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Abstract
Background  Small RNAs, such as microRNAs (miRNAs), are candidates for mediating 
communication between the host and its microbiota, regulating bacterial gene 
expression and influencing microbiome functions and dynamics. Here, we introduce 
HolomiRA (Holobiome miRNA Affinity Predictor), a computational pipeline developed 
to predict target sites for host miRNAs in microbiome genomes. HolomiRA operates 
within a Snakemake workflow, processes microbial genomic sequences in FASTA 
format using freely available bioinformatics software and incorporates built-in data 
processing methods. The pipeline begins by annotating protein-coding sequences 
from microbial genomes using Prokka. It then identifies candidate regions, evaluates 
them for potential host miRNA binding sites and the accessibility of these target sites 
using RNAHybrid and RNAup software. The predicted results that meet the quality filter 
parameters are further summarized and used to perform a functional analysis of the 
affected genes using SUPER-FOCUS software.

Results  In this paper, we demonstrate the use of the HolomiRA pipeline by applying it 
to publicly available metagenome-assembled genomes obtained from human feces, as 
well as from bovine feces and ruminal content. This approach enables the prediction of 
bacterial genes and biological pathways within microbiomes that could be influenced 
by host miRNAs. It also allows for the identification of shared or unique miRNAs, target 
genes, and taxonomies across phenotypes, environments, or host species.

Conclusions  HolomiRA is a practical and user-friendly pipeline designed as a 
hypothesis-generating tool to support the prediction of host miRNA binding sites 
in prokaryotic genomes, providing insights into host-microbiota communication 
mediated by miRNA regulation. HolomiRA is publicly available on GitHub: ​h​t​t​p​s​:​/​/​g​i​t​h​u​
b​.​c​o​m​/​J​B​r​u​s​c​a​d​i​n​/​H​o​l​o​m​i​R​A​​​​​.​​
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​​Background
MicroRNAs (miRNAs) are non-coding RNAs that post-transcriptionally regulate gene 
expression in eukaryotes [1]. Recent studies suggest that miRNAs may contribute to 
host-microbiota communication, although the mechanisms remain unclear. Evidence 
indicates that miRNAs can be secreted via extracellular vesicles (EVs) [2] and, in some 
cases, may enter microbial cells, modulate microbial gene expression, and shape host-
microbiome interactions [3–5]. Some studies have described that bacteria can modulate 
host miRNA expression for their own benefit [6, 7]. However, evidence for a bidirec-
tional relationship between the microbiome and host miRNAs continued to grow.

In 2016, Liu et al. [4] demonstrated that human miRNAs, such as hsa-miR-1226-5p 
and hsa-miR-515-5p, can be internalized by Escherichia coli and Fusobacterium nuclea-
tum after co-incubation, while variability in bacterial uptake of miRNAs was also 
observed. Furthermore, miR-30d regulated the expression of a lactase in Akkermansia 
muciniphila, leading to increased Akkermansia abundance in the gut. The expanded 
Akkermansia population, in turn, promoted regulatory T cell development, and sup-
pressed autoimmune encephalomyelitis symptoms in mice [8]. Recently, Wang et al. 
[9] showed that hsa-miR-7704 inhibited the growth and adhesion of Bifidobacterium 
longum by suppressing the proB gene. Eukaryotic miRNAs can influence bacterial gene 
expression at the post-transcriptional level, thereby affecting the composition of the 
microbial community [10], and/or can enter bacterial cells through endocytosis, specifi-
cally regulating bacterial gene transcripts and influencing bacterial growth [11].

In prokaryotes, the translation of specific mRNAs is partially controlled by small 
RNAs (sRNAs), which typically bind to the 5’ UTR of mRNA. This region includes the 
Shine-Dalgarno (SD) sequence, a ribosome binding site (RBS) in prokaryotic mRNA 
upstream of the start codon [12]. These sequences can extend from twenty nucleotides 
upstream to fifteen nucleotides downstream of the translation initiation codon [13]. In 
the most frequent scenario, sRNAs prevent the binding of the 30S ribosomal subunit to 
the RBS region, promoting translation repression and degradation of the target mRNA 
[14]. Although such a mechanism of miRNA regulation in prokaryotic genomes is not 
fully described, it is hypothesized to be similar to that of sRNAs. One hypothesis is that 
eukaryotic miRNAs may bind to mRNAs harboring weak SD sequences, where the ribo-
some assembly rate is slow, thus enhancing the chance for miRNA-mRNA interaction 
[10].

