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Abstract

Bioinputs offer a promising alternative to synthetic herbicides, reducing environmental impacts, but their effects
on soil microbial communities are not well understood. This study assessed the effects of aqueous sorghum extract
on soil microbial communities and nodulation in soybean cultivated on sorghum and maize crop residues. The
experiment was conducted in a completely randomized split-plot design with five replications, with sorghum or
maize crop residues in the plots, and weed control with or without aqueous sorghum extract application in the
subplots. Microbial biomass carbon (MBC), basal soil respiration (BSR), microbial quotient (gMIC), metabolic
quotient (¢CO,), mycorrhizal colonization, and number of viable nodules were measured. Aqueous sorghum
extract application reduced MBC (77.92 mg C kg™ ! soil) and BSR (40.58 mg C-CO; kg™ soil day™") under sorghum
residue treatments, increased ¢CO; (indicating higher microbial stress), and reduced gMIC, suggesting lower
carbon use efficiency. Soybean mycorrhizal colonization was unaffected, but nodulation was significantly reduced
under sorghum residue treatments (37 viable nodules per plant), suggesting an inhibitory effect on soybean-
rhizobium symbiosis. These findings indicate that phenolic compounds and quinones in sorghum alter soil
microbial activity and impair biological nitrogen fixation, particularly when combined with sorghum crop residues.
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1. Introduction

Agriculture significantly contributes to Brazil's gross domestic product (GDP), with soybean leading in both
production and export since 2019 (Boschiero, 2023). The seventh monitoring survey of the 2024-2025 crop season,
with 81.4% of the planted area harvested, reported a soybean production of 167.8 million Mg over 47.5 million
hectares, with an average yield of 3,533 kg ha™!, representing the highest recorded soybean production in Brazil
(CONAB - Companhia Nacional de Abastecimento, 2025). These results were influenced by environmental
conditions, human resources, technological advancements, and financial investments, as effective management of
these factors through the application of production and management technologies, enhances agricultural
competitiveness (Lopes-Assad et al., 2021; Turtt and Toledo, 2023).

In soybean production, bioinputs support sustainability by enhancing plant growth, improving resilience to biotic
and abiotic stresses, and promoting soil health through physicochemical and biological processes (BRASIL, 2020;
Vidal and Dias, 2023). In this context, bioinputs serve as an alternative to mitigate the adverse effects of excessive
agrochemical use. Studies indicate that agrochemical accumulation in soil significantly reduces the diversity of
microorganisms essential for nutrient cycling (Rodrigues et al., 2020). Although agrochemicals primarily target
weeds or pests, their indirect effects disrupt soil microbial communities by altering plant physiological processes,
such as photosynthesis and hormone biosynthesis, which subsequently affect plant-microorganism interactions
(Ruuskanen et al., 2023; Mauprivez, 2019).

Zheng et al. (2022) demonstrated that imazethapyr, applied for weed control, reduced chlorophyll content and
photosynthetic efficiency in Arabidopsis thaliana and altered the structure of its rhizosphere microbial community.
These effects persisted in the subsequent plant generation, accompanied by changes in soil microbial communities.
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These findings highlight the need to reduce herbicide use in modern biorational agriculture by prioritizing safer,
cost-effective alternatives, such as plants with allelopathic properties (Matos et al., 2020).

Sorghum (Sorghum bicolor [L.] Moench), an annual Poaceae species cultivated as a second crop in Brazil's
Central-West region following soybean, is recognized for its allelopathic properties. Its primary allelochemical,
sorgoleone, a brownish oily exudate containing lipid benzoquinones, accounts for over 90% of the hydrophobic
components in sorghum root exudates (Sarr et al., 2020). Allelochemicals occur in various plant tissues, including
bark, stems, leaves, and roots (Pantoja et al., 2023).

