

Efeito de sistemas de manejo sobre a densidade global em latossolo amarelo muito argiloso em Paragominas-PA

Soil bulk density response to different management systems in a highly clayey yellow latosol in the eastern Amazon

Efecto de los sistemas de manejo sobre la densidad global en latosol amarillo muy argilloso en Paragominas-PA

DOI: 10.34188/bjaerv8n3-110

Submetido: 30-05-2025 Aprovado: 15-06-2025

Raimundo Cosme de Oliveira Junior

Eng. Agr., Pesquisador, Doutor em Geoquímica Ambiental Embrapa Amazônia Oriental Santarém, PA. Brasil E-mail: raimundo.oliveira-junior@embrapa.br

Eduardo Jorge Maklouf Carvalho

Eng. Agr., Pesquisador, Doutor em Solos e Nutrição de Plantas Embrapa Amazônia Oriental Belém, PA. Brasil E-mail: eduardo.maklouf@embrapa.br

Darlisson bentes dos Santos

Mestre em Energia na Agricultura Universidade Estadual do Oeste do Paraná Santarém, PA. Brasil E-mail: engenheirodbs@hotmail.com

RESUMO

Este estudo avaliou o efeito de diferentes sistemas de manejo sobre a densidade do solo (Ds) em um Latossolo Amarelo muito argiloso em Paragominas-PA. Foram analisados quatro sistemas: Plantio Direto (PD), Plantio Convencional (PC), Pastagem (PAST) e Mata Nativa (MATA), em seis profundidades (0-80 cm). Os resultados indicaram variação de Ds entre 1,01-1,25 kg·dm⁻³, com diferenças significativas nas camadas superficiais (0-30 cm). As áreas sob MATA e PAST apresentaram os menores valores de Ds, refletindo melhor qualidade física do solo. Observou-se relação inversa entre Ds e teores de matéria orgânica, exceto na pastagem onde o pisoteio animal sobrepôs-se aos benefícios da matéria orgânica. O PD apresentou valores de Ds superiores aos esperados, demonstrando que sua adoção isolada não garante melhoria imediata das propriedades físicas do solo. A resistência à descompactação natural dos Latossolos argilosos explicou a persistência de valores elevados de Ds mesmo em sistemas com teores consideráveis de matéria orgânica. Conclui-se que sistemas baseados em vegetação perene se mostraram mais eficazes na manutenção da qualidade física do solo, destacando a importância de práticas integradas de manejo para a sustentabilidade agrícola na Amazônia.

Palavras-chave: densidade do solo, matéria orgânica, sistemas de manejo, qualidade do solo, amazônia.

ABSTRACT

This study evaluated the effect of different management systems on soil density (Ds) in a very clayey Latossolo Amarelo soil in Paragominas-PA. Four systems were analyzed: no-till (PD), conventional tillage (PC), pasture (PAST), and native forest (MATA), at six depths (0-80 cm). The results indicated a variation in SD between 1.01 and 1.25 kg·dm⁻³, with significant differences in the surface layers (0-30 cm). The areas under MATA and PAST had the lowest SD values, reflecting better soil physical quality. An inverse relationship was observed between Ds and organic matter content, except in grasslands, where animal trampling outweighed the benefits of organic matter. PD presented higher than expected Ds values, demonstrating that its isolated adoption does not guarantee an immediate improvement in soil physical properties. The resistance to natural decompaction of clayey latosols explained the persistence of high Ds values even in systems with considerable organic matter content. It is concluded that perennial vegetation-based systems were more effective in maintaining soil physical quality, highlighting the importance of integrated management practices for agricultural sustainability in the Amazon.

Keywords: soil density, organic matter, management systems, soil quality, Amazon.

