3-glc, Cyd-3-gal, Cyd-3-ara
and Cyd-3-xyl (DPPH 0.2 mg/
mL), (ORAC 1 mg/mL), (anti-
inflammatory: 0.5-500 pg/
mL)

Peo-3-glc (300 pM)

Commercial Cyd-3-glc, with a
purity >98 %, 50 pM (in vitro)
and 10 mg/kg (in vivo).

Del-3-glc and cyd cyd-3-glc (320
mg/day - in vivo) (0.1 a 50 mg/
mL in vitro)

Cyd-3-sam and del-3-sam

Pel-3-glc and pel-3-rut (10 mM)

Pel-3-glc and pel-3-rut

Mal-3,5-digle, mal-3-glc, cyd-3-
cou-5-digle, del-3-cou-glc, pet-
3-cou-glc and mal-3-cou-glc.

Pel-3-glc and pel-3-rut

Peo-3-gal, peo-3-glc, peo-3-ara,
cyd-3-ara, mal-3-glc and del-3-
gle

Isolate of dried calyces of
Hibiscus sabdariffa

Wild black mulberry
(Morus nigra L.) extract

Commercial C3G 97 %
HPLC

Black rice extract (Oryza
sativa L.)

Aronia melanocarpa
(Michx.) Elliott extract
(25 % anthocyanins).

Isolated from purple corn
(Jinnuo No.8).

Commercial

Commercial

Extract of Hibiscus
sabdariffa L. (1000-2000
pg/mL)

Extract of Rubus rosifolius,
R. acuminatus and R.
Jjamaicensis (50 mg/mL)

Extract of Rubus rosifolius,
R. acuminatus and R.
Jjamaicensis (100 mg/mL)

3D-printable juice gels
made from Bordo, Isabel,
and Concord grapes
(100-1000 pg/mL)
Extract of Rubus rosifolius,
R. acuminatus and R.
Jjamaicensis (

250 mg/mL)

Anthocyanin-rich juice -
942 mg/L de
anthocyanins (330 mL/
dia)

and antioxidant

Anti-
inflammatory

Anti-
inflammatory

Anti-
inflammatory

Anti-
inflammatory

Anti-
inflammatory
and antioxidant

Anti-
inflammatory
and antioxidant

Antioxidant

Anti-
inflammatory

Antioxidant

Antioxidant

Anti-
inflammatory

Anti-
inflammatory

Antitumor

Antitumor and
antioxidant

neutralized DPPH (12.92 mg FW/mL) and
ABTS (3.85 mg FW/mL) free radicals, with a
low correlation with ferric ion reduction
(FRAP).

Modulation of MEK/ERK and NF-kB
signaling pathways (in vitro). Dp3-Sam and
Dp reduced edema by 89.3 % and 96.3 %
after 6 h, respectively. Pretreatment with
Dp3-Sam and Dp decreased serum levels of
IL-6, MCP-1, and TNF-«a (in vivo)

Reduction of edema by up to 80 % after 4 h
and of leukocytes; inhibition of COX-2
expression (mRNA and protein).

It significantly reduced NO and inhibited
PGE2 and IL-8.

Invitro: it reduced the cell viability of all cell
lines, especially MDA-MB-453, in a dose-
dependent manner. In vivo: it significantly
suppressed tumor growth and angiogenesis,
as well as reduced the expression of MMP-9
and MMP-2 and uPA.

It reduced the levels of IL-1$ and TNF-a in
RAW 264.7 cells. It attenuated the increase
in lipid peroxidation (MDA). It neutralized
DPPH free radicals and the peroxyl radical
(ORAQ).

It reduced the levels of IL-1p, IL-6, and TNF-
a, and the expression of caspase-1 and NF-
kB. It inhibited ROS and superoxide ions. It
increased the levels of GSH. It improved the
activity of the antioxidant enzymes SOD,
GPX, and CAT.

In the in vitro model, it attenuated the
production of lipid peroxide and MDA.
Elevated GSH levels were observed in both
in vivo and in vitro models, whereas
increased SOD activity was detected only in
vitro. It reduced ROS in tissues and free iron
in the bodies of rats with acute renal injury.
Significant reduction of hs-CRP, VCAM-1,
and IL-1f in humans with
hypercholesterolemia; inhibition of CRP
and sVCAM-1 in HepG2 cells.

Scavenged free radicals (DPPH and ABTS),
reduced ferric ions (FRAP), and inhibited
lipid peroxidation by >99 %

The isolated anthocyanins showed 60 % and
56 % inhibition of lipid peroxidation, while
the hexane extract of R. jamaicensis showed
74 %, the ethyl acetate extract of

R. acuminatus, > 80 %, and that of

R. rosifolius, 66 % inhibition.

The hexane extract of R. acuminatus stood
out with 71 % inhibition of COX-2, followed
by R. jamaicensis and R. racemosus, which
also showed COX-2 inhibition ranging from
18 to 33 %. Meanwhile, R. rosifolius and

R. racemosus exhibited COX-1 inhibition of
approximately 30-33 %.

Reduced NF-kB activation and the secretion
of TNF-a and CXCL2/MIP-2 in LPS-
stimulated macrophages.

The hexane extract of Rubus jamaicensis
exhibited the highest antiproliferative
activity, inhibiting 50 % of colon cancer
cells, 24 % of breast, 54 % of lung, and 37 %
of gastric cancer cells.

Reduced the migration of PANC-1,
downregulated the expression of adhesion
molecules such as p1-integrins and ICAM-1,
and inhibited the FAK and NF-kB signaling

In vitro (Cell RAW
264.7) and in vivo
(mouse)

In vivo (mouse)

In vitro (Cell HT-29)

In vitro (Cells MCF-7,
MDA-MB-231, and
MDA-MB-453) and in
vivo (mouse)

In vitro (cell RAW
264.7)

In vitro (cell LO2)

In vitro (Cells NRK-
52E and HK-2) and in
vivo (mouse)

Invivo (human) and in

vitro (cell HepG2)

In vitro

In vitro

In vitro

In vitro (Cell RAW
264.7)

In vitro (Cells MCF-7,
SF-268, NCI-H460,
HCT-116 and AGS)

In vitro (plasma
extracts isolated from
humans).

Sogo et al., 2015

Hassimotto et al.,
2013

Serra et al., 2013

Hui et al., 2010

Banach, Wiloch,
Zawada, Cyplik, &
Kujawski, 2020

Hao et al., 2023

Du et al., 2023

Zhu et al., 2013

Simionescu &
Petrovici, 2024

Bowen-Forbes
et al., 2010

Bowen-Forbes
et al., 2010

de Sartori et al.,
2023

Bowen-Forbes
et al., 2010

Mostafa et al.,
2023.

(continued on next page)
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Anthocyanin Source Effects Mechanism Model Reference
pathways, resulting in decreased
phosphorylation of NF-kB p65 and FAK.
Additionally, it lowered the levels of ROS.
Cyd-3-glc Standardized extract of Antitumor Inverse correlation between adiponectin In vivo (Humans with Macis et al., 2023
blueberry (Vaccinium and Ki67, along with increased IL-6 levelsin =~ adenomatous polyps
myrtillus) containing 36 individuals with high-grade dysplasia, in the colon).
% anthocyanins (1 g/dia) suggesting a potential role of these
biomarkers in disease progression.
Cyd-3-glc Crude extract of the black  Antitumor and The maximum dose resulted in a 26.05 % In vitro (Cell HepG2) Zhang et al., 2024.

Medox - anthocyanin
supplement (17 different
purified natural anthocyanins)
(40-320 mg/mL).