The allelopathic effect of sorgoleone inhibits weed germination and growth (Queiroz et al., 2024), reducing shoot
biomass of invasive and susceptible species, such as lettuce and other vegetables, by more than 50% (Gomes et
al., 2018). Sorgoleone is used as a natural herbicide, offering a sustainable approach with multiple environmental
benefits. Sorgoleone modifies soil microbial communities by inhibiting nitrification through the suppression of
ammonia monooxygenase and hydroxylamine oxidoreductase in nitrifying bacteria and archaea, which convert
ammonia to nitrate (Sarr et al., 2020; Wang et al., 2021).

Arbuscular mycorrhizal fungi, obligate biotrophic fungi of the order Glomerales (Glomeromycota), are an
important group of soil microorganisms, forming symbiotic associations with vascular plant roots. These
mycorrhizal fungi can expand the absorption surface area of the root system by up to 20-fold, enhancing the uptake
of low-mobility nutrients such as phosphorus, zinc, and copper, from the soil solution (Liu et al., 2018; Jansa et
al., 2019; Soares, 2022).

Recent studies indicate that sorgoleone significantly increases plant biomass and phosphorus content in
mycorrhizal plants compared to non-mycorrhizal plants under low-phosphorus conditions (Oliveira et al., 2021;
Sarr et al., 2021). However, research on the allelopathic effects of sorghum has mainly focused on weed
suppression, with limited understanding of its impacts on soil microbial communities.

In addition to mycorrhizal fungi, biological nitrogen fixation is a critical symbiotic process supporting
sustainability in soybean production systems in Brazil, as soybean roots form symbiotic associations with bacteria
that convert atmospheric nitrogen (N;) into ammonium (NH4+) via nitrogenase activity (Prando et al., 2023;
Andreola, 2021). Thus, the objective of this study was to evaluate the effects of aqueous sorghum extract on soil
microbial communities and nodulation in soybean cultivated on sorghum and maize crop residues.

2. Material and Methods

The experiment was conducted at the experimental farm of the State University of Goias, Ipameri Campus, Goias,
Brazil (17°43'19"S, 48°09'35"W, 773 m altitude). This region has a tropical climate characterized by a rainy
summer and a dry winter (Alvarez et al., 2013). The experimental area was in its second year of no-tillage
cultivation, with aqueous sorghum extract applied for post-emergence weed control. The soil was classified as a
Typic Hapludox (Latossolo Vermelho-Amarelo Distrofico tipico; Santos et al., 2018) with a medium texture.
Fertilizers were applied based on soil analysis (Table 1) and technical recommendations for the crop, with liming
determined by a preferred soil Ca to Mg ratio of 2 to 3 (Procépio et al., 2022).

Table 1. Chemical properties of soil in the experimental area (0.00-0.20 m layer). Ipameri, Goids, Brazil

Soil layer pH oM pM K Ca Mg H+Al BS
(m) (CaCly)) (%) (mgdm™) (mmolc dm™) (%)
0.00-0.20 6.1 1.6 6.7 0.45 3.7 1.3 1.1 54.5

OM = organic matter; BS = base saturation. (" Extractor: Mehlich-1.

The experiment was conducted in a completely randomized split-plot design with five replications, with sorghum
(Sorghum bicolor cv. DOW 1G100) or maize (Zea mays cv. SHS 7990 PRO3) crop residues in the plots, and and
weed control with or without aqueous sorghum extract application in the subplots. Each experimental unit
measured 1.5 x 5 m. The experimental area was divided into two sections: one with sorghum and the other with
maize, both cultivated as a second crop to produce residues. During the main crop season, soybean (Glycine max
cv. FOCO Brasmax) was planted in both sections. Weed control treatments, applied in subplots, consisted of
aqueous sorghum leaf extract application to weeds or no weed control.

