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Fresh fruit is an important dietary source of nutrients and health-related compounds, also contributing to food security and
economic development worldwide. Postharvest losses exert a huge negative impact on fruit quality, consumers' acceptance,
economic value, and market availability. High-throughput techniques have contributed to elucidating the molecular
mechanisms underlying fruit ripening and senescence. However, the application of these findings to develop conservation
technologies remains scarce. The current systematic review is aimed at evaluating the literature on omics studies for sensory
properties, shelf-life duration, microbiological and physiological quality outcomes during fruit ripening, postharvest
conservation, and ex planta senescence. Four databases were investigated from 2014 to 2025, and data from 171 studies were
compiled, converted to Gene Ontology terms, and analyzed using multivariate methods. The results reinforced the key role of
phytohormones in climacteric and nonclimacteric fruit conservation. Ethylene and abscisic acid–controlled processes are the
main contributors to senescence in climacteric and nonclimacteric fruit, respectively. Among the outcomes investigated, most
omics studies assessed the effects of conservation technologies on fruit quality and sensory properties. After harvest,
carbohydrate and reactive oxygen metabolic pathways are important contributors to conservation strategies. Epigenetic
modifications, such as DNA methylation and histones posttranslational changes, are promising targets for novel conservation
techniques. Further research on the impact of conservation technologies on fruit genomic, transcriptional, and metabolic
changes may contribute to devising novel, paradigm-changing postharvest alternatives.
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1. Introduction

Fresh fruit is an important source of nutrients and health-
related compounds, contributing to food security and eco-
nomic growth worldwide. They are considered critical
sources of essential vitamins, natural antioxidants, minerals,
and dietary fibers, preventing and relieving nutritional ail-
ments and deficiencies [1]. However, after harvest, fruit con-
tinues to undergo ripening and senescence processes [2],
leading to physiological changes that affect their sensory,

shelf life, microbiological, and metabolic properties. Several
factors contribute to fruit conservation after removal from
the plant, including preharvest factors, such as fertilization,
irrigation, soil conditions, and plant spacing, and posthar-
vest, transport, and storage conditions. Due to their highly
perishable nature, fresh fruit and vegetables are the largest
contributors to food loss and waste, reaching up to 50% of
global production [3], which is estimated to represent
approximately a third of world food production [3]. Thus,
increasing fruit conservation would contribute to food
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security worldwide, promoting sustainability and reducing
production costs. The most sought-after fruit conservation
outcomes may be summarized in shelf-life period, mainte-
nance of physiological and sensory quality, and avoidance
of microbiological spoilage [3, 4]. These outcomes are
mainly controlled by developmental processes associated
with postripening and senescence metabolic changes, with
the exception of microbiological colonization that is deter-
mined by environmental conditions after primary produc-
tion and harvesting, although also influenced by
endogenous developmental factors [5].

Fruits undergo several orchestrated physiological, struc-
tural, and metabolic processes from flowering to senescence,
leading to the differentiation of the ovary and its associated
structures into fruit, via cycles of cell division and enlarge-
ment [6, 7]. Simultaneously, fruits expand by water accumu-
lation in the vacuoles, driven by the storage of hydrophilic
compounds, and activate several metabolic pathways con-
trolling the biosynthesis of specialized metabolites responsi-
ble for fruit sensory properties [6, 7]. Traditionally, the
progression of respiration rates and hormone accumulation
has been used to classify fleshy fruit ripening in climacteric
and nonclimacteric. Typically, in climacteric fruit, respira-
tion rates increase sharply, and ethylene biosynthesis is
induced in the later stages of ripening (Figure 1a) [6]. In
contrast, in nonclimacteric fruit, respiration rates decline
toward the end of ripening, and ethylene is not required to
complete the process, although responses to the phytohor-
mone might be present (Figure 1b) [6, 7]. Abscisic acid
(ABA) is hypothesized to induce ripening and senescence
in nonclimacteric fruit [8, 9]. Therefore, climacteric and
nonclimacteric fruits display both conserved and divergent
physiological and metabolic processes during ripening and
after harvest [6, 10].

