Journal of Plant Registrations

Check for updates

REGISTRATION

Germplasm

Registration of six disease resistant, high protein, induced allotetraploids derived from Arachis duranensis and A. ipaënsis, the genome progenitors of peanut

S. C. M. Leal-Bertioli^{1,2} M. Hopkins¹ J. Leverett¹ M. Gonzales^{1,3} Yun-Ching Tsai^{1,2} D. Matusinec¹ Brandon Tonnis^{1,4} A. C. G. Araujo⁵ D. J. Bertioli^{1,6}

Correspondence

S.C.M. Leal-Bertioli, Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, USA.

Email: sorayab@uga.edu

Assigned to Associate Editor Shyam Tallury.

Registration by CSSA.

Funding information

Georgia Peanut Commission; Peanut Research Foundation; National Peanut Board; MARS-Wrigley Inc.; National Institute of Food and Agriculture, Grant/Award Number: 2022-67013-37075

Abstract

The allotetraploid legume peanut (Arachis hypogaea L.) has low genetic diversity due to the single origin and ploidy barrier with its wild relatives, which are mostly diploid. This lack of genetic diversity hinders breeding and genetic gains. Wild peanut relatives harbor known resistances to pests and diseases and genetic variation that can contribute to adaptation to diverse environments and a changing climate. The ploidy barrier between the wild relatives and the cultigen can be surpassed by the production of induced allotetraploids using parents with genomes that are compatible to those of peanut. Here, we crossed seven accessions of six Arachis species. All combinations carried at least one of the peanut progenitors, A. ipaënsis and A. duranensis, crossed with a species of complementary genome. The original hybrids were treated with colchicine for recovery of fertility, observed by pollen viability and seed production. Six new allotetraploids were produced; they were named WPL-BatDur1 (Reg. no. GP-248, PI 707934), WPL-BatDur2 (Reg. no. GP-249, PI 707936), WPL-MagDur1 (Reg. no. GP-253, PI 707942), WPL-IpaCor1 (Reg. no. GP-251, PI 707938), WPL-IpaDur1 (Reg. no. GP-250, PI 707937), and WPL-IpaVillo1 (Reg. no. GP-252, PI 707941), released by the University of Georgia. Cytogenetic analyses confirmed the tetraploid plants had 20 A-type and 20 B- or K-type chromosomes. All these

Abbreviations: DAP, days after planting; DAPI, 4,6-diamidino-2-phenylindole; ELS, early leaf spot; LLS, late leaf spot.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). Journal of Plant Registrations published by Wiley Periodicals LLC on behalf of Crop Science Society of America.

¹Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, USA

²Department of Plant Pathology, University of Georgia, Athens, Georgia, USA

³Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines

⁴USDA-ARS, Plant Genetic Resources, Conservation Unit, Griffin, Georgia, USA

⁵EMBRAPA Genetic Resources and Biotechnology, Brasilia Distrito Federal, Brazil

⁶Department of Crop and Soil Science, University of Georgia, Athens, Georgia, USA

allotetraploids have surprisingly high protein content. They also show moderate to strong resistance to the main peanut fungal diseases (late and early leaf spot and rust) and Southern stem rot, are compatible with cultivated peanut, and are being used in breeding programs in the United States, Senegal, and Brazil for the development of resilient peanut cultivars.

Plain Language Summary

Peanuts are vulnerable to many pests and diseases, and because they have low resistance, they often require extensive pesticide use. In nature, wild relatives of peanuts are resistant to these threats, but they can't be directly crossed with cultivated peanuts due to genetic incompatibility. To overcome this, we developed six hybrids, called here "induced allotetraploids" using the wild relatives. These hybrids not only have strong resistance, but also high protein content and can successfully be crossed with peanuts. This allows us to introduce resistance genes into peanut crops, improving their resilience and reducing pesticide use. This is an important step toward making peanut farming more sustainable and cost-effective.

1 | INTRODUCTION

Peanut (Arachis hypogaea L.) also known as groundnut, holds a significant position as one of the most widely grown legume crops worldwide. Cultivated extensively across the tropics and sub-tropics, it plays a crucial role as a staple food in many regions, serving as a primary protein and oil source in various countries and is also important as animal feed (Settaluri et al., 2012). Peanut is an allotetraploid species (2n = 4x = 40)that evolved from a cross between the two diploid species A. duranensis Krapov. and W.C. Gregory (female, A-genome species) and A. ipaënsis Krapov. and W.C. Gregory (male, B-genome species) and spontaneous tetraploidization. This happened in the region between the northeast of Argentina and south of Bolivia around 8000 years ago (Bertioli et al., 2016; 2019). After its origin, between 10,000 and 5000 years ago, the new allotetraploid species was domesticated in complete genetic isolation from the diploid wild relatives, generating low genetic diversity in the peanut cultigen (Kochert et al., 1996). Moreover, genetic variability in elite cultivars grown in the United States suffered a recent, secondary bottleneck, as they are derived from very few plant introductions and are genetically related (Otyama et al., 2020). This restricts the potential for genetic enhancement through crosses involving cultivated germplasm.

Eighty-four formally recognized species have been described by Krapovickas and Gregory (1994, 2007), Santana and Valls (2015), Seijo et al. (2021, 2024), Valls et al. (2013), and Valls and Simpson (2005; 2017), and new species are yet to be described. The *Arachis* section to which peanut belongs has 34 species, 32 of which are diploid and therefore

not readily crossable with peanut. An effective route for introgressing genes from the secondary gene pool into the cultigen is the cross of diploid species with complementary genomes and tetraploidizing the resulting sterile hybrid. This is called the tetraploid route and was originally described by Simpson (1991). This was used to create the first wild-derived root-knot nematode resistant lines and cultivars (Simpson & Starr, 2001; Simpson et al., 1993). This route was later simplified by Fávero et al. (2006) and has been used to create several peanut-compatible allotetraploids (Bertioli et al., 2021; Chu et al., 2021; Gao et al., 2021; Leal-Bertioli et al., 2015b; 2017; 2021; Mallikarjuna et al., 2011), making wild alleles readily available for crop breeding. Thus far, the main use of wild species alleles has been for pest and disease resistance, because peanut has only moderate levels of resistance to these diseases (Holbrook & Stalker, 2003).

Here we describe the creation of six new induced allote-traploids (also called neotetraploids) derived from crosses using as parents, *A. ipaënsis or A. duranensis*, the diploid species that were the original paternal and maternal progenitor of peanut, respectively. These species were used to make crosses with *A. batizocoi*, *A. magna*, *A. correntina*, and *A. villosa*. These neotetraploids are compatible with cultivated peanut, show resistance to Late (LLS) and Early Leaf Spots (ELS) (caused by the fungi *Northopassalora personata* and *Passalora arachidicola*, respectively), rust (caused by *Puccinia arachidis*) and Southern stem rot (caused by *Agroathelia rolfsii*) and are being used in breeding programs. They were named WPL-BatDur1 (Reg. no. GP-248, PI 707934), WPL-BatDur2 (Reg. no. GP-249, PI 707936), WPL-MagDur1 (Reg. no. GP-253, PI 707942), WPL-IpaCor1

(Reg. no. GP-251, PI 707938), WPL-IpaDur1 (Reg. no. GP-250, PI 707937), and WPL-IpaVillo1 (Reg. no. GP-252, PI 707941). WPL stands for UGA-Wild Peanut Lab, where the crosses were done.

METHODS 2

2.1 **Pedigree and history**

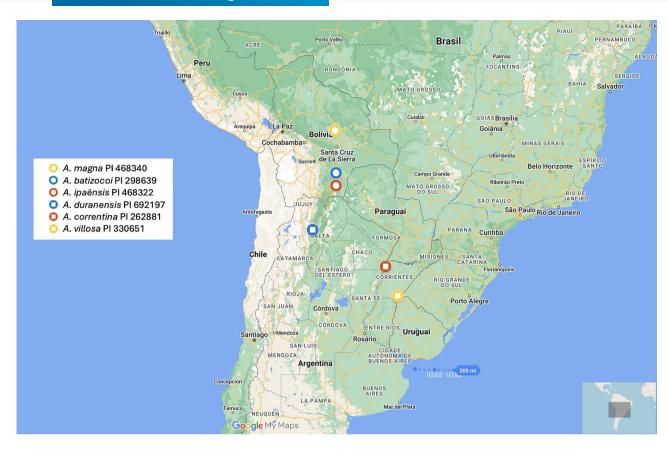
All allotetraploids originate from crosses between accessions of the two species of the progenitors of peanut. Three allotetraploids have as female parent, the only accession available of A. ipaënsis (GKBSPSc 30076 PI 468322). This accession was crossed with an A-genome species: A. correntina, A. duranensis, or A. villosa. The other three allotetraploids have, as male parent, an accession of A. duranensis that was crossed with a B- or K-genome species (A. magna or A. batizocoi). These are all diploid peanut wild relatives and possess resistances to various peanut pests and diseases, including rust (caused by Puccinia arachidis), scab (caused by Sphaceloma arachidis), thrips (caused by Frankliniella fusca), and fall armyworm (caused by *Spodoptera frugiperda*) (Table 1). The accessions come from a wide range of environments across Argentina, Bolivia, and Uruguay, over a range of over 1600 km (1000 mi), and are all deposited at the National Plant Germplasm System (NPGS) (Table 1, Figure 1). Full information on these accessions, including their place and climatic conditions of origin can be found at https://www.genesys-pgr.org.