The aqueous sorghum extracts were prepared from leaves of 30-day-old sorghum plants grown under field
conditions. Leaves were washed with running water, placed in paper bags, and dried in a forced-air circulation
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oven at 70 °C for 72 hours. Dried leaves were ground in a hammer mill, mixed with ethanol at a ratio of 3 g to 60
mL (3% w v'!), incubated at 40 °C for 72 hours, and filtered (Hien et al., 2016). The extract was diluted to 75%
(v v") with water (750 mL extract to 250 mL water), and applied using a calibrated backpack sprayer delivering
150 L ha™!. Aqueous sorghum extract was applied as a directed spray to weeds at three soybean phenological stages:
V3, R1, and RS. Soybean plants were evaluated 15 days after the last application, and weed assessments were
performed at the soybean phenological stage R9.

Maize (Zea mays cv. SHS 7990 PRO3) and sorghum (Sorghum bicolor cv. DOW 1G100) seeds were planted as a
second crop in the first week of March each year, and after completing their growth cycle, plants were cut with a
manual brush cutter and left on the soil as crop residues. An indeterminate-growth soybean cultivar (Glycine max cv.
FOCO Brasmax), with a growth cycle of 110 to 115 days, was planted in October and November of the first and
second years, respectively, following a minimum of 100 mm accumulated rainfall. Soybean seeds were treated with
a fungicide—insecticide product containing pyraclostrobin, thiophanate-methyl, and fipronil, and inoculated with
Bradyrhizobium japonicum at a minimum concentration of 12 x 1075 cells per seed. A fungicide containing
fluxapyroxad and pyraclostrobin was applied at the phenological stage R2.

Soil samples (0.00-0.20 m layer) were collected at the soybean R6 stage for microbiological analyses and
transported to the Soil Microbiology Laboratory at the State University of Goias, Ipameri Campus, where they
were homogenized and sieved through a 2-mm mesh. Soil samples were immediately analyzed for Microbial
biomass carbon (MBC), basal soil respiration (BSR), metabolic quotient (¢CO;), microbial quotient (¢gMIC),
whereas soybean plants were assessed for mycorrhizal colonization and number of viable nodules.

MBC was quantified using the irradiation—extraction method with 0.5 mol L™ potassium sulfate, followed by
oxidation with 0.066 mol L™ potassium dichromate and titration with 0.033 mol L™ ammonium ferrous sulfate,
with values expressed as mg C kg™! soil (Islam and Weil, 1998; Vance et al., 1987). BSR was measured as the
amount of C-CO,; released from the soil, following Anderson and Domsch (1993), using 100 g of soil samples
incubated in glass jars with a central flask containing 10 mL of 0.1 mol L™ NaOH. After incubation (duration
determined by a calibration curve), the NaOH was titrated with 0.1 mol L™ HCI, and values were expressed as mg
C-CO, kgtsoil day.

The metabolic quotient (¢CO,) was calculated as the ratio of BSR to MBC, expressed as mg C-CO, mg™' Cmic
day~!, and gMIC was determined as the ratio of MBC to total organic carbon, expressed as a percentage (Anderson
and Domsch, 1993). Total organic carbon for gMIC calculations was quantified by wet oxidation following
Mendonga and Matos (2005). A 0.2 g sample of bulk soil was placed in digestion tubes and treated with 5 mL of
potassium dichromate solution and 7.5 mL of concentrated sulfuric acid. This solution was heated in a digestion
block at 170 °C for 30 minutes. After digestion, the solution was titrated with 0.2 mol L™ ammonium ferrous
sulfate.

Mycorrhizal colonization was assessed by collecting the finest roots of each plant, washing them with running
water, and preserving them in a 50% ethanol solution. Roots were clarified and stained using the method of Phillips
and Hayman (1970), involving 0.5 g of roots heated in 10% KOH, acidified with diluted HCI, and stained with
0.05% trypan blue. Colonization was quantified using the gridline intersect method under a stereoscopic
microscope, as described by Giovannetti and Mosse (1980), by distributing roots evenly on a grid plate with 1.1 x
1.1 cm quadrants and counting segments with and without fungal structures (arbuscules and vesicles) intersecting
the grid lines. The percentage of mycorrhizal colonization was calculated using the equation: MC = (sc/ (sn + sc))
x 100, where MC is the mycorrhizal colonization, sz is the number of non-colonized segments, and sc is the
number of colonized segments. The number of viable nodules was determined by washing soybean roots,
collecting all nodules with a diameter >2 mm, and assessing viability by cutting nodules in half with a scalpel to
confirm pink coloration.