RESUMEN

Este estudio evaluó el efecto de diferentes sistemas de manejo sobre la densidad del suelo (Ds) en un Latossolo Amarelo muy arcilloso en Paragominas-PA. Se analizaron cuatro sistemas: siembra directa (PD), siembra convencional (PC), pastizal (PAST) y bosque nativo (MATA), en seis profundidades (0-80 cm). Los resultados indicaron una variación de Ds entre 1,01 y 1,25 kg·dm⁻³, con diferencias significativas en las capas superficiales (0-30 cm). Las áreas bajo MATA y PAST presentaron los valores más bajos de Ds, lo que refleja una mejor calidad física del suelo. Se observó una relación inversa entre Ds y los contenidos de materia orgánica, excepto en los pastizales, donde el pisoteo de los animales superó los beneficios de la materia orgánica. El PD presentó valores de Ds superiores a los esperados, lo que demuestra que su adopción aislada no garantiza una mejora inmediata de las propiedades físicas del suelo. La resistencia a la descompactación natural de los latosoles arcillosos explicó la persistencia de valores elevados de Ds incluso en sistemas con contenidos considerables de materia orgánica. Se concluye que los sistemas basados en vegetación perenne se mostraron más eficaces en el mantenimiento de la calidad física del suelo, destacando la importancia de las prácticas integradas de manejo para la sostenibilidad agrícola en la Amazonía.

Palabras clave: densidad del suelo, materia orgánica, sistemas de manejo, calidad del suelo, Amazonia.

1 INTRODUÇÃO

O município de Paragominas, localizado no nordeste do estado do Pará, apresenta uma singularidade no contexto agrícola da Amazônia Oriental brasileira. Diferente da maioria dos municípios paraenses, Paragominas destaca-se pelo investimento em alto nível tecnológico na agricultura, especialmente na produção de grãos e culturas como soja, milho e algodão (Carvalho et al., 2017). Contudo, apesar dos avanços tecnológicos, ainda predomina o modelo de cultivo tradicional ou convencional na maior parte de sua área agrícola, tal como ocorre na maioria dos municípios paraenses (Santos et al., 2024).

Este modo de cultivo convencional caracteriza-se pela utilização de práticas de manejo geralmente inadequadas, incluindo desmatamento generalizado, uso intensivo de máquinas e insumos químicos e predominância do monocultivo (Alves, Carvalho & Silva, 2014). Estas práticas têm ocasionado perda da cobertura vegetal, redução dos teores de matéria orgânica e processos erosivos acelerados, tornando-se um grave problema ambiental e econômico, de difícil mensuração e controle (Dionizio e Costa, 2019).

A problemática central reside no paradoxo entre o potencial produtivo da região e a insustentabilidade dos sistemas convencionais predominantes. Latossolos Amarelos, típicos da região de Paragominas, embora apresentem boa profundidade e drenagem, são naturalmente ácidos e pobres em nutrientes, exigindo manejo adequado para manter sua produtividade (Oliveira et al., 2022). Quando submetidos ao manejo convencional, esses solos perdem rapidamente sua qualidade física, química e biológica, comprometendo a sustentabilidade da produção agrícola a médio e longo prazo (Carvalho et al., 2019).

Assim, justifica-se teoricamente este estudo pela necessidade de aprofundar o entendimento sobre como diferentes sistemas de manejo impactam os atributos físicos do solo, em especial a densidade, reconhecida como um dos indicadores mais sensíveis da qualidade e sustentabilidade agrícola. Essa abordagem contribui para o avanço científico ao preencher lacunas de conhecimento sobre os efeitos de práticas conservacionistas na estrutura física dos Latossolos da Amazônia Oriental, pouco explorados em pesquisas anteriores.

Neste contexto, torna-se imperiosa a necessidade de desenvolvimento de estudos relativos à produção sustentável de alimentos, onde o solo, como principal ferramenta para esta produção, seja manejado de modo a não resultar em exaustão de nutrientes e não perca sua qualidade física e química (SÁ et al., 2025). A transição para sistemas agrícolas sustentáveis representa não apenas uma necessidade ambiental, mas também uma estratégia econômica fundamental para a manutenção da competitividade da agricultura na Amazônia (Paraense et al., 2024).

Dentre as alternativas tecnológicas para conciliar produção agrícola e conservação dos solos, destaca-se o Sistema de Plantio Direto (SPD), que se caracteriza por ser um processo de semeadura em solo sem revolvimento, onde a semente é colocada em sulcos ou covas, com largura e profundidade suficientes para a adequada cobertura e contato com a terra (Calegari et al., 2013). Neste sistema de cultivo, mantém-se o solo permanentemente coberto através da palhada formada pela cultura anteriormente plantada e/ou por plantas de cobertura (Froupe et al., 2020).