2.2 Allotetraploid production

The original seeds for the crosses were obtained from the USDA collection (http://www.ars-grin.gov/). Crosses were made in greenhouse and generated sterile diploid hybrids. Cuttings from the diploid hybrids were treated with 0.2% colchicine overnight as previously described (Leal-Bertioli et al., 2015b). Cuttings were maintained for several months in sand supplemented with liquid NPK (10:10:10), after which, a few germinated allotetraploid plants were observed. Confirmation of tetraploidization was by pollen fertility, chromosome count and DAPI⁺ (4', 6-diamino-2-phenylindole) staining (See "Cytogenetics" section). Pollen fertility was measured by staining pollen grains of four flowers with 2% acetic carmine (Alexander, 1969).

The composition of the induced allotetraploids is as follows:

WPL-IpaCor1: [A. ipaënsis GKBSPSc 30076 PI 468322 x A. correntina GKP 9548 PI 262881]^{4x}.


WPL-IpaDur1: [A. ipaënsis GKBSPSc 30076 PI 468322 x A. duranensis V 14167 PI 692197]^{4x}.

Original diploid Arachis accessions used for crosses FABLE 1

	Genome	Plant ID			Coordinates		
Species	type	Collector's code	PI no.	Collection site	(lat, long)	Resistance ^a	References ^b
A. batizocoi	KK	K 9484	PI 298639	Santa Cruz, Bolivia	-20.01, -63.32	Rust, RKN, ELS, LLS, scab, thrips	L1, B, F, M1, M2
A. correntina	AA	GKP 9548	PI 262881	San Cosme, Argentina	-27.74, -58.83	Rust, ELS, and LLS	L1, this study
A. duranensis	AA	VNvEc 14167	PI 692197	Salta, Argentina	-24.77, -65.45	Rust, ELS, LLS and scab	L1, F, M1
A. ipaënsis	BB	GKBSPSc 30076	PI 468322	Macharetí, Bolivia	-21.1, -63.34	FA, thrips, Rust, ELS, LLS	F, L1, L2, M1, M2
A. magna	BB	KGSSc 30097	PI 468340	Santa Cruz, Bolivia	-16.4, -63.40	Rust, ELS, LLS, scab	L1, LB, M1
A. villosa	AA	VGoMrOvGv 12812	PI 330651	Bella Unión, Uruguay	-30.03, -57.76	Rust, ELS, and LLS	L1, F

Rust, caused by Puccinia arachidis; ELS, early leaf spot caused by Passalora arachidicola; LLS, late leaf spot, caused by Northopassalora personata; scab, caused by Sphaceloma arachidis; FA, Fall armyworm; Spodoptera rugiperda; thrips, Enneothrips flavens. Peferences for resistance of the accessions: L1, Levinson et al. (2021); B, Ballén-Taborda et al. (2019); F, Fávero et al. (2009); M1, Michelotto et al. (2015); L2, Levinson et al. (2020); M2, Michelotto et al. (2017), LB, Leal-Bertioli

et al. (2015a)

FIGURE 1 Geographical site of collection of the accessions used for allotetraploid production: *A. magna* GKSSc 30097 (PI 468340), *A. batizocoi* K9484 (PI 298639), *A. ipaënsis* K 30076 (PI 468322), *A. duranensis* V 14167 (PI 692197), *A. correntina* GKP 9548 (PI 262881), and *A. villosa* V 12812 (PI 330651). Note that A-genome species are represented with a square and non-A genome species are represented with a circle. Coordinates were plotted using GoogleMyMaps.

WPL-IpaVillo1: [*A. ipaënsis* GKBSPSc 30076 PI 468322 x *A. villos*a V 12812 PI 330651]^{4x}.

WPL-MagDur1: [*A. magna* GKSSc 30097 PI 468340 x *A. duranensis* 14167 PI 692197]^{4x}.

WPL-BatDur1: [A. batizocoi K9484 PI 298639 x A. duranensis V14167 PI 692197]^{4x}.

WPL-BatDur2: [A. batizocoi K9484 PI 298639 x A. duranensis KSSc 38906 PI 497270]^{4x}.

2.3 | Cytogenetics

In order to analyze chromosome number and genome composition of the allotetraploids, chromosome counts and DAPI staining were done essentially as described in Nascimento et al. (2018). In short, metaphase spreads were obtained from root tips collected from young plants, treated with 8-hydroxyquinoline, fixed in ethanol/glacial acetic acid (3:1, v/v) and digested with proteolytic enzymes (cellulase 2% and pectinase 20%). Chromosomes were spread in a drop of 60% acetic acid on a slide. Subsequently slides were treated with DAPI⁺ (4', 6-diamino-2-phenylindole) diluted in McIlvaine buffer (citrate-phosphate buffer) (2 µg/mL). Slides were mounted using a glycerol/McIlvaine buffer (1:1, v/v) solution

added to 2.5 mM MgCl₂ in dark conditions at room temperature. Observation was done in Zeiss AxioPhot microscope using UV light and excitation/emission fluorescence filters.

2.4 | Disease resistance

Allotetraploids were tested in vitro for ELS and LLS using methodologies previously described in (Leal-Bertioli et al., 2015a; Moraes & Salgado, 1982). The response of allotetraploids to stem rot were also tested using the methodology of Tsai et al. (2023). The measured lesion lengths of stem rot were subject to analysis of variance by using non-parametric Kruskal–Wallis test (RStudio version 1.2.1335) to examine the significant differences among treatments. Dunn test was then calculated for mean separations among treatments for each evaluation method (RStudio version 1.2.1335).

2.5 | Seed quality

Allotetraploid plants were grown in a screen house in 2023 at the University of Georgia, Griffin campus using standard cultivation practices. Three replicates were grown for

each allotetraploid as well as cultivated controls. Fresh harvested seeds were measured for seed traits including total oil, total protein, and oleic acid percentage. Oil was measured by bulk seed analysis using nuclear magnetic resonance (NMR) on a Bruker minispec mq-one Seed Analyzer (Wang et al., 2022). For protein content, individual seeds were crushed and measured by combustion on an Elementar Rapid N Exceed nitrogen analyzer. Nitrogen values were converted to protein percentage using the protein factor 5.46 for peanuts (Mariotti et al., 2008; Wang et al., 2016). Oleic acid content was also measured as this fatty acid is an important component influencing the stability of oil. It was calculated as a percentage of the total fatty acids by converting an oil sample to fatty acid methyl esters (FAMES) and analyzing on an Agilent 7890A gas chromatograph with a flame ionization detector (FID) (Wang et al., 2013). Experiments were repeated in the 2024 season. Measurements for each seed trait were subjected to analysis of variance in R Studio. Phenotypic data were statistically analyzed using the softwareR (R Core Team, 2022). Parametric test assumptions were checked and verified using the Shapiro-Wilk and Breusch-Pagan tests. Average comparisons were done using standard variance analyses, followed by the Tukey HSD test at 5% significance levels.

2.6 **Genotyping markers**

In order to identify hybrids between the allotetraploids and cultivated peanut, single nucleotide polymorphism (SNP) markers that distinguished between the allotetraploids and a panel of 384 A. hypogaea accessions from all six botanical varieties were selected. All accessions were genotyped using the Axiom Arachis v02 (ThermoFisher) (Clevenger et al., 2017; Korani et al., 2019; Pandey et al., 2017). To identify informative assays, we aimed to identify SNPs that differentiated each accession in each combination. Therefore, markers specific to any particular allotetraploid are not in any of the 384 A. hypogaea accessions genotyped.

3 **CHARACTERISTICS**

3.1 **General plant traits**

All allotetraploids evaluated were fertile and compatible with peanut. Hybrids between these and A. hypogaea subsp. hypogaea give a consistent viable pollen count of over 68%. Seeds have strong dormancy which can be broken by treating them overnight with Ethephon 0.05%. In front of each germplasm name is the Plant Introduction number, assigned by the NPGS, as well as the link to the page at the USDA-ARS Germplasm Resources Information Network (GRIN) website.