Traditionally, the processes responsible for ripening and
senescence after harvest can be delayed or reduced by
manipulating environmental conditions, such as manage-
ment of temperature, relative humidity, and atmosphere,
and by the application of chemical and/or physical treat-
ments [3, 5, 11]. Along with temperature and atmosphere
control, advanced postharvest technologies include physical
treatments, such as the application of pulsed electric fields
(PEFs) and cold plasma (CP), and chemical methods, such
as active coating and vacuum impregnation [3, 11, 12].
The application of conservation technologies affects fruit
metabolism and physiology, not only modifying targeted
pathways but also interfering with biological processes that
may lead to undesired consequences, such as chilling injury
(CI), aroma production, rotting, and browning [12–16]. The
complex nature of developmental and metabolic processes
underlying fruit ripening and senescence has benefited
greatly from integrated, large-scale studies that allow con-
current surveying of thousands of information-transmitting
and effector molecules.

Recently, technical advances allowed the simultaneous
investigation of the complete set of molecular players
involved in biological processes via high-throughput tech-
nologies. These technologies are collectively known as
“omics” and include the global study of the genome and epi-

genome, transcriptome, proteome, and targeted or untar-
geted metabolome, along with machine learning and high-
throughput phenotyping [17, 18]. The blueprint of an organ-
ism is given by the genes in its genome and its higher order
organization, determined by the chemical status of the DNA
and histones, which controls its accessibility to transcription
and replication machinery. The set of genes transcribed at a
given time, in a specific cell or tissue, and under given con-
ditions constitutes the transcriptome, which also includes
messenger (mRNA) and small interfering RNAs (siRNAs).
The products of mRNA translation are the global set of pro-
teins or the proteome. These molecules are considered the
main repositories and effectors of genetic information,
which in turn control the growth, development, and meta-
bolic processes of the organism. The metabolome consists
of the whole set of metabolites in the organism, targeted to
a given chemical class or global (untargeted). Other high-
throughput techniques investigate the global expression of
phenotypes (phenomics), ion concentrations (ionome), lipid
profiling (lipidome), and others [19]. The combination of
two or more large-scale studies is labeled “multiomics.”
The integration of high-throughput multiomics data may
provide novel insights and expand our understanding of
the complex physiological processes controlling fruit charac-
teristics under postharvest conditions, contributing to
enhance food security, reduce fruit loss, and promote avail-
ability and accessibility to quality products.

The knowledge on the biology of fruit ripening and
senescence and the technological advances of conservation
techniques increased greatly in recent years. However, bio-
logical and technological data are not unified and lack asso-
ciation with conservation outcomes of interest. Moreover, a
significant portion of data arising from integrative studies
remains detached from prospective technologies aiming at
improving postharvest conservation. To contribute to nar-
rowing this knowledge gap, the current work is aimed at sys-
tematically reviewing omics studies on fruit ripening and
postharvest to determine the impact of developmental and
metabolic pathways on sensory, microbiological, metabolic
(quality), and shelf-life aspects of fruit after harvest.

2. Methods

2.1. Search Strategy and Inclusion/Exclusion Criteria. Sys-
tematic review and meta-analyses were performed according
to Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) and International Food Informa-
tion Services (IFIS) Good Review Practice guidelines. Ini-
tially, we built a cache of 20 relevant articles to extract the
primary search terms related to the research question. The
list of terms included synonyms, alternative spellings, and
truncations. Three search strings were assembled, consisting
of terms related to (i) omics and high-throughput tech-
niques, (ii) fruit and their botanical specifications, and (iii)
ripening and postharvest conservation. Strings were con-
nected using operators “AND” and “AND/OR.” Data were
collected from 2014 to 2025, from queries of Scopus, Web
of Science, ScienceDirect, and PubMed databases. Refer-
ences were stored and managed using Zotero 6.0.26.
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Figure 1: Developmental and physiological processes responsible for fruit growth, ripening, and senescence in (a) climacteric and (b)
nonclimacteric fruits. Biological processes are represented by their corresponding Gene Ontology (GO) terms.
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Inclusion criteria were publication period, in peer-reviewed
scientific journals, and written in English. Studies with
tomato (Solanum spp.) and its wild relatives, in planta fruit
ripening and senescence, and those that did not provide pri-
mary data were excluded. A list of the 10 most representative
fruit species, the investigated postharvest technologies, and
the outcomes is presented in Table 1.