Freeze-dried fruits (blueberry 50
g; blackberry 62.9 g;
blackcurrant 57.1 g)
containing 470 mg of Cyd-3-
glc equivalents (CGE) per kg.

Mv-3-glc e mv-3-gal (1-100 pM).

Cyd-3-glc, cyd-3-rut, del-3-glc,
mal-3-glc, pel-3-glc and peo-3-
gle (10 to 250 pg/mL).

Del-3-gal, del-3-glc, del-3-ara,
cy-3-gal, and cy-3-glc (2.5, 5,
10, and 25 pg/mL).

Cyd-3-glc: In vitro: extract (10,
20, 30 pg/mL) and isolated
anthocyanin (1-5 pM); in vivo:
extract (100 mg/kg) and
isolated anthocyanin (5, 25
mg/kg).

Mal-3-glc, cyd-3-glc and del-3-
rut

Cyd-3-sam, cyd-3-glc and cyd-3-
sam-5-glc

Cyd-3-glc

bean (Phaseolus vulgaris)
seed coat (35,8 % C3G)
(0-100 pM)

Norwegian wild
blueberries and
blackcurrants.

Blueberry, blackberry e
blackcurrant

Anthocyanins isolated
from Rabbiteye blueberry
(Vaccinium ashei).

Acai extract (Euterpe
oleracea Mart.).

Blueberry extract
(Vaccinium myrtillus L.)

Black rice extract (BR)
and cyd-3-glc were
isolated.

Blueberry (BBA),
blackberry (BKA), and
blackcurrant BCA)
anthocyanin fraction
(0-20 pg/mL).

Extract of Sambucus nigra
L. (0,1-100 %)

Extract of Lonicera
caerulea (blue
honeysuckle) and
Vaccinium myrtillus
(blueberry) (5 to 50 mg/
L)

antioxidant

Anti-
inflammatory
and antioxidant

Anti-
inflammatory

Anti-
inflammatory

Anti-
inflammatory

Anti-
inflammatory

Anti-
inflammatory

Anti-
inflammatory
and antioxidant

Antioxidant

Antioxidant e
Anti-
inflammatory

reduction in HepG2 cell viability. Exhibited
significant antioxidant properties, as
evidenced by its ability to scavenge DPPH
radicals, reduce ferric ions, and inhibit lipid
peroxidation.

Significantly reduced serum levels of IL-6
and TNF-« in a dose-dependent manner,
with a 40 % reduction in IL-6 and a 21 %
reduction in TNF-a. Significantly increased
SOD activity and reduced oxidative stress
biomarkers, such as urinary 8-isoprosta-
glandin F2a, urinary 8-OHdG, and serum
MDA, in a dose-dependent manner.

The animals that received black currant
exhibited a local anti-inflammatory effect in
the epididymal adipose tissue due to a
significant reduction in the expression of
F4/80 mRNA, a macrophage marker, and in
the number of CLS; however, the other
sources used did not show significant anti-
inflammatory changes.

Both inhibited the increase in the
production of MCP-1, ICAM-1, and VCAM-1
induced by TNF-o; decreased the
degradation of IkBa and blocked the nuclear
translocation of p65.

Significant reduction of NO, COX-2
expression, release of TNFa, and
phosphorylation of NF-kB. Significantly
attenuated the increase in p38-MAPK
phosphorylation.

They inhibited the production and secretion
of pro-inflammatory mediators such as TNF-
a, IP-10, I-TAC, sICAM-1, and GRO-a.

In vitro: Both reduced the production of pro-
inflammatory cytokines TNF-« and IL-1p,
inflammatory mediators NO and PGE2, and
inhibited the phosphorylation of IkB-o, NF-
kB, and activation of MAP kinases (ERK1/2,
JNK1/2, and p38-MAPK). In vivo: They
reduced exudate volume, leukocyte count,
and inhibited the expression of TNF-«, IL-1f,
PGE2, COX-2, and NF-«kB activation in
exudates.

The anthocyanin fractions reduced mRNA
levels of IL-1f and TNFa, as well as TNFo
secretion, by inhibiting NF-kB p65 nuclear
translocation. The BKA fraction showed
higher total antioxidant capacity, and all
fractions decreased ROS levels in wild-type
macrophages.

It exhibited DPPH radical scavenging
activity, reducing power, and lipid
peroxidation inhibition, with ICso values of
3.1 £0.1 mg/ml, 3.7 + 0.2 mg/mL, and 9.4
+ 0.3 mg/mL, respectively.

Significantly decreased the generation of
RONS. Partially decreased the expression of
IL-6 and the activity of caspases-3 and — 9
induced by UVB.

In vivo (Humans aged
35 to 70 years.)

In vivo (mouse)

In vitro (Cell HUVEC)

In vitro (Cell BV-2)

In vitro (Cell T84)

In vitro (RAW 264.7)
and in vivo (rat)

In vitro (Cells RAW
264.7 and BMMs)

In vitro

In vitro (Cell HaCaT)