WPL-BatDur1 (PI 707934) has a prostrate growth habit, with alternate branching pattern, purple stem pigment, elliptic main stem leaves, obovate side stem leaves (Figure 2), and pubescence on abaxial leaf surface. The average apical leaflet length was 46.58 mm with a width of 35.75 mm. Basal leaflet average length was 45.31 mm with a 29.76-mm width. Measurements were taken from the first opened leaf from lateral branches. WPL-BatDur1 takes 55 days to anthesis and has yellow flowers and pod with no reticulation and marked beak. Seed dimensions were as follows: L = 13.0 mm, W = 5.9 mm, 100-seed weight = 22.48 g. Under field conditions, main stem height was 34.6 cm 85 days after planting (DAP). It has 72.2% pollen stainability (n = 6500 pollen grains).

WPL-BatDur2 (PI 707936) has a prostrate growth habit with an alternate branching pattern. The stem is purple at base and transitions into green moving apically, elliptic main stem leaves and obovate side stem leaves (Figure 2). WPL-BatDur2 has pubescence on abaxial leaf surface. Apical leaflet average length was 53.62 mm and width was 40.10 mm. Basal leaflet average length was 51.06 mm and width was 31.59 mm. Measurements were taken from the first opened leaf from lateral branches. WPL-BatDur2 takes 55 days to anthesis and has yellow flowers and pod somewhat reticulate with marked beak. Average seed dimensions were as follows: L = 13.6 mm, W = 5.7 mm, 100-seed weight = 18.14 g. Main stem height was not taken. It has 88.2% pollen stainability (n = 5100pollen grains).

WPL-MagDur1 (PI 707942) has a prostrate growth habit with alternate branching pattern, green stem pigment, elliptic main stem leaves, and obovate side stem leaves (Figure 2). WPL-MagDur1 has pubescence on abaxial leaf surface. The average apical leaflet length was 53.7 mm and width was 30.01 mm. The average basal leaflet length was 52.71 mm and width was 24.62 mm. Measurements were taken from the first opened leaf from lateral branches. WPL-MagDur1 takes 55 days to anthesis and has yellow flowers, and pod somewhat reticulate with marked beak. Average seed dimensions were as follows: L = 13.2 mm, W = 6.4 mm, 100 seed weight = 22.84 g. Under field conditions, main stem height was 38.2 cm 85 DAP. It has 90.1 pollen stainability (n = 1971pollen grains).

WPL-IpaCor1 (PI 707938) has a prostrate growth habit with prominent main stem, and alternate branching pattern, purple stem pigment, elliptic main stem leaves, obovate side stem leaves, and pubescence on abaxial and adaxial leaf surfaces. Apical leaflet average length 50.83 mm and width 32.02 mm. The average basal leaflet length was 48.36 mm and width was 24.70 mm. WPL-IpaCor1 takes 55-60 days to anthesis and has orange flowers and pod somewhat reticulate with marked beak. Average seed dimensions were as follows: L = 12.6 mm, W = 5.8 mm, 100-seed weight = 20.55 g. Underfield conditions, main stem height was 19.4 cm 85 DAP. It has 94.2% pollen stainability (n = 4773 pollen grains).

FIGURE 2 Rows of 80-day-old plants of the induced allotetraploids WPL-BatDur, WPL-BatDur2, WPL-IpaCor1, WPL-IpaDur1, WPL-IpaVillo1, WPL-MagDur1, and the cultivated peanut Georgia-06G (GA-06G). Photos were taken at the University of Georgia Southeast Georgia Research and Education Center, in Midville, GA, on August 19, 2021.

WPL-IpaDur1 (PI 707937), an allotetraploid, was created using the species that gave rise to cultivated peanut, and the accessions that have their full genome sequenced (Bertioli et al., 2016). It has prostrate growth habit with prominent main stem (Figure 2) and alternate branching pattern, green stem pigment, elliptic main stem leaves, obovate lateral branch leaves, and pubescence on abaxial leaf surface. The average apical leaflet length was 52.18 mm and width was 32.2 mm. Basal leaflet average length 45.43 mm and 25.13 mm width. WPL-IpaDur1 takes around 62 days to anthesis and has yellow flowers and pod with deep reticulation and marked beak. Seed dimensions were as follows: L = 11.38 mm, W = 6.85 mm, 100-seed weight = 17.3 g. Under field conditions, main stem height was 42.4 cm 85 DAP. It has 84.7% pollen stainability (n = 2431) pollen grains).

WPL-IpaVillo1 (PI 707941) has a prostrate growth habit, with prominent main stem (Figure 2) and alternate branching pattern. Its stem is purple at base and transitions into green moving apically. WPL-IpaVillo1 has elliptic main stem leaves, obovate side stem leaves, and pubescence on abaxial leaf surface. The average apical leaflet length was 51.05 mm and width was 29.44 mm. Average basal leaflet length was 45.38 mm and width was 29.41 mm. WPL-IpaVillo1 takes 62 days to anthesis and has orange flowers and pod somewhat reticulate with marked beak. Average seed dimensions were as follows: L = 12.3 mm, W = 6.2 mm, 100-seed weight = 20.07. Under field conditions, main stem height was 18.3 cm 85

DAP. It has 89.4% pollen stainability (*n* = 5965 pollen grains). Growth habit was observed in the field in Midville, GA, in 2021. Main stem height measurements were taken at 80 DAP and under the same conditions. The controls, 'Tifrunner' (Holbrook & Culbreath, 2007) and 'Georgia-06G' (Branch, 2007), had 20.2- and 16.9-cm main stem height, respectively. Leaf measurements were taken from the first opened leaf from lateral branches. For all allotetraploids, growth habit in the field is shown in Figure 2, morphology of side stem leaves is shown in Figure 3 and pod/seed morphology is shown in Figure 4.

3.2 | Cytogenetics

All allotetraploids harbored 40 chromosomes, mostly metacentric, with only two pairs of submetacentric chromosomes (36 m + 4sm). Allotetraploids WPL-IpaCor1, IpaDur1, IpaVillo1, and MagDur1 had 20 chromosomes with DAPI band in centromere region (A-genome) and 20 chromosomes with no detectable DAPI band (B-genome) (Figure 5A, 5B, 5C and 5F). Allotetraploids WPL-BatDur1 and WPL-BatDur2 had 38 DAPI positive chromosomes and only two with no observed DAPI bands, consistent with the *A. batizocoi* K-subgenome (Robledo & Seijo, 2010) (Figure 5D and 5E). These results confirm the tetraploid state and the genome donors of these allotetraploid plants.

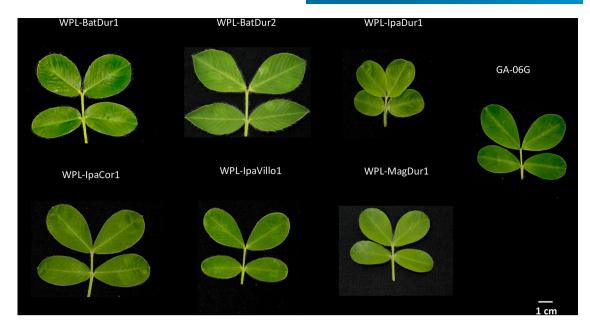


FIGURE 3 Examples of first expanded leaves of induced allotetraploids WPL-BatDur, WPL-BatDur2, WPL-IpaCor1, WPL-IpaDur1, WPL-IpaVillo1, WPL-MagDur1, and the cultivated peanut Georgia-06G (GA-06G). Bar corresponds to 1 cm.

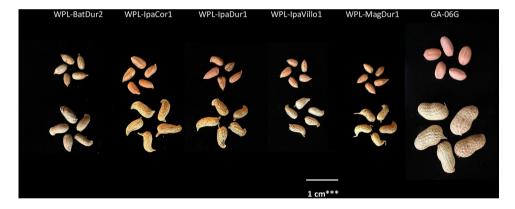


FIGURE 4 Pods and seeds of induced allotetraploids: WPL-BatDur2, WPL-IpaCor1, WPL-IpaDur1, WPL-IpaVillo1, WPL-MagDur1, and the cultivated peanut Georgia-06G (GA-06G). Bar corresponds to 1 cm.