2.2. Data Selection and Processing. After an initial automated
filtering for redundant and nonaccessible works, the
retrieved documents were manually checked for duplicates
and irrelevant results that were removed. The second round
of screening retained and classified the publications accord-
ing to the inclusion criteria. Manuscripts that did not pro-
vide access to primary data were eliminated. The pipeline
and search results are schematically presented in Figure 2.
Quality assessment was performed by appraising relevance,
reliability, validity, and applicability of the evidence, and risk
of bias was graphically represented using the package robvis
[20] in the statistical computing environment R 4.4.1 [21].
Manuscripts with high overall risk of bias were removed
from further analysis.

2.3. Evidence Synthesis and Meta-Analyses. Data synthesis
was performed using a structured framework consisting of
four outcomes: (1) sensory, (2) shelf-life, (3) microbiological,
and (4) physiological quality for climacteric and nonclimac-
teric fruits (Tables 2 and 3). Evidence tables were built
including the outcome, omics method, experimental design,
and a representation of the direction of the impact (positive
or negative) on each outcome. The categories and classes in
the evidence table were constructed using Gene Ontology
(GO) terms [160]. GO terms for genes characterized by
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways were retrieved using KEGGSOAP [161] in R 4.4.1. Cat-
egories included in the evidence table were defined
according to the GO category under “Biological Process”
and “Cellular Component” classifications. Significance levels
were retrieved from the original publications. The studies
were weighed according to their reliability to provide valid
estimates of cumulative information. Inverse variance was
used to measure the study precision, consisting of a compos-
ite calculation of the global variance and sample size; there-
fore, studies with larger sample sizes and smaller
experimental errors were considered more reliable and
received higher weights. To maintain the inferential proper-
ties of the studies, global data was normalized by logarithm
transformation.

GO data from the manuscripts were used in global mul-
tivariate analyses, using term frequency, dispensability, and
uniqueness. The association between the co-occurring GO
terms and the outcomes was investigated by clustering anal-
yses using z-score normalized data retrieved from the publi-
cations. The adjacency matrix between the GO terms and
the outcomes was used to construct the relevance network
for all the data, using a threshold of 0.50, with igraph [162]
in R. Logistic regression model (binomial) between GO
terms and postharvest conservation strategies and odds ratio
(OR) were calculated in R. The investigated outcomes have

different time span and quantitative measures for the inves-
tigated fruit species; therefore, to provide a broader perspec-
tive on the influence of developmental and physiological
process, regression modes were generated for each fruit.
Multivariate analyses were carried out using sparse partial
least square–discriminant analysis (sPLS-DA) for the biolog-
ical process GO terms using the fruit species as discriminant
with the mixOmics package [163] in R 4.4.1. The conserva-
tion methods used in the studies included in the meta-
analysis were evaluated according to the technology readi-
ness level (TRL) of strategy, estimated based on a scale from
1 to 9 with 1 being the least and 9 most mature technology,
using an online tool (TRL Calculator) developed by the
European Space Agency (ESA) and available online (http://
trlcalculator.esa.int/).

3. Results

3.1. Systematic Review. The literature searches identified a
total of 13,111 articles from four investigated databases.
Before conducting a detailed screening, duplicate and ineli-
gible records were removed, resulting in 8246 (62.9%)
records submitted for automated and manual investigation.
From these, a total of 634 (7.7%) records were removed,
and a further 352 (4.3%) records could not be retrieved,
resulting in 7260 (88%) records assessed for eligibility
(Figure 2a). Individual analyses of these records resulted in
the elimination of review articles, publications without pri-
mary data or outside the scope, written in languages other
than English, or other motives, such as retraction. The
remaining publications were investigated by relevance, reli-
ability, validity, applicability of the evidence, and risk of bias
(Figure S1), and 171 studies matching the inclusion criteria
were considered in the meta-analyses.