Zhang et al., 2020

Kim et al., 2016

Huang et al., 2014

Poulose et al., 2012

Triebel et al., 2012

Min et al., 2010

Lee et al., 2014

da Silva et al., 2019

Svobodova et al.,
2009

Note. LOX: Lipoxygenase; FRAP: Ferric Reducing Antioxidant Power; COX-2: Cyclooxygenase-2; DPPH: 1,1-diphenyl-2-picrylhydrazyl; FW/mL: Fresh Weight per
Milliliter; MEK: Mitogen-Activated Protein Kinase Kinase; ERK: Extracellular Signal-Regulated Kinase; NF-kB: Nuclear Factor Kappa-Light-Chain-Enhancer of Acti-
vated B Cells; Dp3-Sam: Delphinidin-3-sambubioside; Dp: Delphinidin; IL-6: Interleukin 6; MCP-1: Monocyte Chemoattractant Protein-1; TNF-a: Tumor necrosis factor-
alpha; mRNA: Messenger Ribonucleic Acid; NO: Nitric Oxide; PGE2: Prostaglandin E2; IL-8: Interleukin-8; ICso: Inhibitory Concentration 50 %; Interleukin 8; MDA-MB-
453: Human Breast Cancer Cell Line; MMP-9: Matrix Metalloproteinase-9; MMP-2: Matrix Metalloproteinase-2; uPA: Urokinase Plasminogen Activator; IL-1p:
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Interleukin 1 Beta; RAW 264.7: Mouse Macrophage Cell Line; MDA: Malondialdehyde; ROS: Reactive Oxygen Species; GSH: Glutathione; SOD: Superoxide Dismutase;
GPX: Glutathione Peroxidase; ORAC: Oxygen Radical Absorbance Capacity; CAT: Catalase; hs-CRP: High-Sensitivity C-Reactive Protein; VCAM-1: Soluble Vascular Cell
Adhesion Molecule-1; CRP: C-Reactive Protein; VCAM-1: Vascular Cell Adhesion Molecule-1; HepG2: Human Hepatocellular Carcinoma Cell Line; ABTS: 2,2-Azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid); COX-1: Cyclooxygenase-1; CXCL2/MIP-2: C-X-C Motif Chemokine Ligand 2 / Macrophage Inflammatory Protein 2; PANC-1:
Human Pancreatic Cancer Cell Line; ICAM-1: Intercellular Adhesion Molecule-1; FAK: Focal Adhesion Kinase; p65: RelA (a subunit of NF-kB); Ki67: Ki-67 Antigen;
Urinary 8-OHdG: Urinary 8-Hydroxy-2-deoxyguanosine; F4/80 mRNA: F4/80 Macrophage Marker (mRNA); CLS: Crown-Like Structures; p38-MAPK: p38 Mitogen-
Activated Protein Kinase; IP-10: Interferon Gamma-Inducible Protein 10; I-TAC: Interferon-Inducible T-Cell Alpha Chemoattractant; SICAM-1: Soluble Intercellular
Adhesion Molecule-1; GRO-a: Growth-Regulated Oncogene Alpha; IkB-a: Inhibitor of Nuclear Factor Kappa B Alpha; MAP: Mitogen-Activated Protein; ERK1/2:
Extracellular Signal-Regulated Kinases 1 and 2; JNK1/2: c-Jun N-terminal Kinases 1 and 2; RONS: Reactive Oxygen and Nitrogen Species; UVB: Ultraviolet B Radiation;
pL: Microliter; mL: Milliliter; mg: Milligram; pM: Micromolar; Kg: Kilogram; mM: Millimolar; g: Gram; MCF-7: Human Breast Cancer Cell Line; SF-268: Human
Glioblastoma Cell Line; NCI-H460: Human Non-Small Cell Lung Cancer Cell Line; HCT-116: Human Colorectal Carcinoma Cell Line; AGS: Human Gastric Cancer Cell
Line; Cyd-3-ara: cyanidin-3-arabinoside; Cyd-3-cou-5-diglc: cyanidin-3-coumaroyl-5-diglucoside; Cyd-3-gal: cyanidin-3-galactoside; Cyd-3-glc: cyanidin-3-O-gluco-
side; Cyd-3-rut: cyanidin-3-O-rutinoside; Cyd-3-sam: cyanidin-3-sambubioside; Cyd-3-sam-5-glc: cyanidin-3-O-sambubioside-5-O-glucoside; Cyd-3-soph: cyanidin-3-
O-sophoroside; Cyd-3-xyl: cyanidin-3-xyloside; Del-3-cou-glc: delphinidin-3-coumaroylglucoside; Del-3-glc: delphinidin-3-O-p-glucoside; Del-3-rut: delphinidin-3-
rutinoside; Del-3-sam: delphinidin-3-sambubioside; Mal-3,5-diglc: malvidin-3,5-diglucoside; Mal-3-cou-glc: malvidin-3-coumaroylglucoside; Mal-3-glc: malvidin-3-
glucoside; Pel-3-glc: pelargonidin-3-glucoside; Pel-3-rut: pelargonidin-3-rutinoside; Peo-3-ara: peonidin-3-arabinoside; Peo-3-gal: peonidin-3-galactoside; Peo-3-glc:
peonidin-3-glucoside; Pet-3-cou-glc: petunidin-3-coumaroylglucoside; HPLC: High Performance Liquid Chromatography; BBA: Blueberry; BCA: blackcurrant; BKA:

Blackberry.
® (@) {)-
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Fig. 3. Mechanisms of antioxidant activity of anthocyanins against free radicals and metal ions.

Fig. 3. Antioxidant mechanisms of anthocyanins. I) Hydrogen transfer from anthocyanin to the free radical; II) Anthocyanin chelates the ion, forming a stable bond;
IIT) Anthocyanin donates an electron to the free radical; and IV) Anthocyanins can influence gene expression, including genes encoding antioxidant enzymes such as
SOD and peroxide.

2015).

Anthocyanins emerge as alternative compounds in modulating
cellular signaling pathways related to the inflammatory response.
Studies have associated anthocyanins with the inhibition of pro-
inflammatory cytokines, the reduction of cell adhesion molecule
expression, and the suppression of inflammatory cell activation, such as
macrophages (Kim et al., 2016; Speer et al., 2020). Moreover, evidence
suggests that anthocyanins effectively reduce oxidative stress, a pre-
dominant factor in initiating chronic inflammation (Huang et al., 2014;
Speer et al., 2020). Therefore, anthocyanins confer health benefits,
especially in chronic inflammatory conditions (Bowen-Forbes et al.,

2010; Koztowska & Dzierzanowski, 2021; Vendrame & Klimis-Zacas,
2015).

Macrophages are generally used for in vitro clinical trials analyzing
anti-inflammatory responses, as these cells are among the first re-
sponders recruited to infection sites or inflammation for microorganism
elimination or tissue repair. Macrophage activation typically involves
lipopolysaccharides (LPS) and/or interferon-gamma (IFN-y) signaling.
Hence, many assays utilize LPS to induce macrophage activation (Abbas
et al., 2023; Hirayama et al., 2017; Rosadini & Kagan, 2017; Zhang, Pan,
et al., 2021).

Macrophages perform several functions, including phagocytosis,
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production of ROS, nitric oxide (NO), and proteolytic enzymes for
microorganism eradication. Inducible nitric oxide synthase (iNOS) or
nitric oxide synthase 2 (NOS2) in macrophages is responsible for NO
production, which is regulated by pro-inflammatory cytokines such as
tumor necrosis factor-alpha (TNF-a) and interleukin-1p (IL-1f). NO, in
turn, modulates the activity of these pro-inflammatory cytokines,
potentially amplifying the inflammatory response (Jungi et al., 1996;
MacMicking et al., 1997; Sharma et al., 2007; Zhang, Yang, & Ericsson,
2021). Under increased oxidative stress, NO can interact with the su-
peroxide anion (0O2") to form peroxynitrite (ONOO-), a highly reactive
molecule that causes DNA damage. Peroxynitrite contributes to
inflammation and tissue damage, promoting noncommunicable diseases
(Krol & Kepinska, 2021; Preiser, 2012).

Furthermore, nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB), comprising subunits such as RelA (p65) and p50, re-
mains inactive under normal conditions, bound to inhibitory proteins
(IkB) in the cytoplasm. Inflammatory stimuli activate the IxB kinase
complex (IKK), phosphorylating IkB and releasing NF-kB for trans-
location to the nucleus (Dorrington & Fraser, 2019; Kang et al., 2023;
Lin et al., 1998; Yatim et al., 2015). In the nucleus, NF-xB acts as a
transcription factor, binding to DNA and promoting pro-inflammatory
gene expression.

The anti-inflammatory properties of anthocyanins have been widely
investigated in in vitro studies and animal models. These studies suggest
that anthocyanins can modulate several inflammatory pathways,
including the inhibition of pro-inflammatory cytokine production, such
as TNF-a and interleukins, as well as reducing the expression of cell
adhesion molecules and pro-inflammatory enzymes, such as
cyclooxygenase-2 (COX-2) and iNOS (de Sartori et al., 2023; Lee et al.,
2014; Poulose et al., 2012; Tsoyi et al., 2008; Vendrame & Klimis-Zacas,
2015).

Macrophage

Decrease in
adhesion

Pro-inflammatory
cytokines

TNFa, IL-6, IL-18

AKT

@ / P65

ROS t
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Regarding the anti-inflammatory effects, anthocyanin doses of
approximately 320 mg/day were associated with a reduction in circu-
lating levels of the cytokine interleukin-6 (IL-6). In addition, a positive
correlation was observed for interleukin-10 (IL-10) (Guo et al., 2020).