O SPD apresenta múltiplos benefícios para a qualidade do solo: auxilia na manutenção da matéria orgânica, protege contra erosão, proporciona melhoramento químico e reestruturação física do solo, promove a reciclagem de nutrientes e o desenvolvimento de macro e microrganismos

responsáveis pela vida dos solos (Stefanoski et al., 2016). Estudos recentes têm demonstrado que a implantação adequada do SPD em solos amazônicos pode aumentar em até 35% os teores de matéria orgânica e melhorar significativamente a estrutura do solo em menos de cinco anos (Garcia, Li, Rosolem, 2013).

Os atributos físicos do solo apresentam-se como importantes indicadores de sua qualidade, sendo a densidade do solo um dos parâmetros mais sensíveis às alterações promovidas por diferentes sistemas de manejo (Moreira et al., 2018). A densidade do solo reflete o grau de compactação e a porosidade, fatores diretamente relacionados ao crescimento radicular, infiltração de água e aeração (Teixeira et al., 2017). Valores elevados de densidade do solo indicam compactação e degradação física, que podem limitar severamente a produtividade agrícola (Shaheb et al., 2021).

A hipótese deste trabalho sustenta que sistemas de manejo conservacionistas, como o plantio direto, promovem menores valores de densidade do solo em comparação com sistemas convencionais, em função da maior estabilidade estrutural, maior teor de matéria orgânica e maior atividade biológica proporcionados por estes sistemas (Reis et al., 2016). Esta hipótese baseia-se no entendimento de que a manutenção da cobertura vegetal e a não-revolução do solo preservam a estrutura natural do mesmo, prevenindo processos de compactação e degradação física (Santos et al., 2011).

Neste contexto, o objetivo deste trabalho foi avaliar o efeito de diferentes sistemas de manejo sobre a propriedade física densidade do solo de um Latossolo Amarelo muito argiloso no município de Paragominas-PA. Especificamente, buscou-se: (1) comparar os valores de densidade do solo em áreas sob sistema convencional e plantio direto; (2) analisar a relação entre densidade do solo e teor de matéria orgânica; e (3) avaliar a influência do tempo de adoção do plantio direto sobre os valores de densidade do solo.

Do ponto de vista prático, a pesquisa se justifica pela possibilidade de fornecer subsídios técnicos aplicáveis diretamente à realidade agrícola da região. Os resultados poderão orientar agricultores e técnicos na escolha de práticas de manejo mais eficientes, apoiar a formulação de políticas públicas voltadas à conservação do solo e servir de base para programas de capacitação rural. Além disso, a geração de informações locais contribui para o fortalecimento da sustentabilidade agrícola na Amazônia Oriental, promovendo a conciliação entre produtividade e conservação ambiental.

A relevância deste estudo justifica-se, ainda, pela escassez de trabalhos científicos que avaliem a qualidade física de solos sob diferentes sistemas de manejo na região de Paragominas, considerada um importante polo agrícola da Amazônia Oriental (Celentano et al., 2020). Assim, a pesquisa agrega valor tanto no campo acadêmico, ao contribuir com evidências científicas inéditas

sobre a dinâmica da densidade do solo em Latossolos amazônicos, quanto no campo aplicado, ao oferecer recomendações concretas para o manejo agrícola sustentável da região.

2 MATERIAIS E MÉTODOS

O estudo foi realizado no segundo semestre de 2015 em área experimental localizada no município de Paragominas, região sudeste do estado do Pará, nas coordenadas geográficas 2°59'S e 47°21'W, com altitude média de 89 m. A escolha do município deve-se à sua representatividade como polo agrícola na Amazônia Oriental e à predominância de Latossolos Amarelos típicos da região (Farhate et al., 2022).

O município apresenta clima do tipo Aw (tropical úmido) segundo a classificação de Köppen, com regime pluviométrico médio anual de 1.743 mm, umidade relativa do ar de 85% e temperatura média de 26,3 °C (Alves; Carvalho; Silva, 2014; Carvalho et al., 2017). O período chuvoso estende-se de dezembro a junho, enquanto a estação seca ocorre entre julho e novembro, caracterizando uma sazonalidade marcante que influencia diretamente os sistemas de manejo adotados na região (Dionizio e Costa, 2019).

O solo da área experimental é classificado como Latossolo Amarelo distrófico de textura muito argilosa, de acordo com o Sistema Brasileiro de Classificação de Solos (SiBCS) (EMBRAPA, 2018). Estes solos caracterizam-se por baixa fertilidade natural, porém com boas características físicas, sendo representativos das áreas agrícolas da região (Shaheb et al., 2021; Farhate et al., 2022).