3.3 | Disease resistance

The allotetraploids WPL-BatDur1, WPL-BatDur2, WPL-MagDur1, WPL-IpaCor1, and WPL-IpaVillo1 presented strong resistance to LLS, with lower percentage of diseased leaf area (DLA), lower area under the disease curve (AUDPC) and higher incubation period than the cultivated controls. WPL-IpaCor1 also showed strong ELS resistance. WPL-IpaDur1, derived from the progenitor species of peanut, have similar susceptibility to ELS and LLS as cultivated genotypes (Table 2). All allotetraploids showed partial resistance to stem rot, the disease progressions are slower than susceptible control Georgia-09B from 5 to 7 days after inoculation. All six allotetraploids have numerically lower AUDPC values than Georgia-09B and are comparable to that of 'Georgia-12Y'

(Branch, 2013) (Table 3). Although several authors observed that *A. ipaënsis* is highly susceptible to rust (Fávero et al., 2009; Leal-Bertioli et al., 2015a), in a separate study, all six allotetraploids, including the ones that include *A. ipaënsis* as a parent, were found to be significantly more resistant to rust than the cultivated control Georgia Green (Levinson et al., 2021).

3.4 | Seed quality

Three quality parameters were measured in peanut and allote-traploid seeds: oil content, oleic acid, and protein content. No significant differences in oil content were observed; allote-traploid seeds had an average of 45.4% oil content (range

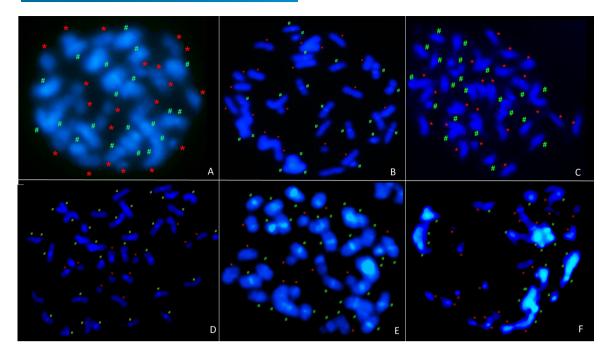


FIGURE 5 Metaphasic chromosomes of the allotetraploids WPL-IpaCor1 (A), WPL-IpaDur1 (B), WPL-IpaVillo1 (C), WPL-BatDur1 (D), WPL-BatDur2 (E), and WPL-MagDur1 (F) displaying 40 chromosomes. In A, B, C, and F, half of the chromosomes show DAPI positive bands in the centromere region (green hashtags), corresponding to the A genome chromosomes while the others lack this band (red asterisks), corresponding to B genome chromosomes. D and E show 38 chromosomes DAPI positive (green hashtags) and only two lack DAPI bands (red asterisks), as the result of *A. batizocoi* (K genome) participation as a parental donor of these centromere DAPI negative chromosomes.

TABLE 2 Results of in vitro evaluation of late leaf spot (LLS, caused by *Nothopassalora personata*) of WPL-IpaDur1, GA-BatDur1, GA-BatDur2, GA-MagDur1, WPL-IpaCor1, and WPL-IpaVillo1. Peanut cultivars Bailey, GA-06G, and TifNV-High O/L were used as controls. Results are expressed as Average \pm standard deviation.

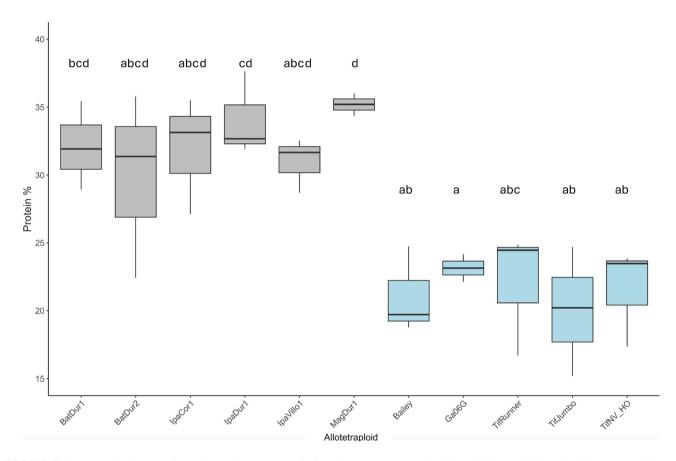
	LLS, Nothopassalora personata		ELS, Passalora arachidicola			
Genotype/trait	DLA	IP	AUDPC	DLA	IP	AUDPC
WPL-IpaDur1	$8.04 \pm 4.37 \text{ ab}$	$15 \pm 2.1 \text{ ab}$	4.27 ± 1.29 cd	20.82 ± 8.19 ab	$12 \pm 1.3 \text{ bc}$	13.54 ± 4.36 abc
WPL-IpaCor1	1.25 ± 0.57 cd	$19 \pm 3.0 \text{bcd}$	$1.03 \pm 0.67 d$	$1.96 \pm 1.06 \mathrm{c}$	$16 \pm 2.5 \text{ a}$	$4.08 \pm 2.44 \mathrm{d}$
WPL-IpaVillo1	$2.37 \pm 2.22 \text{ cd}$	$18 \pm 2.9 bc$	$1.01 \pm 1.09 d$	13.21 ± 10.05 abc	$13 \pm 2.5 \text{ abc}$	10.63 ± 7.89 abcd
WPL-BatDur1	$0.60 \pm 0.75 d$	$21 \pm 4.5 \text{ cd}$	$0.00 \pm 0.00 d$	10.41 ± 9.81 bc	$14 \pm 3.1 \text{ ab}$	4.22 ± 0.82 cd
WPL-BatDur2	$0.36 \pm 0.34 d$	$21 \pm 3.7 \text{ cd}$	$0.04 \pm 0.11 d$	19.61 ± 6.32 ab	$15 \pm 3.3 \text{ ab}$	$4.65 \pm 3.12 \text{ cd}$
WPL-MagDur1	$0.46 \pm 0.76 d$	$22 \pm 5.5 \text{ cd}$	$0.28 \pm 0.59 \text{ d}$	$8.05 \pm 2.14 \text{ bc}$	$12 \pm 0.8 \text{ bc}$	9.11 ± 2.25 bcd
GA-06G ^a	$9.94 \pm 2.12 \text{ ab}$	$12 \pm 0.8 a$	15.63 ± 5.55 a	$28.91 \pm 9.19 a$	$11 \pm 1.0 \text{ bc}$	19.84 ± 6.69 a
TifNV-High O/La	11.25 ± 5.37 a	$13 \pm 1.6 a$	12.06 ± 3.65 ab	$26.99 \pm 14.35 \text{ a}$	$11 \pm 1.1 \text{ bc}$	15.07 ± 5.60 ab
Bailey ^b	$5.98 \pm 2.22 \text{ bc}$	$14 \pm 0.8 \text{ ab}$	$7.64 \pm 4.78 \text{ bc}$	$15.06 \pm 7.81 \text{ abc}$	$13 \pm 2.1 \text{ abc}$	$12.98 \pm 6.98 \text{ abc}$

Abbreviations: DLA, % diseased leaf area; IP, incubation period; AUDPC, area under the disease progression curve (sporulated lesions/area).

of 39.5% to 55.0%), and cultivated checks had an average of 45.9% (range of 40.1% to 52.8%). As expected, highly significant differences were observed between the high oleic cultivars, 'TifNV-HO' (PI 680611) and 'TifJumbo' (Holbrook et al., 2024, PI 701814), and low-oleic cultivars, 'Bailey' (Isleib et al., 2011), GA-06G, and Tifrunner (F = 141.34, p < 0.001). Although not as large, significant differences were also observed between the low-oleic

cultivars and the allotetraploids. Interestingly, all induced allotetraploids had much higher protein content than all cultivars tested (F = 6.54, p < 0.001) (mean protein content of allotetraploid = 32.3%, ranging from 19.0% to 40.1%; mean protein content of cultivars = 20.9%, ranging from 11.1% to 26.6%) (Figure 6). WPL-MagDur1 had the lowest oil content and oleic acid and had the highest protein content (Table 4).

^aCultivated peanut—susceptible controls.


^bCultivar with wild segments from A. cardenasii, partially resistant to ELS.

Results of in vitro evaluation of stem rot (caused by Agroathelia rolfsii) of six induced allotetraploids. Peanut cultivars GA-09B and GA-12Y were used as susceptible and resistant controls, respectively.