Furthermore, anthocyanins have been associated with the modula-
tion of intracellular signaling pathways, such as NF-kB and MAP kinases,
which play crucial roles in regulating the inflammatory response (Lee
et al., 2014; Vendrame & Klimis-Zacas, 2015). Experimental models
support these findings. Anthocyanin-rich extracts from Aronia melano-
carpa were able to reduce the inflammatory response in RAW 264.7 cells
and significantly decrease levels of pro-inflammatory cytokines such as
TNF-a and IL-1B (Fig. 4) (Banach, Wiloch, Zawada, Cyplik, & Kujawski,
2020). Similarly, cherry juice rich in anthocyanins such as cyanidin-3-
glucosylrutinoside and cyanidin-3-rutinoside was able to attenuate the
expression of inflammatory genes including TNF and iNOS (Brunetti
et al., 2023).

The anti-inflammatory effects of anthocyanins have also been
demonstrated in humans. Anthocyanin sources such as red apple and
Aronia melanocarpa have shown effects on inflammatory biomarkers in
humans with hypercholesterolemia. The groups received 80 g of apple
snack or aronia infusion containing 34.5 mg and 37.4 mg of anthocya-
nins (cyanidin-3-O-galactoside and cyanidin-O-arabinoside), respec-
tively. There was a reduction in the levels of high-sensitivity C-reactive
protein (hs-CRP) and IL-6, especially in men, and aronia consumption
prevented P-selectin and intercellular adhesion molecule-1 (ICAM-1).
These results suggest therapeutic potential in modulating inflammation
intensity, with the apple dietary matrix possibly enhancing the effects of
anthocyanins through synergy (Pedret et al., 2024).

In individuals with non-inflammatory fatty liver disease (NAFLD),
supplementation at doses of 320 mg/day of anthocyanins for 12 weeks
significantly reduced plasma levels of the pro-inflammatory cytokines

1 Antioxidant
defense

(o) —

NF-kB ) — §|nflammation

Fig. 4. Anthocyanin-Mediated modulation of inflammatory and oxidative pathways in macrophages.

Fig. 4. Molecular mechanisms involved in the anti-inflammatory activity of anthocyanins in macrophages. Anthocyanins reduce cell adhesion and the expression of
pro-inflammatory cytokines (TNF-q, IL-6, and IL-1p). Intracellularly, these compounds inhibit mitochondrial ROS production and the expression of NADPH oxidases
NOX2 and NOX4. In addition, they activate the AKT/NF2 signaling pathway, enhancing antioxidant defense and inhibiting the activation of the transcription factor

NF-kB (p65), ultimately leading to a reduced inflammatory response.
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IL-1p (—3.73 pg/mL vs. —1.33 pg/mL for placebo), interleukin-18 (IL-
18) (—36.4 pg/mL vs. +6.9 pg/mL), and IL-6 (—2.83 pg/mL vs. +4.93
pg/mL), whereas changes in TNF-o were not statistically significant
(—3.81 pg/mL vs. +1.38 pg/mL). Furthermore, anthocyanin supple-
mentation significantly downregulated mRNA expression of caspase-1,
IL-1B, and IL-18 in peripheral blood mononuclear cells (PBMCs), while
mRNA levels of NOD-like receptor family, pyrin domain containing 3
(NLRP3), apoptosis-associated speck-like protein containing a CARD
(ASC), TNF-a, and IL-6 remained unaltered (Zhu et al., 2021).

Moreover, administration of capsules containing extracts of 17
different anthocyanins from wild blueberry (Vaccinium myrtillus) and
black currant (Ribes nigrum) at doses ranging from 80 to 320 mg/day
reduced serum IL-6 by 20-40 % and TNF-a by 11-21 % in individuals
with dyslipidemia over 12 weeks, with dose-dependent effects (Zhang
et al., 2020).

In conclusion, anthocyanins have the potential to attenuate inflam-
mation and can therefore be considered as promising dietary compo-
nents in the prevention and control of inflammatory diseases.

4.3. Antitumor activity

Cancer is a disease characterized by the abnormal growth and
development of cells in the body, which can give rise to cell masses
called tumors, leading to functional impairments in tissues or organs.
According to the World Health Organization (2019), cancer is one of the
leading causes of death worldwide, causing 9.6 million deaths in 2018.
According to the Pan American Health Organization, 40 % of cases could
be avoided by controlling risk factors, and 30 % could be addressed with
early diagnosis and treatment (Pan American Health Organization,
2020b).

Data from 2022 show that the most prevalent types of cancer are led
by lung cancer, followed by breast cancer and colorectal cancer, with
colorectal cancer being the second leading cause of death worldwide
(International Agency for Research on Cancer (IARC), 2022; Pan
American Health Organization, 2024). In 2022 alone, there were over 20
million new cancer cases globally, and this number is expected to in-
crease to more than 35 million by 2050, representing a 77 % rise (Pan
American Health Organization, 2024). One of the main risk factors is
lifestyle, such as an unhealthy diet rich in saturated fats, food additives,
and refined sugars (Pan American Health Organization, 2020b; World
Health Organization, 2020). Therefore, research has focused on studies
(Anandan et al., 2022; Bowen-Forbes et al., 2010; George & Abrahamse,
2019; Nova et al., 2023; Sousa & Conte-Junior, 2022) exploring food
components associated with the prevention and treatment of NCDs, such
as cancer (World Health Organization, 2020).

4.3.1. PI3K/AKT/mTOR

Recent clinical studies address the relationship between the con-
sumption of fruits and vegetables rich in anthocyanins and the reduction
of cancer risk, especially colorectal and breast cancer (Bars-Cortina,
Sakhawat, Pinol-Felis, & Motilva, 2021). In triple-negative breast cancer
(TNBC) cells, anthocyanins were shown to modulate multiple cancer-
related processes, including apoptosis—through significant increases
in cleaved caspase-3, cleaved caspase-8, and poly(ADP-ribose) poly-
merase (PARP)—and inhibition of cell proliferation, primarily via
downregulation of the protein kinase B (Akt)/mechanistic target of
rapamycin (mTOR) pathway. They also affected angiogenesis (Rabelo
et al., 2023).

Similar results were found with anthocyanins (delphinidin-3,5-
diglucoside, petunidin-3,5-diglucoside, delphinidin-3-O-glucoside,
malvidin-3,5-diglucoside, petunidin-3-O-glucoside, and malvidin-3-O-
glucoside) at 500 pg/mL, isolated from black bean (Phaseolus vulgaris)
hulls, in lung adenocarcinoma (A549), mouse glioma (GL261) and rat
glioma (C6) cells in which cell viability of less than 10 % was observed,
demonstrating the antitumor capacity of anthocyanins. In particular,
delphinidin, the main anthocyanin in the extract, exerts an
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antiangiogenic effect by inhibiting the expression of hypoxia-inducible
factor 1 alpha (HIF-1a) through the blockade of extracellular signal-
regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Protein
kinase B (Akt)/Mechanistic target of rapamycin (mTOR)/70-kDa ribo-
somal protein S6 kinase (p70S6K) signaling pathways, a mechanism that
restricts neovascularization essential for tumor growth and progression
(Kuasnei et al., 2025).

An in vitro study evaluated the antitumor activity of purified del-
phinidin in human colon carcinoma HCT116 cells, using normal HGF-1
fibroblasts as controls. Delphinidin selectively reduced HCT116 viability
in a dose-dependent manner (ICso 106 pM), while exerting no cytotoxic
effects on HGF-1 cells at concentrations up to 100 pM. The compound
disrupted mitochondrial membrane potential, triggering apoptosis
characterized by upregulation of pro-apoptotic proteins (Bax, caspase-3,
caspase-8, caspase-9, cytochrome c) and downregulation of anti-
apoptotic proteins (Bcl-2, Bcl-XL). Mechanistically, delphinidin sup-
pressed signal transducer and activator of transcription 3 (STAT3)
phosphorylation and inhibited mitogen-activated protein kinase
(MAPK) signaling specifically — p38 mitogen-activated protein kinase
(p38 MAPK) and extracellular signal-regulated kinases 1 and 2 (ERK1/
2)—, indicating that blockade of the janus kinase 2 (JAK2)/signal
transducer and activator of transcription 3 (STAT3) axis—alongside
MAPK inhibition—plays a central role in its pro-apoptotic effects in
colon cancer cells (Zhang, Yang, & Ericsson, 2021).

