Stock and contents of carbon and nitrogen of soil managed with silicate agrominerals under pasture of Urochloa brizantha cv. BRS Paiaguas in the Cerrado

Introduction

Silicate agrominerals are being recognized as a strategic approach to enhance soil properties. This study assessed the impact of silicate agrominerals on carbon stocks (CS), total carbon content (TC), total nitrogen (TN), total organic carbon (TOC), C:N ratio, and soil density (Ds) in the 0-30 cm layers of a long-term pasture experiment in the Cerrado region.

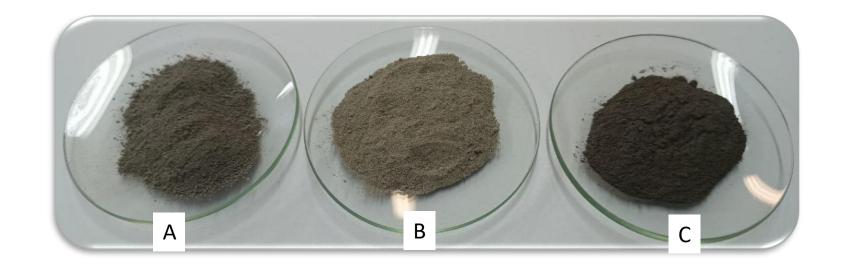
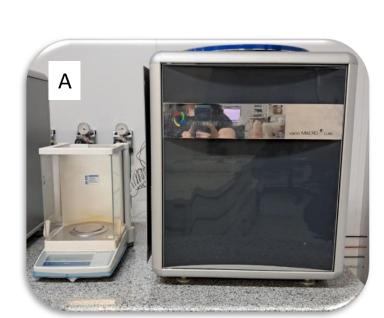
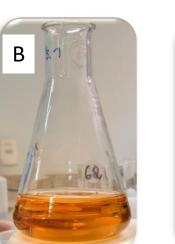




Figure 1. Silicate agrominerals: kamafugite (A), biotite schist (B), basalt (C).

Methods

- ☐ Total carbon and nitrogen were determined by dry combustion (CHNS) (g kg⁻¹)(A).
- ☐ Total organic carbon was determined by chromic acid wet oxidation method (g kg⁻¹)(B).
- ☐ Carbon stock (CS) was determined by: CS (Mg ha⁻¹) = TC (g kg⁻¹) x ρ_S (g kg⁻¹) x depth (m).
- \square Soil density (g cm⁻³)(C).



Figure 2. Determination methods: dry combustion (CHNS) (A), chromic acid wet oxidation (B), soil density (C).

Results and discussion

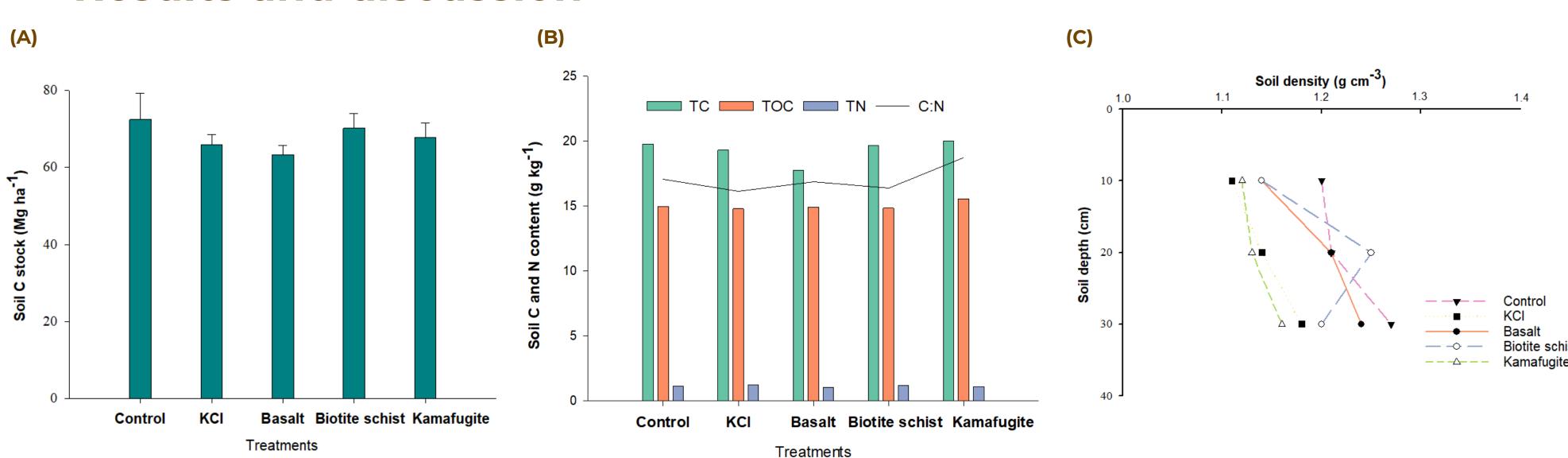


Figure 3. Soil C stock (Mg ha⁻¹) (A); Total carbon content (TC), total organic carbon (TOC), total nitrogen (TN) (g kg⁻¹) and C:N ratio (B); Soil density (g kg⁻¹) (C) in the different treatments cultivated with *Urochloa brizantha* cv. Paiaguás, for seven years, in the 0-30 cm layers. Treatments showed no significant difference by the F test (p > 0.05).

Conclusion

Kamafugite and biotite schist exhibited trends of improving the levels of TC and TOC in soil under pastures. This aligns with SDG 2 and offers an alternative for recovering degraded areas in meat and milk production systems, supporting public policies such as the Low Carbon Agriculture Plan.

AUTHOR(S)

Priscila Brelaz da Silva¹, Arminda Moreira de Carvalho², Marcos Aurelio Carolino de Sá², Ana Maria Resende Junqueira³, João Paulo Guimarães Soares², Giuliano Marchi², Éder de Souza Martins², Thais Rodrigues de Sousa⁴, Luiz Fernando Santos⁵, Alexsandra Duarte de Oliveira²

AFFILIATION OF AUTHOR(S)

(1) Master's candidate in Agronomy, University of Brasília-DF. (2) Researcher, Embrapa Cerrados, Planaltina-DF.(3) Professor at the University of Brasília-DF. (4) PhD candidate in Agronomy, University of Brasília, Brasília-DF. (5) PhD candidate in environmental sciences, University of Brasília, Brasília-DF.

REFERENCES

TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de métodos de análise de solo. 3 ed. Brasília: Embrapa, 2017.

ACKNOWLEDGEMENTS

Rede de PD&I sobre Remineralizadores e Agrominerais, Fundo Setorial Mineral, FINEP (Ref. 1541/22)

INDICATION OF THE CORRESPONDING AUTHOR

Priscila Brelaz da Silva, master's candidate in Agronomy, University of Brasília-DF ppbrelaz2@gmail.com

LATIN AMERICAN & CARIBBEAN

Soil Carbon Research Symposium

Rio de Janeiro, RJ, Brazil June 25-28, 2025

CO-ORGANISED AND PROMOTED BY

ORGANISED BY

UNIÃO E RECONSTRUÇÃO https://proceedings.science/p/203383?lang=er