Current research on prokaryotic gene targets of host-derived miRNAs primarily relies 
on sequence-based analysis and RNA thermodynamics. However, to date, no dedi-
cated in silico tool specifically tailored for this prediction has been developed. Conse-
quently, existing tools and software packages designed for intraspecies alignment (such 
as BLASTn and miRBase) and hybridization analysis (such as RNAhybrid and miRanda) 
have been adapted to investigate interspecies interactions [4, 8, 15, 16], and focus on 
directly identifying of the target genome with miRNAs of interest. In addition, research 
in eukaryotic systems has highlighted the critical role of structural accessibility in 
enabling miRNA binding. Consequently, target prediction approaches may benefit from 
incorporating this factor, which can be evaluated by calculating the total binding free 
energy [10].

Therefore, aiming to expand our understanding of the functional role of miRNAs in 
host-microbiome communication, we developed a user-friendly computational pipeline 
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to identify putative interactions between host miRNAs and genomes from their micro-
biota, which can be applied to any prokaryotic genome. The Holobiome miRNA Affin-
ity Predictor (HolomiRA) uses publicly available tools for sequence annotation, miRNA 
target prediction, target accessibility, and enrichment analysis of impacted genes. To our 
knowledge, this is the first pipeline designed to test interactions between host miRNAs 
and microbiome genomes, representing a significant contribution toward understanding 
host regulatory influences on microbiome activity.

Implementation
HolomiRA pipeline

HolomiRA is an accessible, user-friendly, and reproducible pipeline (Fig. 1) for identify-
ing host miRNA binding sites within microbial genomes, based on the growing evidence 
of microbiota regulation by miRNAs. HolomiRA requires Snakemake (version ≥ 7.32.3) 
and Conda (version ≥ 24.1.0) to manage software dependencies. The workflow automates 
the installation and configuration of the correct software versions. This approach miti-
gates potential version conflicts and enhances usability, facilitating adoption by research-
ers with varying levels of experience in bioinformatics and data analysis.

HolomiRA requires four mandatory input files: i) microbial genome sequences in 
FASTA format, ii) a FASTA file containing mature host miRNA sequences, iii) a sample 
identification list, and iv) a metadata file containing additional information about each 
microbial genome, including its taxonomic classification and environmental source (e.g., 
tissue type, species, phenotype, etc.). Analysis parameters are defined within a YAML 
configuration file, where users can adjust biological thresholds such as: i) the number 
of upstream and downstream base pairs flanking the CDS start site to define the candi-
date target region, ii) parameters for miRNA hybridization filtering (i.e., seed position, 
minimum free energy [MFE], and p-value thresholds), and iii) the total ΔG value, which 

Fig. 1  Schematic representation of the HolomiRA pipeline. CDS = Coding DNA Sequence; MFE = Minimum Free 
Energy. The pipeline requires four initial files (highlighted in blue): 1) a “Genomes.fa” file containing any prokary-
otic genome, 2) a “Host_miRNAs.fa” file containing any collection of mature host miRNA sequences, 3) a sample 
identification list, and 4) a metadata file describing each microbial genome (e.g., taxonomic classification, environ-
ment of origin, etc.). All other steps are automated. The comparative analysis between sample groups (Step 6) is 
executed only if more than one sample category (e.g., phenotype, case–control, environment) is specified in the 
config.yaml file
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represents the final interaction energy used to assess miRNA-target accessibility. The 
following subsections describe each analytical step implemented in HolomiRA.

Step 1 – Predict coding sequences from microbial genomes.
HolomiRA requires genomic DNA sequences in FASTA format as input. These 

sequences are annotated using Prokka (v. 1.14.6) [17], which first identifies the coor-
dinates of protein-coding genes using Prodigal (v. 2.6.3) [18]. Subsequently, by default, 
Prokka compares the predicted sequences against various public databases, such as Ref-
Seq, UniProt, and Pfam [17], to provide accurate and reliable functional annotations for 
each predicted protein.