4.3.2. Human studies

A randomized, double-blind clinical trial was conducted with 35
individuals with adenomatous polyps. One group received a placebo,
while the others received treatments with curcumin and associated
anthocyanin, 1 g of each bioactive compound, for six weeks. Inflam-
matory and metabolic biomarkers such as adiponectin, blood glucose,
and body mass index (BMI), which are related to the progression of
colorectal cancer, were evaluated. Reduction in adiponectin, increased
blood glucose, and BMI have been associated with a higher risk of
colorectal cancer development. (Macis et al., 2023). Although the study
used the combination of the two compounds, it is relevant to mention
the trend of improvement in metabolic biomarkers related to colorectal
cancer risk, indicating the potential contributory role of anthocyanins in
this context.

4.3.3. FAK pathway and invasion

Another randomized, double-blind clinical trial involving 35 healthy
individuals evaluated the effect of consuming fruit juice rich in antho-
cyanins (Mostafa et al., 2023). After ingesting the juice, the researchers
analyzed the metabolites of anthocyanins present in the participants’
blood plasma. These metabolites were then used in in vitro studies to
evaluate their effects, particularly on pancreatic cancer cells such as
PANC-1 cells. Notably, exploratory metabolomic analysis identified o-
coumaric acid and peonidin-3-galactoside as specific metabolites
inversely associated with PANC-1 cell migration, an effect attributed to
the reduced phosphorylation of NF-xB and focal adhesion kinase (FAK),
thereby highlighting their potential contribution to the anti-cancer ef-
fects observed.

4.3.4. Invitro cytotoxicity

Following the in vitro model, a similar study was conducted with 3 g
of raw black bean powder extract containing approximately 35.8 %
cyanidin-3-O-glucoside (C3G) in a human hepatoma cell line (HepG2)
(Zhang et al., 2024). The authors showed that acylated anthocyanins
significantly inhibited HepG2 cells in a dose-dependent manner.
Furthermore, acylated anthocyanins showed low toxicity to normal liver
cells, indicating potential selectivity to inhibit cancer cell growth
without affecting healthy cells.

In one study, anthocyanin-rich pomegranate (Punica granatum L.)
extract encapsulated in sphingosomes was used at concentrations
ranging from 31.25 to 1000 pg/mL and its cytotoxic effect was analyzed
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on three cell lines: breast adenocarcinoma (MCF-7), cervical carcinoma
(HeLa), and colorectal carcinoma (HCT116) (AlMadalli et al., 2024).
The authors observed a dose-dependent inhibition of cell growth in all
cell lines tested, with over 90 % inhibition of the cell lines when the
concentration reached 1000 pg/mL.

In general, different anthocyanins have demonstrated the ability to
inhibit abnormal cell growth, induce apoptosis, and suppress invasion
and metastasis in cellular and animal models, with some preliminary
evidence in humans (Sood et al., 2024). The mechanism by which these
compounds exert the antitumor effects includes 1) interfering with
multiple cellular signaling pathways, such as the activation of the
Adenosine monophosphate-activated protein kinase (AMPK) pathway,
2) modulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B
(AKT)/mechanistic target of rapamycin (mTOR) pathway, 3) Inhibition
of STAT (Signal Transducer and Activator of Transcription) and STAT3,
consequently inhibiting the JAK-STAT pathway (Janus Kinase-Signal
Transducer and Activator of Transcription), thereby providing a
comprehensive approach to colon and breast cancer prevention and
treatment (Bars-Cortina, Sakhawat, Pinol-Felis, & Motilva, 2021).
Furthermore, due to the anti-inflammatory and antioxidant effects of
anthocyanins, these flavonoids have high potential in preventing dis-
eases such as cancer by preventing cell DNA damage.

5. Methodologies used for screening the biological effects of
anthocyanins

5.1. Antioxidant effect

The methodologies commonly used to analyze antioxidant activity in
vitro are DPPH (1,1-diphenyl-2-picrylhydrazyl), FRAP (Ferric reducing
antioxidant power), and ABTS [2,2-Azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid)]. These assays typically involve measuring absorbance
using a spectrophotometer (Oliveira, 2015).

It is important to emphasize that the results obtained from antioxi-
dant assays such as DPPH, FRAP, and ABTS are not directly comparable,
as each method relies on distinct chemical mechanisms. For instance,
while DPPH and ABTS assays may involve both hydrogen atom transfer
(HAT) and single electron transfer (SET) reactions, the FRAP assay is
strictly based on a SET mechanism. These mechanistic differences mean
that a compound may exhibit strong activity in one assay and weak
activity in another, depending on its chemical structure, polarity, and
reaction environment (Apak, Ozyiirek, Giiclii, & Capanoglu, 2016a,b;
Kedare & Singh, 2011; Rumpf, Burger and Schulze, 2023).

DPPH is a stable, purple free radical. This assay may involve three
distinct mechanisms: HAT (hydrogen atom transfer), SET (sequential
proton loss electron transfer) (Abramovic et al., 2018; Rumpf, Burger
and Schulze, 2023; Sirivibulkovit et al., 2018). When an antioxidant
compound is added to a DPPH solution, it can donate an electron or
hydrogen atom to the radical, promoting its reduction to a colorless or
light yellow molecule called diphenylpicrylhydrazine (DPPH-H). The
decrease in absorbance of the solution, measured at a wavelength of
515-520 nm, is directly proportional to the radical scavenging capacity
of the sample (Abramovic et al., 2018). Results are typically expressed as
a percentage of inhibition or as ICso values (concentration required to
reduce the initial DPPH concentration by 50 %) using standards such as
ascorbic acid, gallic acid, vanillic acid, quercetin, caffeic acid or Trolox
(Brand-Williams et al., 1995; Sirivibulkovit et al., 2018).

The DPPH assay is widely used to evaluate the antioxidant activity of
plant extracts and food samples (Giilcin & Alwasel, 2023; Sirivibulkovit
et al., 2018). It is a simple, rapid, and low-cost method that allows the
simultaneous analysis of approximately 20 samples, making it highly
practical (Sirivibulkovit et al., 2018). Furthermore, it does not require
heating, which is advantageous for thermosensitive compounds, helping
to preserve their stability (Kedare & Singh, 2011).

However, several experimental factors can influence the results ob-
tained, such as the type of solvent used, the pH of the solution, and the
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incubation time (Abramovic et al., 2018). Methanol is the most
commonly employed solvent in this assay; however, its strong interac-
tion with hydrogen atoms may hinder hydrogen atom transfer (HAT)
mechanisms. The addition of water to the system can promote these
mechanisms, thereby enhancing the observed antioxidant activity
(Giilcin & Alwasel, 2023). Other solvents, such as acetone, ethyl acetate,
hexane, and dichloromethane, may also be used depending on the po-
larity of the compounds being analyzed (Wolosiak et al., 2021).