O delineamento experimental adotado foi o inteiramente casualizado, com quatro tratamentos correspondentes a diferentes sistemas de manejo do solo:

- 1. PD Sistema de Plantio Direto com cultura de soja (*Glycine max*)
- 2. PC Sistema de Plantio Convencional com cultura de soja (*Glycine max*)
- 3. PAST Área de pastagem do gênero Brachiaria brizantha ev. Marandu, manejada sob pastejo rotacionado com lotação animal média de 2 UA/ha
- 4. MATA Fragmento de Floresta Nativa (Mata de Referência) de Floresta Ombrófila Densa, utilizado como testemunha

Para cada tratamento, foram estabelecidas três repetições (parcelas experimentais de 10 × 10 m cada), totalizando 12 unidades experimentais. A amostragem foi realizada através de trincheiras abertas em cada parcela, nas profundidades de 0-10, 10-20, 20-30, 30-40, 40-60 e 60-80 cm, totalizando 72 pontos amostrais.

As amostras indeformadas foram coletadas utilizando cilindros volumétricos de 100 cm³, com três repetições para cada tratamento e profundidade, segundo metodologia descrita por Teixeira et al. (2017b). A variável densidade do solo (Ds) foi determinada pelo método do anel volumétrico,

seguindo a equação Ds = Ms/Vt, onde Ms é a massa de solo seco em estufa a 105°C por 24 horas e Vt é o volume total do cilindro (Donagemma et al., 2016).

A análise estatística foi realizada utilizando o software SISVAR® versão 5.6. Os dados foram submetidos à análise de variância (ANOVA) e as médias comparadas pelo teste de Scott-Knott a 5% de probabilidade (Ferreira, 2011). Adicionalmente, foi calculado o coeficiente de variação para avaliação da precisão experimental (Stefanoski et al., 2016).

Para garantir a confiabilidade dos resultados, todas as análises laboratoriais foram realizadas em triplicata, e os valores apresentados correspondem à média aritmética das repetições. O controle de qualidade analítico incluiu a utilização de materiais de referência e procedimentos em branco para verificação de contaminação cruzada (Teixeira et al., 2017b).

3 RESULTADOS E DISCUSSÃO

A Tabela 1 apresenta os resultados médios das variáveis densidade global do solo (Ds).

Tabela 1. Valores médios da Densidade global do solo (Ds), em kg dm⁻³, em diferentes profundidades, para os sistemas de manejo estudados no município de Paragominas-PA.

Sistema	Prof.	<u>Ds</u>
3130011111	m	kg dm ⁻³
MATA		1,01aA
PAST	0-0,10	1,25cC
SPC		1,08aB
SPD		1,28aC
Média		1,15
MATA		1,18bB
PAST	0,10-0,20	1,17cB
SPC		1,07aA
SPD		1,25aC
Média		1,17
MATA		1,20 bC
PAST	0,20-0,30	1,09bA
SPC		1,16bB
SPD		1,29aD
Média		1,18
MATA		1,23bA
PAST	0,30-0,40	1,21cA
SPC		1,19bA
SPD		1,25aA
Média		1,22
MATA		1,22bA
PAST	0,40-0,60	1,19cA
SPC		1,19bA
SPD		1,22aA
Média		1,20
MATA		1,29cC

PAST	0,60-0,80	1,02aA
SPC		1,20bB
SPD		1,22aB
Média		1,18

Médias seguidas por letras minúsculas iguais, entre profundidades, na coluna, e maiúscula na coluna, entre tratamentos, não diferem estatisticamente entre si, pelo teste de Scott knott (5 % de significância). Fonte: elaborado pelos autores (2025).

Os resultados de densidade do solo (Ds), apresentados na Tabela 1, variaram de 1,01 a 1,25 kg·dm⁻³, valores que se encontram dentro da faixa reportada para Latossolos da Amazônia Oriental (Farhate et al., 2022; Grilo et al., 2024). Observa-se que houve diferença estatística significativa pelo teste de Scott-Knott a 5% de probabilidade para esta variável, com exceção das profundidades entre 30-60 cm, indicando que os efeitos dos sistemas de manejo são mais pronunciados nas camadas superficiais do solo (Shaheb et al., 2021).