Genotype/trait	5 DAI	7 DAI	9 DAI	AUDPC
WPL-IpaDur1	$1.11 \pm 1.24 \mathrm{b}$	$1.64 \pm 1.51 \text{ ab}$	3.85 ± 7.03 ab	10.02 ± 11.51 ab
WPL-IpaCor1	$1.09 \pm 0.81 \text{ b}$	$1.54 \pm 1.42 \text{ ab}$	$2.90 \pm 3.52 \text{ ab}$	$9.06 \pm 7.53 \text{ ab}$
WPL-IpaVillo1	$0.98 \pm 0.88 \text{ b}$	$1.53 \pm 1.31 \text{ ab}$	$2.92 \pm 3.29 \text{ ab}$	$8.63 \pm 7.68 \text{ ab}$
WPL-BatDur1	$1.20 \pm 0.85 \text{ ab}$	$1.72 \pm 1.18 \text{ ab}$	3.52 ± 3.56 ab	10.32 ± 6.87 ab
WPL-BatDur2	1.15 ± 0.90 ab	$1.89 \pm 1.52 \text{ ab}$	$3.32 \pm 3.74 \text{ ab}$	$10.32 \pm 8.28 \text{ ab}$
WPL-MagDur1	1.51 ± 1.01 ab	$2.13 \pm 1.76 \text{ ab}$	4.63 ± 8.01 ab	13.10 ± 12.48 ab
GA-12Y	1.31 ± 1.07 ab	$1.51 \pm 1.28 \text{ ab}$	$1.99 \pm 1.73 \text{ ab}$	8.53 ± 6.96 ab
GA-09B	2.27 ± 1.22 a	$2.85 \pm 1.88 \text{ a}$	$3.84 \pm 2.52 \text{ a}$	15.40 ± 8.59 a

Note: Means within columns for individual evaluations that are followed by a common letter are not significantly different.

Abbreviations: DAI, days after inoculation; AUDPC, area under the disease progress curve.

Box plot diagrams for seed protein content (as % of total mass). In gray are the induced allotetraploids and in blue, peanut cultivars. Boxes contain 50% of the data points. Bars across boxes represent the median. The top and bottom ends of the whiskers represent the highest and lowest values observed. Values with common letters are not significantly different (P = 0.05).

3.5 **Genotyping markers**

Polymorphic markers were identified in all chromosomes as specific for WPL-IpaCor1 (247), WPL-IpaDur1 (129), WPL-IpaVillo1 (263), WPL-BatDur1 (212), WPL-BatDur2 (297), and WPL-MagDur1 (318) (Supplemental File 1). The markers

that distinguish these allotetraploids from the panel of peanut cultivars are presented in Supplemental File 1. Markers are ordered by chromosome and physical position. This information can be used to design specific primers to identify hybrids and perform genetic mapping.

TABLE 4 Results of quality analyses of seeds of six induced allotetraploids. Oil and protein are expressed as % of total seed mass. Oleic acid is expressed as % total fatty acids.

Genotype/trait	Total oil	Oleic acid	Total protein
	%	%	%
WPL-IpaDur1	$44.5 \pm 4.7 \text{ a}$	$37.4 \pm 0.9 \text{ de}$	$34.1 \pm 3.1 \text{ cd}$
WPL-IpaCor1	$43.4 \pm 4.3 \text{ a}$	$37.1 \pm 1.2 \text{ de}$	$31.9 \pm 4.3 \text{ abcd}$
WPL-IpaVillo1	$46.6 \pm 2.8 \text{ a}$	$38.2 \pm 1.2 \text{ de}$	$30.9 \pm 2.0 \text{ abcd}$
WPL-BatDur1	$48.6 \pm 3.0 \text{ a}$	$34.3 \pm 4.8 e$	$32.1 \pm 3.3 \text{ abc}$
WPL-BatDur2	$47.9 \pm 7.9 a$	$36.9 \pm 1.3 \text{ de}$	$29.8 \pm 6.8 \text{ abcd}$
WPL-MagDur1	$41.6 \pm 1.1 \text{ a}$	$32.1 \pm 3.1 e$	$35.2 \pm 0.8 \text{ d}$
Bailey	$47.4 \pm 4.2 \text{ a}$	$49.4 \pm 1.5 \text{ b}$	$21.1 \pm 3.2 \text{ ab}$
GA-06G	$49.3 \pm 2.8 \text{ a}$	$45.8 \pm 2.6 \text{ bc}$	$19.8 \pm 5.9 a$
TifNV-HO	$42.3 \pm 1.2 a$	$72.8 \pm 1.5 \text{ a}$	$21.6 \pm 3.6 \text{ ab}$
Tifrunner	$45.2 \pm 2.6 \text{ a}$	$42.1 \pm 1.1 \text{ bc}$	$22.0 \pm 4.6 \text{ abc}$
TifJumbo	$45.4 \pm 4.2 \text{ a}$	$77.4 \pm 1.9 \text{ a}$	$20.0 \pm 4.8 \text{ ab}$

Note: Means within columns for individual evaluations that are followed by a common letter are not significantly different.

4 | CONCLUSIONS

Peanut has low genetic diversity and introducing genetic variation from wild species into cultivars requires considerable time, resources, and expertise. Crossing peanut with the wild diploid species results in sterile offspring due to the distinct ploidy levels. Therefore, a key step to the introgression process is making wild alleles available in a tetraploid form, so it is freely crossable with peanut, and this was the goal of this work.

The accession of A. ipaënsis used here (K 30076) as female parent for three crosses was very likely a descendant from the same population that donated the B subgenome to A. hypogaea (Bertioli et al., 2016). This is indicated by the extraordinary DNA identity between A. ipaënsis K 30076 and the B subgenome of peanut (modal values of 99.98%) (Bertioli et al., 2016; Yin et al., 2020). Although A. ipaënsis has not been found to possess strong disease resistances, this closeness to the B-subgenome of peanut makes it an ideal bridge for introgressing alleles from A-genome species. The first allotetraploid produced using A. ipaënsis was obtained by Fávero et al. (2006) in a seminal paper that describes what can essentially be considered the re-synthesis of peanut. This work was a turning point into the discussion of the progenitor species of peanut and made them the first Arachis species to have their full genome sequenced (Bertioli et al., 2016). Because their diploid genomes and the subgenomes of A. hypogaea are so close, when crossed with A. hypogaea, populations have vigorous, fertile, and phenotypically normal progeny and genetic maps have lower segregation distortion than for some populations of intraspecific crosses (Fonceka et al., 2009; Gautami et al., 2012; Shirasawa et al., 2013). The

cross between *A. ipaënsis* and *A. duranensis* was subsequently repeated in the Wild Peanut Lab, using seeds deposited at the USDA National Plant Germplasm System (NPGS). The resulting allotetraploid, WPL-IpaDur1, created with the original progenitors of peanut, is the one with the lowest level of disease resistance (Tables 2 and 3).

Peanut is probably the only known allotetraploid for which the original progenitors still exist and are available in a seed bank. Furthermore, it has a wild counterpart, A. monticola, derived from the same original cross (Leal-Bertioli et al., 2021). Now, the resynthesized peanut, WPL-IpaDur1, is also available and in public domain. The set of genotypes A. ipaënsis, A. duranensis, A monticola, IpaDur1 (the proto-peanut), and cultivated peanut, now all available at the NPGR, is a very powerful package for experimentation on the effects of tetraploidization and domestication of any trait of interest. For instance, the previously synthesized allotetraploid IpaDur (Fávero et al., 2006) has served as a model for a basic study on changes of drought tolerance-related physiological and anatomical traits upon hybridization and polyploidization (Leal-Bertioli et al., 2012). It also served as a model for studies on genomic structure and genetic instability and shed light on the early stages of the origin and domestication of peanut (Leal-Bertioli et al., 2021; Nascimento et al., 2018). It is readily crossable with peanut, seed size can be recovered with only one backcross, and progeny show strong transgressive segregation (e.g., Fonceka et al., 2012; Leal-Bertioli et al., 2018). IpaDur can also restore alleles that were lost in peanut polyploidy through tetrasomic recombination (Leal-Bertioli et al., 2018). IpaDur has also been used in breeding with relative ease; it generated six cultivars in Senegal with larger pods and better yield stability than its recurrent parent (Faye et al., 2016). In Brazil, the cultivar 'BRS 425', also derived from IpaDur, has larger seed size and slightly stronger disease resistance than its recurrent parent, and it is highly productive in some peanut growing regions in the south of the country (Pereira et al., 2023; Suassuna et al., 2019; Suassuna et al., 2015). The other five allotetraploids have not been studied to the same degree, but hopefully, their superior resistance in a form that is readily crossable with peanut will make them useful assets in peanut improvement.

Peanut is an important source of protein in peoples' diet, especially in regions where meat protein is scarce. Average protein content in peanut seeds is 26% (Wang et al., 2016). In this study, using some of the main cultivars planted in the United States, the average was 20.9%. Allotetraploids had a range of 29.8% to 35.2%, significantly higher than all cultivars tested. These results indicate the potential of using these synthetics to improve the nutritional value of peanut.