Step 2 – Select candidate target regions.
The annotated coding sequences (CDS) are extracted from the annotation files gener-

ated by Prokka. The 5'-most nucleotide coordinate of each CDS region is used to define 
a genomic window that delimits candidate regions for miRNA-binding site screening. By 
default, these windows span from −15 to + 20 nucleotides relative to the CDS start, based 
on the typical extent of RBS regions [13]. Candidate sequences within these windows are 
then extracted from the genomes and used as input for miRNA target site prediction. As 
a conservative filtering step, HolomiRA includes only CDS longer than 150 nucleotides, 
aiming to minimize potential artifacts associated with very short sequences.

Step 3 – Search for host miRNAs binding sites in the candidate regions and evaluate 
their accessibility.

These steps rely on RNAhybrid (v. 2.1.2) [19] and RNAup from the ViennaRNA pack-
age (v. 2.5.1) [20]. The combined use of RNAhybrid and RNAup offers a robust approach 
for predicting miRNA-mRNA interactions by integrating the assessment of bind-
ing affinity with the structural accessibility of the target region. RNAhybrid efficiently 
screens for potential interactions based on hybridization energy, identifying candidates 
with high thermodynamic stability. RNAup then refines these predictions by consider-
ing the mRNA's secondary structure, calculating the energy required to expose the tar-
get region and allow duplex formation with the miRNA. This sequential strategy aims 
to enhance the biological plausibility of predictions by considering both hybridization 
energy and the estimated accessibility of target sites.

First, RNAhybrid [19] identifies the most energetically favorable hybridization sites 
between each miRNA sequence and the selected CDS window sequence. This step uses 
as input the CDS window sequence obtained in Step 2, and the mature host miRNA 
sequences, which can be obtained from public databases such as miRDB [21], miRBase 
[22], and MirGeneDB [23]. Unlike eukaryotic miRNA-target interactions, bacterial 
sRNAs typically exhibit longer seed regions than miRNAs [24–26]. This suggests that 
restricting the sequence comparison to the seed sequence may overlook potential bac-
terial gene targets. By default, HolomiRA uses the entire mature miRNA sequence to 
search for target genes. In this step, HolomiRA considers a p-value threshold < 0.01 and 
a MFE <  −20 kcal/mol as cut-offs for filtering results.

After this initial screening, a window of + 150 nt is constructed around the origi-
nal CDS window, and the interaction between this extended region and the candidate 
miRNA is evaluated using RNAup [20] to analyze target site accessibility. By default, 
HolomiRA performs the final filtering of candidate sequences by applying a total ΔG 
(Gibbs free energy of binding between two RNAs) threshold of <  −15 kcal/mol.

Step 4 – Summarizing and visualizing prediction results.
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To facilitate the interpretation of the predicted host miRNA binding sites, HolomiRA 
provides multiple output formats. These include: i) a comprehensive results table, ii) 
a summary table grouped by miRNA, and iii) a summary table grouped by microbial 
genome. Additionally, HolomiRA generates bar plots summarizing the data and ranking 
miRNAs according to the number of predicted interactions with genomes and genes.

Step 5 – Functional enrichment analysis of putative impacted microbial genes.
Finally, a functional analysis is performed, focusing on the genes affected by each 

miRNA within each microbial genome. HolomiRA utilizes the SUPER-FOCUS soft-
ware (v. 1.4.1) [27] for functional annotation, employing DIAMOND (v. 2.1.8) [28] as the 
aligner to achieve this.

Step 6 – Comparative analysis.
The pipeline automatically performs comparative analyses across different sample 

categories, such as phenotypes, case–control groups, or environments within the same 
host species, if more than one sample category is specified in the config.yaml file. The 
same summary metrics and functional enrichment outputs described in Steps 4 and 5 
are generated, with results organized by category group, thereby allowing better visual-
ization of the observed differences. To illustrate the overlap between groups, HolomiRA 
automatically generates Venn diagrams and a complementary text file listing unique and 
shared elements across categories, covering microbial taxa (at the species level), genes, 
and miRNAs. Histogram plots summarizing the unique counts of miRNAs, microbi-
ome genes, microbiome genomes, and taxonomic groups within each category are also 
produced.