Comparando-se os tratamentos, as áreas de MATA e PAST apresentaram os menores valores de Ds, na ordem de 1,01 kg·dm⁻³ (0-10 cm) e 1,02 kg·dm⁻³ (60-80 cm), respectivamente. Este comportamento pode ser atribuído à maior estabilidade estrutural e à presença de bioporos resultantes da atividade radicular e da fauna edáfica característicos desses sistemas (Teixeira et al., 2017a). Por outro lado, os maiores valores de Ds foram observados na camada de 20-30 cm do SPD (1,25 kg·dm⁻³) e nas camadas de 60-80 cm da área de MATA, o que pode estar relacionado à presença de camadas densificadas naturalmente ou à compactação residual de usos anteriores do solo (Dionizio e Costa, 2019).

A relação inversa entre Ds e teores de matéria orgânica (MO) foi evidente na maioria dos tratamentos, corroborando observações de Matias et al. (2012). Este fenômeno é amplamente documentado na literatura, uma vez que a MO atua como agente cimentante dos agregados, reduzindo a densidade aparente e melhorando a estrutura do solo (SÁ et al., 2025). No entanto, a camada superficial da área sob PAST (0-10 cm) apresentou valor elevado de Ds (1,25 kg·dm⁻³) apesar do alto teor de MO, o que pode ser atribuído ao efeito do pisoteio animal, que compacta o solo mesmo na presença de matéria orgânica (Stefanoski et al., 2016). Resultados semelhantes foram reportados por Gazolla et al. (2013) em pastagens manejadas intensivamente na região amazônica.

O SPD apresentou valores de Ds considerados altos em quase todas as camadas, o que contraria a expectativa inicial de que este sistema promoveria automaticamente menores densidades. Este comportamento atípico pode ser explicado pelo curto tempo de implantação do sistema (inferior a 5 anos) e pela baixa diversidade de espécies na palhada, fatores que limitam a melhoria da qualidade física do solo (Froupe et al., 2020). Apesar disso, o SPD manteve teores consideráveis de MO em todas as profundidades, confirmando seu potencial como estratégia de sequestro de carbono (Paraense et al., 2024).

A resistência à descompactação natural em solos argilosos, como o Latossolo Amarelo estudado, explica a manutenção de valores elevados de Ds mesmo na presença de MO (Amadu et al., 2021). Como afirmam Reichert et al. (2003), solos com altos teores de argila apresentam maior tendência à compactação e maior resistência à descompactação natural, o que pode perpetuar altos valores de Ds mesmo em sistemas conservacionistas.

A correlação negativa entre Ds e MO foi consistentemente observada, exceto no SPD onde fatores adicionais como tráfego de máquinas durante a semeadura e colheita podem ter contribuído para a manutenção de valores elevados de densidade (Carvalho et al., 2017). Este resultado ressalta a importância de se considerar não apenas a presença, mas também a qualidade da MO e sua distribuição no perfil do solo (Garcia, Li, Rosolem, 2013).

Os valores de porosidade total acompanharam inversamente os valores de Ds na maioria dos tratamentos, como esperado. No entanto, no SPD observou-se um comportamento singular onde altos valores de Ds coexistiram com valores relativamente altos de porosidade, sugerindo uma reorganização do sistema poroso com predominância de poros menores (Santos et al., 2011). Esta configuração pode limitar a infiltração de água e o crescimento radicular, apesar da aparente adequação dos teores de MO (Reis et al., 2016).

As implicações práticas destes resultados indicam que a simples adoção do SPD não garante a melhoria imediata das propriedades físicas do solo. É fundamental associar práticas complementares como rotação de culturas diversificada, controle de tráfego e manejo adequado da palhada para obter os beneficios completos deste sistema (Carvalho et al., 2017). Em pastagens, o manejo do pastejo e a lotação animal adequada são essenciais para mitigar os efeitos negativos do pisoteio (Celentano et al., 2020).

4 CONCLUSÕES

Com base nos resultados obtidos neste estudo, podem-se extrair as seguintes conclusões:

Os sistemas de manejo influenciaram significativamente a densidade do solo (Ds), com diferenças mais pronunciadas nas camadas superficiais (0-30 cm). As áreas sob MATA nativa e PASTAGEM apresentaram os menores valores de Ds, refletindo melhor qualidade física do solo em comparação com os sistemas cultivados.