The allotetraploids described here show superior resistance to the diseases tested. We envisage that they will also carry alleles that will provide resistance to other pests and diseases not evaluated in this work. They all have higher protein content, which makes them valuable for the food market by offering nutritionally enhanced options that cater to healthconscious consumers seeking protein-rich diets. The creation and seed multiplication of allotetraploids is not a trivial task; painstaking crosses, colchicine treatment with a low recovery rate of tetraploids, and the low seed set are familiar challenges. The availability of these allotetraploids in the NPGS makes it possible for research groups to skip this phase. The markers published will allow hybrids between allotetraploids and peanuts to be easily identified. Our end goal is to create a core collection at the NPGS of wild-derived Arachis allotetraploids for the benefit of the peanut research and breeding community worldwide. The production and distribution of these allotetraploids is a step towards this goal.

5 **AVAILABILITY**

Seeds of WPL-BatDur1, WPL-BatDur2, WPL-MagDur1, WPL-IpaCor1, WPL-IpaDur1, and WPL-IpaVillo1 have been deposited in the USDA-ARS National Plant Germplasm System (Fort Collins), and in the USDA Plant Genetic Resources and Conservation Unit (Griffin), where it is available for research purposes immediately upon publication. There is limit on the seeds to be distributed. The authors request that appropriate recognition be made if these materials contribute to the development of new germplasm, breeding line, cultivar and/or scientific publication.

AUTHOR CONTRIBUTIONS

Soraya Bertioli: Conceptualization; data curation; formal analysis; funding acquisition; investigation; project administration; supervision; writing—original draft; writing—review and editing. Mark Hopkins: Investigation; methodology; writing—review and editing. Jennifer Leverett: Investigation; writing—review and editing. Maricel Gonzales: Investigation; methodology; writing—review and editing. Yun-Ching Tsai: Investigation; methodology; writing—review and editing. Daniel Matusinec: Investigation; methodology; writing—review and editing. Brandon Tonnis: Formal analysis; investigation; writing-review and editing. Ana Claudia Araujo; Investigation; methodology; visualization; writing—review and editing. David Bertioli: Conceptualization; funding acquisition; project administration; supervision; writing-review and editing.

ACKNOWLEDGMENTS

The authors would like to acknowledge Carlos Ruiz and Kevin Turner for technical assistance and Anthony Black for field support at the UGA Southeast Georgia Research and Education Center, Midville, GA. This work was funded by the Peanut Research Foundation, Georgia Peanut Commission, MARS-Wrigley Inc., the National Peanut Board and the National Institute of Food and Agriculture (NIFA) titled "Development of Peanut Lines with Superior Pest Resistance Using Wild Species and Marker-Assisted Breeding" (award no 2022-67013-37075).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

ORCID

S. C. M. Leal-Bertioli https://orcid.org/0000-0002-9683-

Yun-Ching Tsai https://orcid.org/0009-0006-8547-6420 A. C. G. Araujo https://orcid.org/0000-0001-8164-1800 D. J. Bertioli https://orcid.org/0000-0003-0294-7284

REFERENCES

Alexander, M. P. (1969). Differential staining of aborted and nonaborted pollen. Stain Technology, 44, 117-122. https://doi.org/10. 3109/10520296909063335

Ballén-Taborda, C., Chu, Y., Ozias-Akins, P., Timper, P., Holbrook, C. C., Jackson, S. A., Bertioli, D. J., & Leal-Bertioli, S. C. M. (2019). A new source of root-knot nematode resistance from Arachis stenosperma incorporated into allotetraploid peanut (Arachis hypogaea). Scientific Reports, 9(1), 17702. https://doi.org/10.1038/ s41598-019-54183-1

Bertioli, D. J., Cannon, S. B., Froenicke, L., Huang, G., Farmer, A. D., Cannon, E. K. S., Liu, X., Gao, D., Clevenger, J., Dash, S., Ren, L., Moretzsohn, M. C., Shirasawa, K., Huang, W., Vidigal, B., Abernathy, B., Chu, Y., Niederhuth, C. E., Umale, P., ... Ozias-Akins, P. (2016). The genome sequences of Arachis duranensis and Arachis ipaënsis, the diploid ancestors of cultivated peanut. Nature Genetics, 48, 438-446. https://doi.org/10.1038/ng.3517

Bertioli, D. J., Gao, D., Ballen-Taborda, C., Chu, Y., Ozias-Akins, P., Jackson, S. A., Holbrook, C. C., & Leal-Bertioli, S. C. M. (2021). Registration of GA-BatSten1 and GA-MagSten1, two induced allotetraploids derived from peanut wild relatives with superior resistance to leaf spots, rust, and root-knot nematode. Journal of Plant Registrations, 15, 372-378. https://doi.org/10.1002/plr2.20133

Bertioli, D. J., Jenkins, J., Clevenger, J., Dudchenko, O., Gao, D., Seijo, G., Leal-Bertioli, S. C. M., Ren, L., Farmer, A. D., Pandey, M. K., Samoluk, S. S., Abernathy, B., Agarwal, G., Ballén-Taborda, C., Cameron, C., Campbell, J., Chavarro, C., Chitikineni, A., Chu, Y., ... Schmutz, J. (2019). The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 51, 877-884. https://doi.org/10.1038/s41588-019-0405-z

Branch, W. (2007). Registration of 'Georgia-06G' peanut. Journal of *Plant Registrations*, 1(2), 120. https://doi.org/10.3198/jpr2006.12.

Branch, W. D. (2013). Registration of 'Georgia-12Y' peanut. Journal of Plant Registrations, 7(2), 151. https://doi.org/10.3198/jpr2012.11. 0048crc

Chu, Y., Stalker, H. T., Marasigan, K., Levinson, C. M., Gao, D., Bertioli, D. J., Leal-Bertioli, S. C. M., Holbrook, C. C., Jackson, S. A., & Ozias-Akins, P. (2021). Registration of three peanut allotetraploid interspecific hybrids resistant to leaf spot diseases. Journal of Plant Registrations, 15, 562-572. https://doi.org/10.1002/plr2.20146

- Clevenger, J., Chu, Y., Chavarro, C., Agarwal, G., Bertioli, D. J., Leal-Bertioli, S. C. M., Pandey, M. K., Vaughn, J., Abernathy, B., Barkley, N. A., Hovav, R., Burow, M., Nayak, S. N., Chitikineni, A., Isleib, T. G., Holbrook, C. C., Jackson, S. A., Varshney, R. K., & Ozias-Akins, P. (2017). Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. *Molecular Plant*, 10, 309–322. https://doi.org/10.1016/j.molp.2016.11.015
- Fávero, A. P., Moraes, S. A., Garcia, A. A. F., Valls, J. F. M., & Vello, N. A. (2009). Characterization of rust, early and late leaf spot resistance in wild and cultivated peanut germplasm. *Scientia Agricolae*, 66, 110–117. https://doi.org/10.1590/S0103-90162009000100015
- Fávero, A. P., Simpson, C. E., Valls, F. M. J., & Vello, N. A. (2006). Study of evolution of cultivated peanut through crossability studies among *Arachis ipaënsis*, *A. duranensis*, and *A. hypogaea. Crop Science*, 46, 1546–1552. https://doi.org/10.2135/cropsci2005.09-0331
- Faye, I., Hodo-Abalo, T., Ndoye, O., & Fonceka, D. (2016). Dossier technique d'homologation de nouvelles variétés d'arachide. ISRA.
- Fonceka, D., Hodo-Abalo, T., Rivallan, R., Faye, I., Sall, M. N., Ndoye, O., Favero, A. P., Bertioli, D. J., Glaszmann, J. C., Courtois, B., & Rami, J. F. (2009). Genetic mapping of wild introgressions into cultivated peanut: A way toward enlarging the genetic basis of a recent allotetraploid. *BMC Plant Biology*, 9, 103. https://doi.org/10.1186/1471-2229-9-103
- Fonceka, D., Tossim, H. A., Rivallan, R., Vignes, H., Faye, I., & Ndoye, O. (2012). Fostered and left behind alleles in peanut: Interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. *BMC Plant Biology*, 12, 26. https://doi.org/10. 1186/1471-2229-12-26
- Gao, D., Araujo, A. C. G., Nascimento, E. F. M. B., Chavarro, M. C., Xia, H., Jackson, S. A., Bertioli, D. J., & Leal-Bertioli, S. C. M. (2021). ValSten: A new wild species-derived allotetraploid for increasing genetic diversity of the peanut crop (*Arachis hypogaea L.*). *Genetic Resources and Crop Evolution*, 68, 1471–1485. https://doi.org/10.1007/s10722-020-01076-2
- Gautami, B., Foncéka, D., Pandey, M. K., Moretzsohn, M. C., Sujay, V., Qin, H., Hong, Y., Faye, I., Chen, X., BhanuPrakash, A., Shah, T. M., Gowda, M. V. C., Nigam, S. N., Liang, X., Hoisington, D. A., Guo, B., Bertioli, D. J., Rami, J.-F., & Varshney, R. K. (2012). An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (*Arachis hypogaea L.*). *PLoS ONE*, 7, e41213. https://doi.org/10.1371/journal.pone.0041213
- Holbrook, C., & Culbreath, A. K. (2007). Registration of 'Tifrunner' peanut. *Journal of Plant Registrations*, *I*(2), 124. https://doi.org/10.3198/jpr2006.09.0575crc
- Holbrook, C. C., Clevenger, J., Ozias-Akins, P., Ye, C., & Brenneman, T. B. (2024). Registration of 'TifJumbo' peanut. *Journal of Plant Registrations*, 18(2), 279. https://doi.org/10.1002/plr2.20285
- Holbrook, C. C., & Stalker, H. T. (2003). Peanut breeding and genetic resources. *Plant Breeding Reviews*, 22, 297–355.
- Isleib, T. G., Milla-Lewis, S. R., Pattee, H. E., Copeland, S. C., Zuleta, L. C., Shew, B. B., Hollowell, J. E., Sanders, T. H., Dean, L. O., Hendrix, K. W., Balota, M., & Chapin, J. W. (2011). Registration of 'Bailey' peanut. *Journal of Plant Registrations*, 5(1), 27–39. https://doi.org/10.3198/jpr2009.12.0742crc
- Kochert, G., Halward, T., Branch, W. D., & Simpson, C. E. (1991). RFLP variability in peanut (*Arachis hypogaea* L.) cultivars and wild species. *Theoretical and Applied Genetics*, 81, 565–570.
- Kochert, G., Stalker, H. T., Gimenes, M., Galgaro, L., Lopes, C. R., & Moore, K. (1996). RFLP and cytogenetic evidence on the origin and