The pH of the assay solution also exerts a significant influence
(Giilcin & Alwasel, 2023). In alkaline environments, greater efficiency is
observed in electron donation mechanisms (SET) compared to meth-
anolic solutions. Nevertheless, pH control of the solution is not
commonly addressed in studies, which may lead to overestimation or
underestimation of the results, as well as hinder comparisons across
different studies (Abramovic et al., 2018; Apak, Ozyiirek, Giiclii, &
Capanoglu, 2016a,b).

Although many studies adopt 30 min as the standard reaction time,
shorter or longer durations (such as 60 min) have also been reported
(Kedare & Singh, 2011; Sirivibulkovit et al., 2018; Wotosiak et al.,
2021). This variation can directly affect the results, as some compounds
exhibit better linearity between absorbance and concentration with
longer or shorter reaction times (Wotosiak et al., 2021). However, pro-
longed incubation may lead to secondary reactions, such as the degra-
dation of previously oxidized antioxidants, thereby compromising the
accuracy of the assay (Abramovic et al., 2018).

The Ferric reducing antioxidant power (FRAP) assay, measures the
capacity antioxidants by the reduction reaction of the ferric-
tripyridyltriazine complex (Fe>*-TPTZ) to its ferrous form (Fe?"),
under acidic conditions (pH 3,6) (Apak et al., 2016b; Rumpf, Burger and
Schulze, 2023). Furthermore, the assay requires incubation at 37 °C, a
temperature still considered stable for anthocyanins (Oancea, 2021).
The reaction results in the formation of an intense blue complex with
maximum absorbance at 593 nm. The antioxidant potential of the
sample is determined by comparing the reducing capacity of the sample
with a standard curve prepared with Trolox, ascorbic acid or gallic acid.
The results are expressed as pmol equivalents of the reference substance
per gram of sample or can be presented as a graph comparing the curves
of the sample and the reference substance. This assay is simple and
inexpensive; however, it requires rigor regarding the incubation time of
the solutions, as this factor can affect the results. In addition, the assay
measures reducing capacity (SET mechanism), which is different from
free radical scavenging (HAT mechanism) (Benzie & Strain, 1996;
Munteanu & Apetrei, 2021; Rumpf, Burger and Schulze, 2023).

Finally, the ABTS or Trolox Equivalent Antioxidant Capacity (TEAC)
test is based on the interaction of antioxidant substances with the
cationic ABTS radical. The method works by reducing the ABTS— +
radical, which has an intense blue-green color, and when an antioxidant
substance is added to the solution, it donates electrons to the radical,
reducing it to its nearly colorless neutral form (ABTS). As with the FRAP
test, the result can be expressed in TEAC units. This reduction is directly
proportional to the antioxidant capacity of the test substance and is
quantified by measuring the decrease in absorbance at 734 nm.
Furthermore, this assay also shows good correlation with the presence of
bioactive compounds, such as phenolics and flavonoids, reinforcing its
applicability in food and vegetable matrices (Sadeer et al., 2020). In
addition, it is a simple and inexpensive method, classified as mixed
(HAT/SET), but occurs mainly through the SET mechanism, and can be
applied to both hydrophilic and lipophilic compounds. However, care
must be taken when using the method with colored samples, as these can
interfere with the color of the solution and affect the absorbance
(Munteanu & Apetrei, 2021; Re et al., 1999; Rumpf, Burger and Schulze,
2023).

Due to the peculiarities of each of these methods, it is necessary to
use more than one method in combination to analyze the antioxidant
activity of compounds. Furthermore, they all play a fundamental role in
the characterization of the antioxidant potential of substances and are
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essential tools for research, in addition to being simple and inexpensive.
5.2. Anti-inflammatory effect

Clinical trials assessing the anti-inflammatory activity of flavonoids,
such as anthocyanins, use methods to evaluate both the production of
enzymes such as iNOS, which is responsible for NO synthesis, and
cytokine levels. Studies have also shown that anthocyanins inhibit the
activation of NF-kB, a key regulator of macrophage activation and
cytokine production (Chen et al., 2023; Dorrington & Fraser, 2019; Liu
et al., 2017).

Western blotting and enzyme-linked immunosorbent assay (ELISA)
techniques are widely used to evaluate the modulation of inflammatory
pathways after cell stimulation with LPS. Western blotting is an assay
primarily used in studies investigating pathways related to inflamma-
tion, oxidative stress, and tumorigenesis. This method enables the
detection, quantification, and characterization of specific proteins in
complex biological samples and is particularly valuable for analyzing
the expression and post-translational modifications (PTMs) of signaling
molecules such as NF-xB, IkB, and MAPK (Bass et al., 2016; Kang et al.,
2016; Mishra et al., 2017; Pillai-Kastoori, Schutz-Geschwender, & Har-
ford, 2020). Western blotting can be used to detect phosphorylation of
NF-kB inhibitor (IxB - Inhibitor of kappa B and nuclear translocation of
the p65 subunit by analyzing cytoplasmic and nuclear protein fractions,
particularly in the context of anti-inflammatory studies. This assay is
distinguished by its versatility and specificity, stemming from the se-
lective interaction between antibodies and antigens (Bass et al., 2016;
Pillai-Kastoori, Schutz-Geschwender, & Harford, 2020). However, the
technique also presents limitations: it is labor-intensive, susceptible to
variability across experimental steps, and highly dependent on the
quality of both the antibodies and the sample used. Issues such as limited
reproducibility, signal saturation, inadequate reference proteins, chal-
lenges in transferring or detecting high-molecular-weight proteins, and
the semi-quantitative nature of data interpretation can compromise the
reliability of results. Therefore, the use of total protein staining as a
loading control is recommended, as it offers a more robust alternative to
traditional housekeeping proteins (Bass et al., 2016; Mishra et al., 2017;
Pillai-Kastoori, Schutz-Geschwender, & Harford, 2020).

ELISA is one of the most widely used and well-validated methodol-
ogies for the quantification of cytokines and other inflammatory medi-
ators in both clinical and experimental studies. This assay has become
the gold standard for the measurement of individual cytokines due to its
high specificity, sensitivity, and reproducibility. In its most common
format, the sandwich ELISA employs two antibodies: a capture antibody,
immobilized on the plate, and a detection antibody, conjugated to an
enzyme. This dual binding interaction allows for the accurate detection
of targets such as IL-6, TNF-a, IL-1p, and monocyte chemoattractant
protein-1 (MCP-1), which are frequently modulated by anthocyanins in
inflammation models (Kozlowska & Dzierzanowski, 2021; Leng et al.,
2008).

ELISA allows the specific and sensitive identification and quantifi-
cation of pro- and anti-inflammatory cytokines using pre-selected anti-
bodies that specifically bind to the analytes of interest (Bartosh &
Ylostalo, 2014; Chiswick et al., 2011; Forstermann, 2010; Liu et al.,
2017; Maguire, O’Loughlin, & Minderman, 2015; Marino & Idris, 2019).

Because it is limited to the analysis of a single analyte per well, the
ELISA assay requires larger sample volumes and becomes costly when
multiple biomarkers are analyzed simultaneously. Additionally, the
quality of the results is directly dependent on the specificity of the an-
tibodies used and the technical proficiency of the operator. Variability
among manufacturers, sensitivity to circulating carrier proteins, and a
relatively narrow dynamic range can further affect the interpretation of
cytokine levels, particularly at extreme concentrations. Although
multiplex methods offer broader analytical coverage, ELISA remains
superior in terms of robustness for individual cytokine quantification. As
such, it is an indispensable tool for assessing the anti-inflammatory
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potential of compounds such as anthocyanins, especially when precise
quantification of specific cytokine modulation is required (Koztowska &
Dzierzanowski, 2021; Leng et al., 2008).