Data were analyzed using analysis of variance (ANOVA), with means compared by Tukey's test at a 5%
significance level for both plots and subplots. All statistical analyses were conducted using SISVAR software
(Ferreira, 2011).

3. Results and Discussion

Analysis of variance (ANOVA) results (Table 2) revealed significant interactions between crop residues and
aqueous sorghum extract for microbial biomass carbon (MBC) and basal soil respiration (BSR) at p < 0.01, and
for microbial quotient (¢MIC) and number of viable nodules at p < 0.05. The aqueous sorghum extract had a
significant (p < 0.05) effect on the metabolic quotient (¢CO) (Table 2), while neither crop residues nor the extract
significantly affected mycorrhizal colonization.
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Table 2. Analysis of variance (ANOVA) and F-values for microbial biomass carbon (MBC), basal soil respiration
(BSR), metabolic quotient (¢CO>), microbial quotient (¢MIC), mycorrhizal colonization (MC), and number of
viable nodules per plant (NVN) in soybean grown on maize or sorghum crop residues, with or without aqueous
sorghum extract application for weed control

Source of F-values
Variation DF MBC BSR 4CO; gMIC MC NVN
Residues (R) 1 3.926"™ 138.339™ 0.556" 0.222" 1.529m 14.151™
Error 1 8 - - - - - -
Extract (E) 1 112.086™ 9.893"s 39.490™  178.489™ 1.122" 0.001"
RxE 1 19.169™ 13.064™ 4.266™ 11.005" 0.008" 10.569"
Error 2 8 - - - - - -
Total 19 - - - - - -
CVi(%) - 16.45 4.45 10.61 16.83 6.84 10.92
CV; (%) - 12.45 9.99 16.68 13.83 9.64 18.53

CV = coefficient of variation; DF = degrees of freedom; *, **, and ™ = significant at 5%, 1%, and not significant
by the F-test, respectively.

Sorghum residues combined with aqueous sorghum extract significantly reduced MBC to 77.92 mg C kg™ soil
(Table 3). Sarr et al. (2020) demonstrated that sorgoleone alters amoA gene expression in ammonia-oxidizing
bacteria, thereby reducing nitrification rates. Additionally, under favorable soil moisture and pH conditions,
sorgoleone can also modify the composition of bacterial and archaeal communities, reducing the abundance of
Nitrospirae bacteria, which may help explain the observed decrease in MBC.

BSR, an indicator of microbial activity and organic matter decomposition, was reduced to 40.58 mg C-CO, kg™!
soil day™ under sorghum residues with aqueous sorghum extract application (Table 3). This reduction can be
attributed to changes in the structure and function of the soil microbial community (Carballido and Poulson, 2017).
Similarly, Tesfamariam et al. (2014) and Wang et al. (2021) reported that allelochemicals, including sorgoleone,
suppress the metabolic activity of soil microbial communities.

Table 3. Effect of maize (MR) and sorghum (SR) crop residues on microbial biomass carbon (MBC), basal soil
respiration (BSR), microbial quotient (MIC), and number of viable nodules (NVN) in soybean grown with (WE)
or without (NE) aqueous sorghum extract application for weed control

Source MBC BSR gMIC (%) NVN
of  (mgCkg™ soil) (mg C-CO, kg™ soil
variation day—l)
WE NE WE NE WE NE WE NE
SR 77.92Bb  208.74Aa 40.58Bb 57.32Aa 0.54Ab 1.64Aa  37.00Bb 51.00Aa
MR 138.73Ab  193.00Aa 62.51Aa 61.35Aa 0.72Ab  1.39Ba  60.00Aa 46.00Ab

Means followed by the same uppercase letter in the columns, or lowercase letter in the rows, are not significantly
different by the Tukey's test at a 5% significance level.