- evolution of allotetraploid domesticated peanut, *Arachis hypogaea* (Leguminosae). *American Journal of Botany*, *83*, 1282–1291. https://doi.org/10.1002/j.1537-2197.1996.tb13912.x
- Korani, W., Clevenger, J. P., Chu, Y., & Ozias-Akins, P. (2019). Machine learning as an effective method for identifying true single nucleotide polymorphisms in polyploid plants. *The Plant Genome*, 12. https:// doi.org/10.3835/plantgenome2018.05.0023
- Krapovickas, A., & Gregory, W. C. (1994). Taxonomia del genero Arachis (Leguminosae). Bonplandia, 8, 1–186. https://doi.org/10. 30972/bon.81-43559
- Krapovickas, A., & Gregory, W. C. (2007). Taxonomy of the genus *Arachis* (Leguminosae). *Bonplandia*, *16*, 1–205. https://doi.org/10.30972/bon.160158
- Leal-Bertioli, S. C., Cavalcante, U., Gouveia, E. G., Ballen-Taborda, C., Shirasawa, K., Guimaraes, P. M., Jackson, S. A., Bertioli, D. J., & Moretzsohn, M. C. (2015a). Identification of QTLs for rust resistance in the peanut wild species *Arachis magna* and the development of KASP markers for marker-assisted selection. *G3 Genes*|Genomes|Genetics, 5, 1403–1413. https://doi.org/10.1534/g3.115.018796
- Leal-Bertioli, S. C., Moretzsohn, M. C., Santos, S. P., Brasileiro, A. C., Guimarães, P. M., Bertioli, D. J., & Araujo, A. C. (2017). Phenotypic effects of allotetraploidization of wild *Arachis* and their implications for peanut domestication. *American Journal of Botany*, 104, 379–388. https://doi.org/10.3732/ajb.1600402
- Leal-Bertioli, S. C. M., Bertioli, D. J., Guimarães, P. M., Pereira, T. D., Galhardo, I., Silva, J. P., Brasileiro, A. C. M., Oliveira, R. S., Silva, P. Í. T., Vadez, V., & Araújo, A. C. G. (2012). The effect of tetraploidization of wild *Arachis* on leaf morphology and other drought-related traits. *Environmental and Experimental Botany*, 84, 17–24. https://doi.org/10.1016/j.envexpbot.2012.04.005
- Leal-Bertioli, S. C. M., Godoy, I. J., Santos, J. F., Doyle, J. J., Guimarães, P. M., Abernathy, B. L., Jackson, S. A., Moretzsohn, M. C., & Bertioli, D. J. (2018). Segmental allopolyploidy in action: Increasing diversity through polyploid hybridization and homoeologous recombination. *American Journal of Botany*, 105, 1053–1066. https://doi.org/10.1002/ajb2.1112
- Leal-Bertioli, S. C. M., Nascimento, E. F. M. B., Chavarro, M. C. F., Custódio, A. R., Hopkins, M. S., Moretzsohn, M. C., Bertioli, D. J., & Araujo, A. C. G. (2021). Spontaneous generation of diversity in *Arachis* neopolyploids (*A. ipaënsis* × *A. duranensis*)^{4x} replays the early stages of peanut evolution. *G3 Genes*|*Genomes*|*Genetics*. https://doi.org/10.1093/g3journal/jkab289
- Leal-Bertioli, S. C. M., Santos, S. P., Dantas, K. M., Inglis, P. W., Nielen, S., Araujo, A. C. G., Silva, J. P., Cavalcante, U., Guimarães, P. M., Brasileiro, A. C. M., Carrasquilla-Garcia, N., Penmetsa, R. V., Cook, D., Moretzsohn, M. C., & Bertioli, D. J. (2015b). Arachis batizocoi: A study of its relationship to cultivated peanut (A. hypogaea) and its potential for introgression of wild genes into the peanut crop using induced allotetraploids. Annals of Botany, 115, 237–249. https://doi.org/10.1093/aob/mcu237
- Levinson, C. M., Antepenko, E., Leal-Bertioli, S. C. M., Chu, Y., Culbreath, A. K., Stalker, H. T., Gao, D., & Ozias-Akins, P. (2021). Resistance to rust (*Puccinia arachidis* Speg.) identified in nascent allotetraploids cross-compatible with cultivated peanut (*Arachis hypogaea*). *Peanut Science*, 48, 123–130. https://doi.org/10. 3146/PS21-4.1
- Levinson, C. M., Marasigan, K. M., Chu, Y., Stalker, H. T., Holbrook, C. C., Ni, X., Williams, W. P., & Ozias-Akins, P. (2020). Resis-

Journal of Plant Registrations

- tance to fall armyworm (Lepidoptera: Noctuidae) feeding identified in nascent allotetraploids cross-compatible to cultivated peanut (*Arachis hypogaea* L.). *Peanut Science*, 47, 123–134. https://doi.org/10.3146/PS20-13.1
- Mallikarjuna, N., Senthilvel, S., & Hoisington, D. (2011). Development of new sources of tetraploid *Arachis* to broaden the genetic base of cultivated groundnut (*Arachis hypogaea* L.). *Genetic Resources and Crop Evolution*, 58, 889–907. https://doi.org/10.1007/s10722-010-9627-8
- Mariotti, F., Tomé, D., & Mirand, P. P. (2008). Converting nitrogen into protein—Beyond 6.25 and Jones' factors. *Critical Reviews in Food Science and Nutrition*, 48, 177–184. https://doi.org/10.1080/10408390701279749
- Michelotto, M. D., Barioni, W. Jr., Resende, M. D. V., Godoy, I. J., Leonardecz, E., & Fávero, A. P. (2015). Identification of fungusresistant wild accessions and interspecific hybrids of the genus Arachis. PLoS ONE, https://doi.org/10.1371/journal.pone.0128811
- Michelotto, M. D., de Godoy, I. J., Pirotta, M. Z., Dos Santos, J. F., Finoto, E. L., & Pereira Fávero, A. (2017). Resistance to thrips (Enneothrips flavens) in wild and amphidiploid Arachis species. PLoS ONE, 12, e0176811. https://doi.org/10.1371/journal.pone.0176811
- Moraes, S. A., & Salgado, C. L. (1982). Utilização da técnica de folhas destacadas de amendoim (*Arachis hypogaea* L.) para inoculações com *Cercospora arachidicola* Hori e *Cercospora personata* (Bert. & Curt.) Ell. & Ev. Summa Phytopathologica, 8, 39–55.
- Nascimento, E. F. M. B., Dos Santos, B. V., Marques, L. O. C., Guimarães, P. M., Brasileiro, A. C. M., Leal-Bertioli, S. C. M., Bertioli, D. J., & Araujo, A. C. G. (2018). The genome structure of *Arachis hypogaea* (Linnaeus, 1753) and an induced *Arachis* allotetraploid revealed by molecular cytogenetics. *Comparative Cytogenetics*, 12, 111–140. https://doi.org/10.3897/CompCytogen.v12i1. 20334
- Otyama, P. I., Kulkarni, R., Chamberlin, K., Ozias-Akins, P., Chu, Y., Lincoln, L. M., MacDonald, G. E., Anglin, N. L., Dash, S., Bertioli, D. J., Fernández-Baca, D., Graham, M. A., Cannon, S. B., & Cannon, E. K. S. (2020). Genotypic characterization of the U.S. Peanut Core Collection. *G3: Genes*|*Genomes*|*Genetics*, 10, 4013–4026. https://doi.org/10.1534/g3.120.401306
- Pandey, M. K., Agarwal, G., Kale, S. M., Clevenger, J., Nayak, S. N., Sriswathi, M., Chitikineni, A., Chavarro, C., Chen, X., Upadhyaya, H. D., Vishwakarma, M. K., Leal-Bertioli, S., Liang, X., Bertioli, D. J., Guo, B., Jackson, S. A., Ozias-Akins, P., & Varshney, R. K. (2017). Development and evaluation of a high-density genotyping 'Axiom_Arachis' array with 58 K SNPs for accelerating genetics and breeding in groundnut. *Scientific Reports*, 7, 40577. https://doi.org/10.1038/srep40577
- Pereira, G. L., Wenneck, G. S., Saath, R., Heuert, J., Suassuna, T. M. F., & Araújo, L. L. (2023). Análise agronômica do cultivo de amendoim no Noroeste do Estado do Paraná. Revista em Agronegócio e Meio Ambiente—RAMA, 16, e11071.
- R Core Team. (2022). R: A Language and Environment for Statistical Computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org
- Robledo, G., & Seijo, G. (2010). Species relationships among the wild B genome of *Arachis* species (section *Arachis*) based on FISH mapping of rDNA loci and heterochromatin detection: A new proposal for genome arrangement. *Theoretical and Applied Genetics*, *121*, 1033–1046. https://doi.org/10.1007/s00122-010-1369-7