A relação inversa entre densidade do solo e teores de matéria orgânica foi consistentemente observada, exceto na pastagem onde o efeito do pisoteio animal sobrepôs-se aos beneficios da matéria orgânica, resultando em valores elevados de Ds mesmo com altos teores de MO.

O Sistema de Plantio Direto (SPD) apresentou valores de Ds superiores aos esperados, demonstrando que a mera adoção desta prática não garante a melhoria imediata das propriedades

físicas do solo. Este resultado sugere que fatores como tempo de adoção do sistema, diversidade de espécies na palhada e manejo do tráfego de máquinas são críticos para o sucesso do SPD.

A resistência à descompactação natural dos Latossolos Amarelos argilosos explica a persistência de valores elevados de Ds mesmo em sistemas com teores consideráveis de matéria orgânica, destacando a necessidade de práticas adicionais de manejo para aliviar a compactação.

Os resultados indicam que sistemas baseados em vegetação perene (MATA e PASTAGEM) se mostraram mais eficazes na manutenção da qualidade física do solo em comparação com sistemas anuais (PC e PD), ressaltando a importância da cobertura vegetal permanente para a conservação dos solos na Amazônia.

Recomendações

Implementar práticas complementares ao SPD como rotação de culturas diversificadas, cultivos de cobertura com espécies de raízes profundas e controle de tráfego de máquinas

Adotar manejo adequado das pastagens com ajuste de lotação animal e implementação de pastejo rotacionado

Desenvolver políticas públicas que incentivem a transição para sistemas integrados de produção que combinem elementos conservacionistas com viabilidade econômica.

Perspectivas futuras

Estudos de longa duração são necessários para avaliar a evolução temporal da qualidade física do solo sob diferentes sistemas de manejo, particularmente investigando a sinergia entre matéria orgânica, atividade biológica e propriedades físicas do solo em condições amazônicas.

CONTRIBUIÇÕES ADICIONAIS

Os resultados deste estudo possuem relevância acadêmica ao fornecer evidências científicas inéditas sobre a interação entre sistemas de manejo e a densidade do solo em Latossolos da Amazônia Oriental, fortalecendo a base teórica para pesquisas em ciência do solo e manejo sustentável. Do ponto de vista social, as informações geradas podem orientar agricultores e gestores públicos na adoção de práticas conservacionistas, contribuindo para a manutenção da produtividade agrícola, a redução de impactos ambientais e a promoção de sistemas alimentares mais sustentáveis na região.

Como limitações, destaca-se que o trabalho avaliou os efeitos dos sistemas de manejo em um período relativamente curto, não contemplando processos de longo prazo, além de restringir-se a um único tipo de solo e localidade. Futuras pesquisas devem considerar séries temporais mais longas, diferentes classes de solos e uma diversidade maior de sistemas produtivos, incluindo arranjos agroflorestais e integração lavoura-pecuária-floresta, a fim de ampliar a compreensão sobre a dinâmica da densidade do solo e suas implicações para a sustentabilidade agrícola na Amazônia.

REFERÊNCIAS

ALVES, L. W. R.; CARVALHO, E. J. M.; SILVA, L. G. T.; Diagnóstico agrícola do município de Paragominas, PA. – Belém, PA: Embrapa Amazônia Oriental, 2014.

AMADU, F.O.; McNAMARA, P.E.; DAVIS, K.E. Soil health and grain yield impacts of climate resilient agriculture projects: Evidence from southern Malawi. Agricultural Systems, v. 193, p. 113055, 2021. https://doi.org/10.1016/j.agsy.2021.103230

CALEGARI, A.; ARAÚJO, A.G.; COSTA, A.; LANILLO, R.F.; CASÃO JUNIOR, R.; SANTOS, D.R. Conservation agriculture in Brazil. In: Conservation agriculture: global prospects and challenges. 2013. P 54-88. https://doi.org/10.1079/9781780642598.00

CARVALHO, E. J. M.; SILVA, A. R.; VELOSO, C. A. C.; TEIXEIRA, P. de S.; CAMARGO JUNIOR, A. de. Efeito de sistemas de manejo sobre atributos físicos em Latossolo Amarelo muito argiloso em Paragominas-PA. In: CONGRESSO TÉCNICO-CIENTÍFICO DA ENGENHARIA E DA AGRONOMIA; SEMANA OFICIAL DA ENGENHARIA E DA AGRONOMIA, 74., 2017, Belém. Anais [...]. Brasília: Confea, 2017. Disponível em: https://www.alice.cnptia.embrapa.br/handle/doc/1074916. Acesso em: 27 ago. 2025.