Aqueous sorghum extract application reduced the carbon use efficiency of soil microbial communities, regardless
of the residue type, resulting in a gMIC of 0.54% and 0.72% under sorghum and maize residues, respectively
(Table 3). This effect may be attributed to a higher proportion of quinone rings relative to methoxy groups in the
extract. Gimsing et al. (2009) evaluated the mineralization of sorgoleone in soils from the United States and
Denmark and reported that quinone rings in sorgoleone inhibited carbon incorporation by the soil microbial
communities, whereas the methoxy group was readily mineralized.

gMIC is an important bioindicator of soil quality, reflecting carbon use efficiency by microbial communities and
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providing insights into the quality of soil organic matter and the persistence of allelopathic substances like
sorgoleone in soil (Vieira, 2019; Gimsing et al., 2009). Weed control with aqueous sorghum extract increased CO,
loss per unit of microbial biomass by 36.88% compared to the treatment without extract application (Figure 1).
Melo et al. (2025) also reported an increase of approximately 42% in metabolic quotient (¢qCO,) with aqueous
sorghum extract application in first-year cultivation compared to the control, supporting the findings of this study.
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Figure 1. Mean metabolic quotient (¢CO,) in soybean grown with (WE) or without (NE) aqueous sorghum
extract application for weed control. Ipameri, Goids, Brazil, 2023

An increase in BSR, coupled with a significant decrease in MBC, was attributed to allelochemicals serving as a
carbon source for soil microorganisms, thereby altering microbial community composition (Xu et al., 2023).
Allelochemicals can either enhance or reduce the abundance and diversity of soil microbial communities (Zhu et
al., 2017). Mardani-Korrani et al. (2021) reported that allelopathic effects of Vicia villosa root exudates reduced
populations of Proteobacteria and Acidobacteria.

The response of the metabolic quotient (¢CO,) to allelochemicals varies depending on factors such as compound
type and concentration, soil properties, and environmental conditions (Carvalho et al., 2019). Aqueous sorghum
extract application on sorghum residues significantly reduced the mean number of viable nodules to 37 nodules
per plant, differing statistically from the 60 nodules per plant under maize residues (Table 3). This result suggests
that compounds in aqueous sorghum extract may inhibit nodulation when combined with sorghum residues but
not with maize residues. Recent studies indicate that phenolic compounds and quinones, such as sorgoleone, in
sorghum residues exert allelopathic effects that can suppress the symbiotic interaction between legumes and
nitrogen-fixing bacteria (Sowinski et al., 2020).

Finally, as illustrated in Table 2, no significant effects of the residue, extract, or their interaction on arbuscular
mycorrhizal (AM) colonization in soybean were observed. This result is consistent with recent findings suggesting
that the allelopathic influence of sorgoleone may be strongly dependent on soil and climatic conditions, especially
soil phosphorus availability (Figueiredo de Oliveira et al., 2025; de Oliveira et al., 2021). At moderate
concentrations, sorgoleone can promote mycorrhizal colonization and phosphorus uptake, while higher levels or
variations in soil management may decrease or nullify these effects (de Oliveira, 2024; Tibugari, 2024).

4. Conclusions

Aqueous sorghum extract application negatively affected soil microbial communities, reducing both soil microbial
biomass and activity, but did not influence soybean mycorrhizal colonization.

Aqueous sorghum extract application inhibited soybean—rhizobium symbiosis, particularly under sorghum
residues.

These findings indicate that sorghum crop residues and aqueous sorghum extract should be managed cautiously to
minimize adverse effects on soil biological quality.
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