Additional Step 1 – Functional enrichment analysis: additional plot visualization and 
differential abundance testing.

Supplementary scripts provided with the pipeline allow users to generate plots high-
lighting the most abundant functions. For studies involving different sample groups (or 
datasets, e.g., different species or experimental conditions), the pipeline includes a com-
parative statistical analysis focused on functional abundances. By default, functions are 
filtered based on two criteria: a minimum relative abundance threshold of 0.01 and a 
prevalence threshold of 20% (i.e., functions must be present in at least 20% of the sam-
ples to be considered for analysis). After filtering, functions shared between the groups 
being compared are selected for differential abundance testing. The statistical analysis 
is performed using the Wilcoxon rank-sum test. Additionally, log2 fold change (log2FC) 
values are calculated to assess the magnitude of the differences. By default, functions are 
considered significantly differentially abundant if they meet both of the following crite-
ria: an adjusted p-value ≤ 0.05 and |log2FC|> 1. P-values are adjusted for multiple testing 
using the Benjamini–Hochberg method [29].

Additional Step 2 - Comparative analysis between different results sets.
HolomiRA also supports comparative analyses between two independent result sets, 

generating Venn diagrams and histograms. The analysis identifies unique and shared 
elements across groups, including microbial taxa, genes, and miRNAs, and summarizes 
these findings in both graphical and tabular formats. The Venn diagrams illustrate over-
laps, while histograms provide quantitative summaries of the unique counts of miRNAs, 
microbial genes, genomes, and taxa within each group.
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Real data
We evaluated HolomiRA using two publicly available datasets of metagenome-assem-
bled genomes (MAGs) derived from human feces [30] and bovine feces and ruminal 
content [31]. The human dataset included 39,913 high-quality MAGs, and the rumi-
nant dataset contained 10,000 high-quality MAGs, as defined by their respective origi-
nal publications. No additional quality filtering was applied in our analysis. To reduce 
redundancy and optimize computational performance, we filtered the datasets to retain 
a single representative MAG per species or genus (for those classified only up to the 
genus level).

After filtering, we analyzed a total of 184 MAGs from human feces, and 118 and 140 
MAGs from bovine feces and ruminal content, respectively. The list of MAGs used, as 
well as their taxonomic classification, can be found in Additional Table  1. We down-
loaded human and bovine miRNA sequences from the MirGeneDB database [23], which 
contains manually curated and experimentally validated miRNA genes. In total, 630 
human miRNAs and 481 bovine miRNA sequences were included in our analyses (Addi-
tional file 1 and Additional file 2).

We performed the analysis using the HolomiRA pipeline with default parameters, 
except for the differential abundance testing, where we used a prevalence thresh-
old > 0.05 and an adjusted p-value < 0.1. Average run times and the maximum memory 
used for each pipeline rule, obtained using the example files (available with the pipeline), 
can be found in Supplementary Table 2.

Results and discussion
Comparing bovine feces and rumen environment

In our real dataset, we identified 333 and 294 miRNAs as putative candidates for binding 
to 729 and 525 bacterial genes in bovine ruminal content and feces, respectively (Fig. 2). 
In addition, HolomiRA enables the identification of miRNAs that affect the largest num-
ber of genomes (Figs. 3 and 4), as well as the specific genes they target. In the ruminal 
environment (Fig. 3A), Bta-Mir-877_5p (N = 69 MAGs), Bta-Novel-2_3p (N = 65 MAGs), 
and Bta-Mir-11995_3p (N = 62 MAGs) showed a broad distribution across MAGs, and 
also stood out for the number of predicted target genes. Bta-Mir-877_5p was associated 

Fig.  2  Unique counts of host miRNAs, putative microbial target genes, metagenome-assembled genomes 
(MAGs), and taxonomic units identified in each environment (bovine rumen and feces) according to HolomiRA. 
The taxonomy category refers to the number of unique microbial taxa detected at the species level

 



Page 7 of 16Bruscadin et al. BMC Bioinformatics          (2025) 26:236 

with 46 putative target genes, Bta-Novel-2_3p with 42, and Bta-Mir-11995_3p with 37, 
suggesting a potential central regulatory role (Fig. 3B).