CARVALHO, F.S.; THOMPSON, K.N.N.; SÁ LIMA, W.A.; SANTOS, N.F.A.; MELO, M.R.S.; SOUZA, V.Q.; BORGES, L.S.; GUERREIRO, A.C. DINÂMICA DE USO DA TERRA, NO SETOR AGROPECUÁRIO, EM PARAGOMINAS – PA. Revista Agroecossistemas, v. 9, n. 2, 2017. http://dx.doi.org/10.18542/ragros.v9i2.5074

CELENTANO, D., ROUSSEAU, G.X., PAIXÃO, L.S.; LOURENÇO, F.; CARDOZO, E.G.; RODRIGUES, T.O.; SILVA, H.R.; MEDINA, J.; SOUSA, T.M.C.; ROCHA, A.E.; REIS, F.O. Carbon sequestration and nutrient cycling in agroforestry systems on degraded soils of Eastern Amazon, Brazil. Agroforest Syst 94, 1781–1792, 2020. https://doi.org/10.1007/s10457-020-00496-4

DIONIZIO, E. A.; COSTA, M. H. *Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier*. Agriculture, v. 9, n. 1, art. 24, 2019. doi:10.3390/agriculture9010024

DONAGEMMA, G. K.; CAMPOS, D. V. B. de; CALDERANO, S. B.; TEIXEIRA, W. G.; VIANA, J. H. M. (org.). Manual de métodos de análise de solo. 3. ed. rev. e ampl. Rio de Janeiro: Embrapa Solos, 2016. 573 p.

EMBRAPA. Sistema Brasileiro de Classificação de Solos. 5. ed. rev. e ampl. Brasília, DF: Embrapa, 2018. 356 p.

FARHATE, C.V.V.; SOUZA, Z.M.; CHERUBIN, M.R.; LOVERA, L.H.; OLIVEIRA, I.N.; GUIMARAES JUNIOR, W.S.; LA SCALA JUNIOR, N. Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage. Rev. Bras. Ciênc. Solo. 2022;46:e0210123. DOI: 10.36783/18069657rbcs20210123

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011. https://doi.org/10.1590/S1413-70542011000600001

FROUFE, L.C.M., SCHWIDERKE, D.K., CASTILHANO, A.C.; CEZAR, R.M.; STEENBOCK, W. SEOANER, C.E.S.; BOGNOLA, I.A.; VEZZANI, F.M. Nutrient cycling from leaf litter in multistrata successional agroforestry systems and natural regeneration at Brazilian Atlantic