Target cytokines for research include TNF-a, IL-1, and IL-6, which
are essential mediators of the inflammatory response and are mainly
produced by macrophages. In addition, the production of the chemokine
MCP-1 is also commonly analyzed (Bent et al., 2018; Chen et al., 2017;
Fujiwara & Kobayashi, 2005; Singh et al., 2021; Tanaka et al., 2014;
Zelova & Hosek, 2013).

These methods provide a concise framework for analyzing the anti-
inflammatory potential of anthocyanins. By modulating key signaling
pathways, such as NF-kxB, and regulating the production of enzymes and
cytokines critical to the inflammatory response, anthocyanins show
promising therapeutic effects. The integration of protein analysis, gene
expression, and cytokine quantification ensures a comprehensive un-
derstanding of the molecular mechanisms by which these bioactive
compounds exert their immunomodulatory activities.

5.3. Antitumoral effect

In vitro analyses of the antitumor activity of anthocyanins include a
variety of established methods. Cell viability assays, such as the MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and
the MTS ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium]) assay, evaluate cellular metabolic ac-
tivity as an indirect marker of cell viability (Riss et al., 2016). The MTT
assay is based on the ability of metabolically active cells to reduce the
yellow tetrazolium salt (MTT), which is water-soluble, into insoluble
violet formazan crystals. This reaction is mediated by mitochondrial and
cytosolic enzymes, such as dehydrogenases and oxidoreductases, which
use redox cofactors like NAD(P)H. MTT crosses the cell and mitochon-
drial membranes and is internalized by viable cells. The amount of
formazan produced is quantified by spectrophotometry, usually at 570
nm, indirectly reflecting cell viability or metabolic activity (Ghasemi
et al., 2021).

This assay is widely used to assess the cytotoxicity and anti-
proliferative effects of bioactive compounds, such as anthocyanins,
being useful for calculating the half-maximal inhibitory concentration
(ICs0) and in studies of antitumor activity and compound safety
(Ghasemi et al., 2021; Rampersad, 2012; Stepanenko & Dmitrenko,
2015). Its popularity stems from its simplicity, low cost, good repro-
ducibility, and the ability of MTT to penetrate cells without additional
reagents, unlike other tetrazolium salts such as MTS, XTT, and WST-1
(Ghasemi et al., 2021).

Nevertheless, MTT measures metabolic activity, not cell viability
directly. Cells undergoing programmed cell death may still reduce MTT,
leading to an overestimation of viability. Factors such as cell density,
incubation time, reagent concentration, and the accumulation or
extrusion of formazan crystals can also influence the results and
compromise analysis, especially if supernatant washing is performed
improperly. Still, the MTT assay remains a robust tool for studying
compounds like anthocyanins, provided its limitations are properly
managed (Ghasemi et al., 2021).

The use of complementary methods is recommended for a more ac-
curate assessment of the cellular effects of these phenolic compounds
(Stepanenko & Dmitrenko, 2015).

Alternatively, the Alamar Blue assay, which is based on the reduction
of resazurin to resorufin by metabolically active cells, is widely used to
assess cell viability, metabolic activity and cytotoxicity in different cell
types, is widely used due to its high sensitivity and low toxicity
(Rampersad, 2012). The principle of this assay lies in the reduction of
resazurin, a blue dye, into resorufin, a pink-colored compound, by
metabolically active cells. This conversion occurs predominantly
through the action of mitochondrial enzymes involved in cellular
metabolism, although more recent evidence indicates that cytosolic and
microsomal enzymes also contribute to this process (Nakayama et al.,
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1997; Rampersad, 2012). The intensity of the resulting fluorescence or
absorbance is directly proportional to cellular metabolic activity,
allowing for the indirect quantification of viable cell numbers (Al-Nasiry
et al., 2007; Rampersad, 2012).

As a non-destructive assay, Alamar Blue enables kinetic monitoring
of cell cultures over time, setting it apart from terminal methodologies
such as the MTT assay or trypan blue exclusion. Moreover, it stands out
for its ease of execution, low cost, and high sensitivity. However, the
reduction of resazurin may not exclusively reflect mitochondrial func-
tion, as it can also occur in non-proliferative cells or cells in early stages
of cell death, potentially compromising data interpretation, as similarly
observed with the MTT assay (Al-Nasiry et al., 2007; Nakayama et al.,
1997; Rampersad, 2012). In this context, additional concerns arise when
plant-derived compounds such as anthocyanins are tested, since these
flavonoids can directly reduce tetrazolium salts or interfere with
absorbance/fluorescence, producing false-positive results. To minimize
such biases, studies recommend the use of no-cell compound-only
blanks, solvent controls, absorbance correction, and cross-validation
with orthogonal non-metabolic assays such as the sulforhodamine B
(SRB) assay, trypan blue exclusion, or ATP-based assays (Bruggisser
et al., 2002; Karakas et al., 2017; Somayaji & Shastry, 2021).

Apoptosis assays, including annexin V/propidium iodide (PI) stain-
ing coupled with flow cytometry, and caspase-3 and caspase-9 activa-
tion assays are used to differentiate apoptotic cells from necrotic cells
(Kumar et al., 2021; Robinson et al., 2023; Telford, 2018). One of the
most established methods for distinguishing apoptosis from necrosis
involves the combination of annexin V and propidium iodide (PI).
Annexin V is a protein with high affinity for phosphatidylserine, a
phospholipid normally located on the inner leaflet of the plasma mem-
brane. During the early stages of apoptosis, phosphatidylserine is
translocated to the outer surface of the membrane, becoming accessible
for annexin V binding. Conversely, PI is a DNA-binding dye that can only
penetrate cells with compromised membranes, such as necrotic cells or
cells in late-stage apoptosis. This dual staining assay is sensitive and
enables quantitative data acquisition, making it applicable across
various cell lines (Robinson et al., 2023).

Although these methods provide robust discrimination based on
membrane integrity and metabolic function, they do not directly assess
the biochemical pathways involved in programmed cell death. There-
fore, complementary assays detecting the activation of caspases,
particularly caspase-3 and caspase-9, can be employed to confirm the
underlying mechanisms. These enzymes are key executioners of the
intrinsic apoptotic pathway and serve as reliable biochemical markers of
programmed cell death. It is important to emphasize that factors such as
dye selection, fixation effects, and spectral compatibility must be care-
fully considered, as they can affect the accuracy and interpretation of
data obtained by flow cytometry (Robinson et al., 2023).

In addition, molecular techniques such as quantitative polymerase
chain reaction (qQPCR), Western blotting, and ELISA are often used to
investigate changes in gene and protein expression associated with
apoptosis, cell cycle regulation, and inflammatory responses (Kari et al.,
2022). qPCR provides a sensitive and precise method for quantifying
specific mRNA transcripts, thereby indicating changes in gene expres-
sion levels (Sanders et al., 2014). Western blotting allows for the qual-
itative and semi-quantitative detection of specific proteins by separating
them by size, transferring them to a membrane, and then probing with
specific antibodies. This technique is crucial for assessing protein
abundance, post-translational modifications like phosphorylation, and
the cleavage of proteins involved in pathways such as apoptosis (e.g,
caspases) or cell cycle regulation (e.g., cyclins) (Mishra et al., 2023).
ELISA is a highly sensitive and specific immunoassay used for the
identification and quantification of various analytes, including cyto-
kines and other secreted proteins, in biological samples (Leng et al.,
2008). To further characterize cellular responses, especially in the
context of cancer cell behavior, intracellular ROS assays are used to
assess the oxidative stress status of cells. These assays often utilize
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fluorescent probes that react with ROS, allowing for the measurement of
their levels, as modulation of ROS is closely related to survival and
apoptotic processes in cancer cells (Wu et al., 2019). Colony formation
assays are used to determine the long-term antiproliferative effects of
anthocyanin treatments. These assays assess the ability of single tumor
cells to proliferate indefinitely and form macroscopic colonies,
providing a direct measure of their reproductive viability and survival
after treatment (Anwar et al., 2016).