- Santana, S. H., & Valls, J. F. M. (2015). Arachis veigae (Fabaceae), the most dispersed wild species of the genus, and yet taxonomically overlooked. Bonplandia, 24, 139–150. https://doi.org/10.30972/bon. 242238
- Seijo, G. J., Atahuachi, M., García, A. V., & Krapovickas, A. (2024).
 Arachis woodii (Leguminosae): A new species from the Bolivian Pantanal. Bonplandia, 34, 1–7. https://doi.org/10.30972/bon.3417880
- Seijo, G. J., Atahuachi, M., Simpson, C. E., & Krapovickas, A. (2021).
 Arachis inflata: A new B genome species of Arachis (Fabaceae).
 Bonplandia, 30, 1–6. https://doi.org/10.30972/bon.3024942
- Settaluri, V., Kandala, C., Puppala, N., & Sundaram, J. (2012). Peanuts and their nutritional aspects—A review. Food and Nutrition Sciences, 3, 1644–1650. https://doi.org/10.4236/fns.2012.312215
- Shirasawa, K., Bertioli, D. J., Varshney, R. K., Moretzsohn, M. C., Leal-Bertioli, S. C. M., Thudi, M., Pandey, M. K., Rami, J. F., Fonceka, D., Gowda, M. V., Qin, H., Guo, B., Hong, Y., Liang, X., Hirakawa, H., Tabata, S., & Isobe, S. (2013). Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of *Arachis* and divergence of the legume genomes. *DNA Research*, 20, 173–184. https://doi.org/10.1093/dnares/dss042
- Simpson, C. E. (1991). Pathways for introgression of pest resistance into Arachis hypogaea L. *Peanut Science*, 18, 22–26. https://doi.org/10. 3146/i0095-3679-18-1-8
- Simpson, C. E., Nelson, S. C., Starr, L. J., Woodard, K. E., & Smith, O. D. (1993). Registration of TxAG-6 and TxAG-7 peanut germplasm lines. *Crop Science*, *33*, 1418. https://doi.org/10.2135/cropsci1993. 0011183X003300060079x
- Simpson, C. E., & Starr, J. L. (2001). Registration of 'COAN' peanut. Crop Science, 41, 918. https://doi.org/10.2135/cropsci2001.413918x
- Suassuna, T. M. F., Suassuna, N. D., Bogiani, J. C., Perina, F., Fragoso, D. B., Sofiatti, V., Medeiros, E. P., Moretzsohn, M. C., Leal-Bertioli, S. C. M., Bertioli, D. J., Heuert, J., Assunção, H. F., Colnago, L. A., Gondim, T. M. S., Vasconcellos, R. A., Schwengber, J. E., & Bezerra, J. R. C. (2019). BRS 425: The first runner peanut cultivar related to wild ancestral species. *Crop Breeding and Applied Biotechnology*, 19, 373–377. https://doi.org/10.1590/1984-70332019v19n3c52
- Suassuna, T. M. F., Suassuna, N. D., Moretzsohn, M. C., Leal-Bertioli, S. C. M., Bertioli, D. J., & Medeiros, E. P. (2015). Yield, market quality, and leaf spots partial resistance of interspecific peanut progenies. *Crop Breeding and Applied Biotechnology*, 15, 175–180. https://doi.org/10.1590/1984-70332015v15n3n30
- Tsai, Y.-C., Brenneman, T. B., Holbrook, C. C., Chu, Y., Ozias-Akins, P., Bertioli, D. J., & Leal-Bertioli, S. C. M. (2023). Development of a greenhouse method to evaluate peanut resistance to *Athelia rolfsii*. *PhytoFrontiers*, 3(3), 490–496. https://doi.org/10.1094/PHYTOFR-06-22-0069-TA
- Valls, J. F. M., Costa, L. C., & Custodio, A. R. (2013). A novel trifoliate species of *Arachis* (Fabaceae) and further comments on the taxonomic section *Trierectoides*. *Bonplandia*, 22, 91–97. https://doi. org/10.30972/bon.2211257
- Valls, J. F. M., & Simpson, C. E. (2005). New species of *Arachis L*. (Leguminosae) from Brazil, Paraguay, and Bolivia. *Bonplandia*, 14, 35–63. https://doi.org/10.30972/bon.141-21387
- Valls, J. F. M., & Simpson, C. E. (2017). A new species of *Arachis* (Fabaceae) from Mato Grosso, Brazil, related to *Arachis matiensis*. *Bonplandia*, 25, 143–150. https://doi.org/10.30972/bon.2622575
- Wang, M. L., Chen, C. Y., Tonnis, B. D., Barkley, N. A., Pinnow, D. L., Pittman, R. N., Davis, J., Holbrook, C. C., Stalker, H. T., & Pederson, G. A. (2013). Oil, fatty acid, flavonoid, and resveratrol

content variability and *FAD2A* functional SNP genotypes in the U.S. peanut. *Journal of Agriculture and Food Chemistry*, 60, 2875–2882. https://doi.org/10.1021/jf305208e

Wang, M. L., Grusak, M., Chen, C. Y., Tonnis, B. D., Barkley, N. A., Evans, S., Pinnow, D. L., Davis, J., Phillips, R., Holbrook, C. C., & Pederson, G. A. (2016). Seed protein percentage and mineral concentration variability and their correlation with other seed quality traits in the U.S. peanut mini-core collection. *Peanut Science*, 43, 119–125. https://doi.org/10.3146/PS156-15.1

Wang, M. L., Tonnis, B. D., Chen, C. Y., Li, X., Pinnow, D. L., Tallury, S., Stigura, N., Pederson, G. A., & Harrison, M. (2022). Evaluation of variability in seed coat color, weight, oil content, and fatty acid composition within the entire USDA-cultivated peanut germplasm collection. *Crop Science*, 62, 2332–2346. https://doi.org/10.1002/csc2.20830

Yin, D., Ji, C., Song, Q., Zhang, W., Zhang, X., Zhao, K., Chen, C. Y., Wang, C., He, G., Liang, Z., Ma, X., Li, Z., Tang, Y., Wang, Y., Li, K., Ning, L., Zhang, H., Zhao, K., Li, X., ... Chen, Z. J. (2020). Comparison of *Arachis monticola* with diploid and cultivated tetraploid genomes reveals asymmetric subgenome evolution and improvement of peanut. Advanced Science, 7, 1901672. https://doi.org/10.1002/advs.201901672

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Leal-Bertioli, S. C. M., Hopkins, M., Leverett, J., Gonzales, M., Tsai, Y.-C., Matusinec, D., Tonnis, B., Araujo, A. C. G., & Bertioli, D. J. (2025). Registration of six disease resistant, high protein, induced allotetraploids derived from *Arachis duranensis* and *A. ipaënsis*, the genome progenitors of peanut. *Journal of Plant Registrations*, 19, e70017. https://doi.org/10.1002/plr2.70017