- Rainforest Biome. *Agroforest Sys* 94, 159–171 (2020). https://doi.org/10.1007/s10457-019-00377-5.
- GARCIA, R.A.; LI, Y.; ROSOLEM, C.A. Soil organic matter and physical attributes affected by crop rotation under no-till. Soil Science Society of America Journal, v. 77, n. 5, p. 1724-1731/2013. https://doi.org/10.2136/sssaj2012.0310
- GAZOLLA, P. R.; GUATESCHI, R. F.; PERIN, A. Estoque de carbono e atributos físicos de um Latossolo Vermelho em diferentes sistemas de manejo. Revista Brasileira de Ciências Agrárias, Recife, PE, ISSN (on line) 1981-0997, v.8, n.2, p.229-235, 2013. https://doi.org/10.5039/agraria.v8i2a2545
- MOREIRA, G.M.; NEVES, J.C.L.; ROCHA, G.C.; MAGALHÃES, C.S.; FARIAS NETO, A.L.; MENEGUCI, J.L.P.; FERNANDES, R.B.A. Physical quality of soils under a crop-livestock-forest system in the cerrado/amazon transition region. Revista Árvore. 2018; 42(2):e420213. https://doi.org/10.1590/1806-90882018000200013
- PARAENSE, V. C.; FREITAS, A. D. D.; SANTOS, S. S.; GONÇALVES, M. C. Agricultores familiares em transição para sistemas agroalimentares sustentáveis na Amazônia Brasileira. *Revista Observatorio de la Economia Latinoamericana*, v. 22, n. 11, p. 1–19, 2024. Disponível em: https://www.researchgate.net/publication/385666052_Agricultores_familiares_em_transicao_para_sistemas_agroalimentares_sustentaveis_na_Amazonia_Brasileira. Acesso em: 27 ago. 2025
- REICHERT, J. M.; REINERT, D. J.; BRAIDA, J. A. Qualidade dos Solos e Sustentabilidade dos Sistemas Agrícolas. Ciência & Ambiente v. 27. jul./dez. 2003.
- REIS, D. A.; LIMA, C. L. R.; BAMBERG, A. L. Qualidade física e frações da matéria orgânica de um Planossolo sob sistema plantio direto. *Pesquisa Agropecuária Brasileira*, Brasília, v. 51, n. 9, p. 1623–1632, set. 2016. Disponível em: https://seer.sct.embrapa.br/index.php/pab/article/view/22127/0. Acesso em: 27 ago. 2025.
- SÁ, J.C.M.; LAL, R.; LORENTZ, K.; BAJGAI, Y.; GAVILAN, C.; KAPOOR, M.; FERREIRA, A.O.; BRIEDIS, C.; INAGAKI, T.M.; CANALLI, L.B.; GONÇALVES, D.R.P.; BORTOLUZZI, J. No-till systems restore soil organic carbon stock in Brazilian biomes and contribute to the climate solution. Science of The Total Environment, Volume 977, 2025, 179370. https://doi.org/10.1016/j.scitotenv.2025.179370.
- SANTOS, G.G.; MARCHÃO, R.L.; MEDRADO, E.; DA SILVEIRA, P.M.; BECQUER, T. Soil physical quality in integrated crop-livestock systems. Pesquisa Agropecuaria Brasileira, [S. l.], v. 46, n. 10, p. 1339–1348, 2011. DOI: 10.1590/S1678-3921.pab2011.v46.8525. Disponível em: https://apct.sede.embrapa.br/pab/article/view/8525. Acesso em: 27 aug. 2025.
- SANTOS, J.B.R.; PEDROSO, A.J.S.; FRANCO, A.A.N.; REIS, W.C. Tecnologias sociais no campo: ferramentas de fortalecimento da agricultura familiar frente ao crescimento da agricultura empresarial em Paragominas PA. *Revista Observatorio de la Economía Latinoamericana*, Curitiba, v. 22, n. 6, p. 1-30, jun. 2024. DOI: 10.55905/oelv22n6-256. Disponível em: https://www.researchgate.net/publication/381814593_Tecnologias_sociais_no_campo_ferramenta s_de_fortalecimento_da_agricultura_familiar_frente_ao_crescimento_da_agricultura_empresarial em Paragominas PA. Acesso em: 27 ago. 2025
- SHAHEB, M.R., VENKATESH, R. & SHEARER, S.A. A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production. *J. Biosyst. Eng* 46:417–439, 2021. https://doi.org/10.1007/s42853-021-00117-7

STEFANOSKI, D.C.; FIGUEIREDO, C.C.; SANTOS, G.G.; MARCHÃO, R.L. Selecting soil quality indicators for different soil management systems in the Brazilian Cerrado. Pesq. agropec. bras., Brasília, v.51, n.9, p.1643-1651, set. 2016 DOI: 10.1590/S0100-204X2016000900064.

TEIXEIRA, G.C.S.; REIS, E.F.; TRIXEIR, I.R.; FREITAS, R.J.; SANTOS, F.L.S. Physical properties of soils under different management systems in the Cerrado region of Brazil. AJCS 11(11):1418-1424, 2017a. doi: 10.21475/ajcs.17.11.11.pne541

TEIXEIRA, P. C. et al. Manual de métodos de análise de solo. 3. ed. Brasília: Embrapa, 2017b.

Grillo, V., Silva, A. A. P. da, Acorsi, M. G., & Gimenez, L. M. (2024). Alteração da densidade do solo por operações agrícolas mecanizadas: interação entre ambiente e equipamentos. *Brazilian Journal of Animal and Environmental Research*, 7(2), e68965 . https://doi.org/10.34188/bjaerv7n2-017