In the fecal environment (Fig.  4A), the same miRNAs (Bta-Mir-877_5p, Bta-Mir-
11995_3p, and Bta-Novel-2_3p) were also among the most widely distributed, each 
targeting more than 40 MAGs. Additionally, Bta-Mir-877_5p (N = 30) and Bta-Mir-
11995_3p (N = 29), along with Bta-Mir-320-P1a-3p (N = 23), Bta-Mir-320-P1b-3p 
(N = 23), and Bta-Mir-193-P1a-5p (N = 23), showed the highest number of putative tar-
get genes (Fig. 4B), which may indicate a conserved functional role across different com-
partments of the digestive tract.

Bta-Mir-877 has been implicated in the development of Staphylococcus aureus-
induced mastitis [32] and Bta-miR-193a has been described as having antiviral activity 
[33]. Nana et al. [33] reported that this miRNA promotes apoptosis and inhibits the rep-
lication of bovine viral diarrhea virus. The bta-miR-320a is involved in the regulation 
of immunological pathways, such as AMP-activated protein kinase (AMPK) and Tumor 
Necrosis Factor (TNF), supporting a role in the host immune response [34]. In addition 
to these antiviral and immunoregulatory functions, miR-877, miR-193a, and miR-320a 
have been identified in milk exosomes, which are capable of surviving digestion and 
being absorbed by the intestinal tract, where they may interact with epithelial cells and 
microbiota [35]. Studies demonstrate a direct role for exosomes in microbial control [3, 
36, 37]. Zhou et al. [37] observed that bovine milk content in the diet can alter the abun-
dance of specific bacterial populations within the gut in C57BL/6 mice [37].

Fig. 3  Top 20 features identified in the bovine ruminal content based on the number of predicted interactions. A 
Top 20 miRNAs ranked by the number of MAGs with predicted targets; B Top 20 miRNAs ranked by the number of 
affected target genes; C Top 20 MAGs ranked by the number of interacting miRNAs; and D Top 20 MAGs ranked by 
the number of predicted target genes
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The pipeline also identifies lists of miRNAs and target genes that are specific to indi-
vidual groups (Fig. 5). This analysis indicated that, despite the overlap of central miRNAs 
between the two environments, certain miRNAs and target genes may be exclusive to 
each microbiome. Our analysis identified 251 miRNAs shared between the two envi-
ronments (Fig. 5). However, 43 miRNAs were exclusive to feces, while 82 were unique 
to the ruminal content (Fig. 5). This may suggest the presence of a common regulatory 
core, along with a subset of miRNAs specific to each niche, possibly reflecting distinct 
functional adaptations. Regarding putative target genes, the overlap was considerably 
smaller. Of the total, 148 genes were shared between both environments, while 378 were 

Fig. 5  Venn diagrams illustrating shared and unique miRNAs, putative target genes, and taxonomic groups across 
bovine feces and ruminal content. Overlapping regions represent common elements, while non-overlapping 
areas highlight specific features that are unique to each environment

 

Fig. 4  Top 20 features identified in the bovine feces based on the number of predicted interactions. A Top 20 
miRNAs ranked by the number of MAGs with predicted targets; B Top 20 miRNAs ranked by the number of af-
fected target genes; C Top 20 MAGs ranked by the number of interacting miRNAs; and D Top 20 MAGs ranked by 
the number of predicted target genes.
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exclusive to the fecal microbiome and 582 were exclusive to the rumen (Fig. 5). This pat-
tern indicates greater functional divergence between the microbiomes, as reflected in 
the set of putative genes regulated by miRNAs, and is consistent with the distinct diges-
tive functions associated with each gut segment.

Functional analysis of genes putatively impacted by host miRNAs revealed that, in 
both bovine rumen and feces, functions related to protein metabolism, amino acids and 
derivatives, and carbohydrates were consistently represented (Fig. 6 and B). In the feces 
(Fig.  6A), functions linked to DNA metabolism were also enriched, suggesting altera-
tions in recycling processes and final degradation activities [38]. In the rumen (Fig. 6B), 
stress response functions were enriched, indicating potential effects on microbial fer-
mentative roles and their adaptation to variable environmental conditions [39, 40].