Furthermore, to evaluate the metastatic potential of cancer cells,
wound healing assays (scratch assays) and cell migration assays are
important. A wound healing assay is a straightforward and cost-effective
method to measure collective cell migration in vitro. It involves creating
a “scratch” in a confluent cell monolayer, and then monitoring the cells’
ability to migrate into and close this gap over time. This technique is
particularly useful for assessing the capacity of cells to move into an
empty space, mimicking aspects of tissue repair and tumor invasion
(Pinto et al., 2016; Rodriguez et al., 2005). Cell migration assays, such as
Transwell assay, provide a more quantitative assessment of individual
cell migration. These assays typically involve cells migrating through a
porous membrane towards a chemoattractant, allowing for the quanti-
fication of migrated cells and providing insights into directed cell
movement, a critical step in metastasis (Justus et al., 2023).

In addition, the sulforhodamine B (SRB) assay, a colorimetric
method that quantifies the total protein content of cells, provides a
reliable assessment of long-term cell proliferation and cytotoxicity in
response to anthocyanins (Anwar et al., 2016; Orellana & Kasinski,
2016). Together, these complementary methods provide a comprehen-
sive assessment of the antitumor properties of anthocyanins and
contribute to the elucidation of their therapeutic potential and mecha-
nisms of action.

6. Challenges for industrial application

Anthocyanins exhibit promising bioactive effects; however, their
industrial application remains limited due to chemical instability, low
bioavailability, and degradation that can generate undesirable flavors
and odors. Moreover, conventional extraction techniques often result in
low yields and require long, costly processes, whereas advanced
methods, although more efficient, may further increase costs (Anusha
Siddiqui et al., 2022; Zannou et al., 2023).

Strategies such as ultrasound-assisted extraction (UAE) and
microwave-assisted extraction (MAE) stand out for their speed, selec-
tivity, lower solvent consumption, and better preservation of functional
properties. These methods are capable of disrupting cellular structures
and releasing anthocyanins such as cyanidin-3-O-glucoside (C3G),
pelargonidin-3-glucoside, and peonidin-3-glucoside (Zannou et al.,
2023; Zahed et al., 2023; Anusha Siddiqui et al., 2022). More advanced
techniques, including supercritical CO: extraction (SFE-CO2) and pres-
surized fluid extraction (PFE), combine rapidity, selectivity, and the use
of eco-friendly solvents, providing higher yields than traditional
methods, although in some cases their efficiency may be lower than that
of UAE and MAE in terms of yield and processing time (Anusha Siddiqui
et al., 2022; Zannou et al., 2023).

Furthermore, nanoencapsulation has emerged as a promising tool to
overcome limitations related to instability and low bioavailability. It
offers protection against light, oxygen, pH, temperature, and humidity,
while enabling controlled and targeted release of anthocyanins (Shishir
et al., 2018; Zannou et al., 2023). Various nanocarriers have been
explored, including proteins (casein, ferritin nanocages, WPI, albumin),
polysaccharides (pectin, chitosan, f-cyclodextrin), lipids (liposomes,
niosomes, micelles), and exosomes (Shen et al., 2022; Zannou et al.,
2023). These structures enhance chemical and thermal stability, pro-
mote more efficient absorption and tissue distribution, prolong gastro-
intestinal half-life, and in some cases, potentiate biological effects.
Among them, pectin- and lysozyme-based nanostructures and lipid-
based systems demonstrate greater consistency in terms of protection,



E.F. Santos et al.

bioavailability, and tissue distribution, while polysaccharides such as
chitosan allow for controlled and targeted release, particularly in the
colon (Rosales et al., 2024; Shen et al., 2022; Zannou et al., 2023).
Collectively, these approaches represent promising solutions for opti-
mizing the use of anthocyanins in therapeutic and food applications,
overcoming limitations of stability, absorption, and yield.

7. Conclusion, limitations and future perspectives

In conclusion, anthocyanins are secondary metabolites found in
various fruits, vegetables, flowers, and seeds of plants, renowned for
their antioxidant, anti-inflammatory, and antitumor properties. These
compounds play a crucial role in mitigating oxidative stress, modulating
inflammatory pathways, and inhibiting tumor growth by scavenging
free radicals, influencing cellular signaling, and regulating gene
expression associated with inflammation and carcinogenesis.

Despite these beneficial effects, several challenges hinder the
broader application of anthocyanins, particularly in industrial contexts.
One of the main obstacles is their low chemical stability. Anthocyanins
are unstable compounds that are highly susceptible to degradation when
exposed to factors such as high temperatures, alkaline pH, oxygen, light,
and enzymatic activity (Cheng et al., 2023). These variables signifi-
cantly affect the quality, stability, and biological effect of natural
anthocyanin extracts, limiting their effectiveness in scientific and in-
dustrial applications.

Another critical challenge lies in their limited bioavailability. Once
ingested, anthocyanins face degradation in the acidic environment of
the stomach and show restricted absorption in the small intestine,
although this may be partially improved by enzymatic action from the
intestinal microbiota (Kumkum et al., 2024; Shen et al., 2022). Addi-
tionally, the extraction of anthocyanins is often inefficient due to the
complexity of the plant matrix, and improper extraction techniques can
accelerate degradation even further.

In addition to these challenges, many of the primary sources of
anthocyanins—such as berries and other fruits—are also important
components of the human diet. Because these natural sources are in high
demand for food consumption, their use for industrial anthocyanin
extraction is limited, which contributes to higher production costs and
increased market competition. Consequently, there is growing interest
in exploring alternative sources, such as certain forage grasses (e.g.,
purple elephant grass), which may provide a more sustainable and cost-
effective option for large-scale anthocyanin production.

To address the issue of anthocyanin bioavailability, often limited by
their susceptibility to degradation and poor absorption, various tech-
nological strategies are under development. These include controlled-
release systems, which regulate the gradual delivery of anthocyanins
over time to maintain sustained levels; nanoparticles, which, with their
nanoscale dimensions, offer improved solubility, protection against
degradation, and enhanced cellular uptake due to their small size and
diverse material composition; and encapsulation methods, utilizing
carriers like liposomes (phospholipid vesicles that protect and improve
cellular delivery by mimicking cell membranes) or biopolymers (natural
polymers like chitosan or alginate that form protective matrices), are
employed to shield anthocyanins from adverse conditions and enhance
their intestinal absorption. These diverse systems differ primarily in
their structural composition, release kinetics, and specific mechanisms
for improving stability and delivery. Additionally, the combination of
anthocyanins with other bioactive compounds or the design of syner-
gistic formulations is being explored to optimize their functional po-
tential (Kumkum et al., 2024; Shen et al., 2022).

Understanding the precise mechanisms of action of anthocyanins
remains a critical area of investigation. Continued research is essential
to fully elucidate their antioxidant, anti-inflammatory, and antitumor
effects, thus paving the way for the development of innovative thera-
peutic strategies. Future studies should focus on determining optimal
dosages, administration routes, and target populations to maximize the
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preventive and adjuvant roles of anthocyanins in combating non-
communicable diseases.
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