In Fig. 7, we present a comparative analysis of functions, grouped at SUPER-FOCUS 
level 3, related to MAG genes predicted to be affected by host miRNAs in the bovine 
feces and rumen. The Venn diagram shown in Fig.  7A revealed nine functions shared 
between the two biological datasets. Regarding unique functions, eight were exclu-
sive to the bovine fecal microbiome, while 53 were unique to the ruminal environment 
(Fig.  7A). This difference suggests that the rumen microbiome is functionally more 
diverse, which is expected given its central role in anaerobic digestion of complex poly-
saccharides and the fermentation of fibrous substrates [41, 42].

Fig. 6  Most represented functional categories among the predicted microbial target genes in bovine microbi-
ome. Functions are grouped at Level 1 of SUPER-FOCUS, based on the following biological datasets: A Bovine 
MAGs from feces, B Bovine MAGs from ruminal content 
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Furthermore, statistical analysis revealed that two of the nine shared functions were 
differentially abundant, as illustrated in Fig. 7B. Functions related to single-copy ribo-
somal proteins were more impacted in the rumen than in bovine feces, indicating a 
higher rate of microbial growth and metabolic activity in the ruminal environment. This 
finding is consistent with the rumen’s requirement to support a highly active micro-
bial community for rapid feed degradation [43, 44]. In contrast, the lower abundance 
observed in feces could reflect a microbiota more adapted to limited substrate avail-
ability and intestinal transit. Figure  7C provides a detailed view of the top eight most 
abundant functions identified in bovine feces and rumen. These exclusively impacted 
functions further support the concept of environmental specialization. In the rumen, 
higher representation of functions related to folate biosynthesis, polyamine metabolism, 
and response to heat stress was observed, indicating possible adaptations to maximize 
bacterial growth and to protect against stress conditions, such as pH and temperature 
variations during fermentation [45, 46]. In feces, functions related to glycerolipid metab-
olism and histidine biosynthesis were more prominent, suggesting adaptation to an envi-
ronment with lower nutrient availability and increased microbial competition [47, 48].

Comparing bovine and human feces

In total, 524 miRNAs were predicted to impact 2,150 genes in human fecal MAGs 
(Fig.  8A). Hsa-Mir-3138_3p (N = 101), Hsa-Mir-877_5p (N = 86), and Hsa-Mir-483_5p 
(N = 56) were predicted to impact the highest number of MAGs. At the same time, 

Fig. 7  Functions grouped at SUPER-FOCUS level 3 among putative host miRNA-impacted genes from metage-
nome-assembled genomes (MAGs) obtained from bovine feces and rumen. Red and blue bars represent func-
tions from bovine feces and rumen, respectively. A Venn diagram showing functions predicted to be unique to 
each environment and those shared between the environments. B Heatmap plot showing differentially abundant 
functions between bovine feces and rumen. C Barplot highlighting functions predicted to be exclusive to each 
environment
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Hsa-Mir-877_5p (N = 105), Hsa-Mir-3138_3p (N = 87), and Hsa-Mir-320-P3_3p (N = 68) 
stood out for having the highest number of putative target genes, suggesting their poten-
tial central role in microbiota gene regulation in the human gut (Fig. 8B). Recently, Gao 
et al., [49] reported, using a dual-luciferase reporter assay, that miR-320 can directly tar-
get the ORF6 gene of porcine reproductive and respiratory syndrome virus (PRRSV), 
inhibiting PRRSV replication. In addition, miR-320a was identified as a potential blood-
based biomarker for tuberculosis, with potential utility for diagnosing drug-resistant 
forms of the disease [50].

In addition, Venn diagrams were used to compare the overlap of miRNAs, genes, 
and taxonomic groups between the putative miRNA impact results from human and 
bovine MAG genes (Fig. 8C). A total of 201 miRNAs, 214 genes, and 5 taxonomic gen-
era were shared between the two environments. However, the presence of unique ele-
ments was also evident, indicating host-specific diversity. In particular, human MAGs 

Fig. 8  Predicted host miRNA-microbiome interactions in human fecal metagenome-assembled genomes (MAGs) 
according to HolomiRA. A Unique counts of host miRNAs predicted to target the microbiome, putative microbial 
target genes, miRNA-targeted MAGs, and taxonomic units identified in human fecal MAGs. The taxonomy category 
refers to the number of unique microbial taxa detected at the species level. B Top 20 miRNAs ranked by the num-
ber of associated MAGs (left) and the number of predicted miRNA target genes (right) in MAGs from human feces. 
C Venn diagrams comparing the overlap of unique miRNAs, genes, and taxonomic genera between MAGs from 
bovine and human feces
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showed a substantially higher number of unique genes (n = 1937) compared to bovine 
samples (n = 312), which may reflect differences in functional complexity or microbial 
gene expression profiles.

Figure  9 presents a comparative functional analysis of putative miRNA-impacted 
genes in fecal MAGs from human (in brown) and bovine (in green) samples, grouped 
at SUPER-FOCUS level 3. The Venn diagram in Fig.  9A revealed 16 functions shared 
between the two host species, out of a total of 140 identified functions. Furthermore, 
statistical analysis indicated that 10 functions were differentially abundant between the 
two groups, as illustrated in Fig. 9B. In this figure, a heatmap illustrates the relative abun-
dance of differentially abundant functions between the two host species. Compared to 
human fecal MAG genes, the higher impact on functions such as bacterial cell division, 
methionine and histidine biosynthesis, and arginine/ornithine degradation observed in 
bovine fecal MAG genes may be associated with dietary and physiological differences. 
In bovines, the fibrous diet and ruminant digestive structure favor the accumulation of 
nitrogenous residues in the hindgut, requiring increased microbial activity for biomass 
synthesis and competition for resources, which is reflected in the importance of these 
functional pathways [51, 52].

Regarding unique functions, bovine feces exhibited only one, while human feces con-
tained 123 unique functions. Figure 9C shows this single bovine-specific function along 

Fig. 9  Functions grouped at SUPER-FOCUS level 3 among putative host miRNA-impacted genes from metage-
nome-assembled genomes (MAGs) obtained from bovine and human feces. Brown and green bars represent 
functions from human and bovine feces, respectively. A Venn diagram showing functions predicted to be unique 
to each environment and those shared between the two host species. B Heatmap plot showing differentially 
abundant functions between bovine and human feces. C Barplot highlighting functions predicted to be exclusive 
to each host species
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with the top six functions predicted to be exclusive to human feces. The greater pre-
dicted impact of miRNAs on genes retrieved from human feces MAGs, as well as the 
presence of functional pathways unique to the human fecal microbiome, can be attrib-
uted to differences in digestion and diet between the two host species. Unlike bovines, 
humans possess a less fermentative gut and typically consume a diet rich in preformed 
nutrients, such as amino acids and vitamins. This may reduce the selective pressure for 
microbial biosynthesis and increase the sensitivity of these pathways to post-transcrip-
tional regulation. This environmental context can favor bacterial taxa with high demands 
for growth and repair pathways, including folate and peptidoglycan biosynthesis, as well 
as ribosome biogenesis. These functions might represent sensitive targets for regulation 
by fecal miRNAs, which have already been shown to modulate essential bacterial genes 
[4, 53].

Conclusion
HolomiRA is a user-friendly and reproducible pipeline for predicting host-miRNA 
target genes in prokaryotic genomes, with the aim of exploring potential host-micro-
biome regulatory interactions. By integrating gene annotation, target-site prediction, 
and functional analysis, the pipeline provides a framework for identifying the putative 
roles of miRNAs in shaping microbiome dynamics and function. HolomiRA employs a 
hybridization-based prediction strategy and restricts target search windows to regions 
surrounding the RBS. This methodical approach prioritizes biologically plausible and 
energetically stable interactions. However, it is important to note that the primary 
objective of HolomiRA is to facilitate hypothesis generation. Therefore, in downstream 
analyses, we strongly recommend the implementation of complementary validation 
strategies, such as the use of independent datasets or experimental assays, to confirm 
predicted interactions and strengthen biological interpretations.

Availability and requirements
Project name: HolomiRA.

Project home page: https://github.com/JBruscadin/HolomiRA.
Operating system(s): This workflow has been tested on linux systems.
Programming language: Snakemake pipeline, Python, Bash and R.
Other requirements: Dependencies installed via Conda/Mamba.
License: GNU GPL.
Any restrictions to use by non-academics: None.
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