In the period investigated, the number of published
omics studies assessing fruit postharvest increased linearly,
reaching 1633 papers in 2022 (Figure 2b). Globally, China
was the country with the highest number of publications in
the period, producing more than 4000 articles on the subject
in 10 years, followed by the United States, Spain, and Italy
(Figure 2c). India and Brazil were the countries from the
global south producing the highest number of articles in
the period (Figure 2c). The number of articles investigating
climacteric fruit was slightly higher (5459, 56.6%) than those
on nonclimacteric (4178, 43.4%), not considering the studies
investigating both fruit types (Figure 2d). Considering that
work with tomato (Solanum spp.) and its wild relatives was
not included, apple was the most frequently investigated cli-
macteric fruit, followed by banana and peach, whereas
grapes and strawberries were the most prevalent nonclimac-
teric fruit in omics studies (Figure 2d). For both classes of
flesh fruit, transcriptome studies were the most frequent,
followed by metabolome in climacteric (Figure 2e) and
genome in nonclimacteric fruit (Figure 2f). Integrative, mul-
tiomics studies were more frequently retrieved for noncli-
macteric fruit (Figure 2f). Tables 2 and 3 summarize the
studies included in the meta-analyses, describing the fruit
species, biological questions, the used omics techniques,
and the conservation outcome for climacteric and
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nonclimacteric fruit, respectively. Further details on the
studies included in the meta-analysis and their association
with the outcomes investigated are presented in the follow-
ing sections.

3.2. Temperature Control. Temperature is considered one of
the most important external factors affecting fruit ripening
and postharvest conservation [164, 165]. Accordingly, most
studies included in the systematic review discuss the effect
of temperature on postharvest conservation (Tables 2 and
3). Climacteric fruit undergo rapid physiological decay and
microbiological contamination during transportation and
storage at ambient temperature [166]. Apple, pear, and stone
fruit are the prevalent species in postharvest studies investi-
gating the effects of temperature on conservation (Table 2).
High-throughput studies demonstrated that postharvest
conservation under low temperature affects ethylene, auxin,
and gibberellin signal transduction pathways, cell wall
enzyme metabolism, specialized metabolism pathways, and
abiotic stress response pathways in climacteric fruit ([164,
165]; [24]).

Although not as susceptible to high temperature-
induced quality loss, nonclimacteric fruit displays several
physiological modifications under low temperature [167].
A smaller number of studies investigated the effects of tem-
perature on nonclimacteric fruit (Table 3). In this class of
fruit, cold storage after harvest mostly affects biotic and abi-
otic stress pathways and primary metabolic processes, such
as gluconeogenesis and starch biosynthesis, photosynthesis,
translation and processing of mRNA, intracellular lipid
transport, protein posttranslational processing, and intracel-
lular membrane trafficking [2, 69, 93].

Extensive transcriptional reprogramming caused by
temperature brings about developmental and metabolic
responses [164, 165]. Low temperatures decrease cellular
metabolic rates, delay senescence, reduce microbial growth,
and can contribute to retaining the quality of fruits after har-
vest. However, cold storage may also induce several physio-
logical syndromes leading to quality loss, in a condition
called CI [57, 168]. CI is a physiological disorder of horticul-
tural products observed in susceptible fruit tissues caused by
exposure to temperatures higher than the freezing point,
thus differing from freezing damages. CI-inducing tempera-

tures are variable and dependent on the fruit species;
although, in general, susceptible tropical fruit may show
symptoms at temperatures lower than 12°C, whereas in
more resistant species, the syndrome will manifest itself
under 5°C–8°C [168].

Storage temperature and period are considered the most
important factors contributing to the appearance of CI in
fruit after harvest [57, 168]. In general, CI is caused by chlo-
roplast and mitochondria expansion and disintegration, a
decrease in the number and size of starch grains, and accu-
mulation of lipid bodies in chloroplasts and nuclear chroma-
tin [57, 168]. These cellular processes result in a wide range
of metabolic disorders, resulting in ripening impairment and
flavor and aroma loss [57, 164, 165, 168]. On the outside, CI
fruit may exhibit peel abnormalities, such as depression and
discoloration, water staining, peel and/or pulp browning,
and pulp woodiness or flocculation [169]. Additionally, CI
also reduces fruit resistance to microbial pathogens, shorten-
ing shelf life after returning to room temperature [57, 168].
Cold-induced lesions in plum were reduced by exogenous
application of methyl jasmonate (MeJA), via modulation of
the expression of genes and accumulation of metabolites
involved in oxidative homeostasis [170]. Despite its injury-
inducing potential, continuous or intermittent conservation
at low temperature remains one of the most important post-
harvest techniques applied to fruit; in-depth characterization
of specific physiological and metabolic responses using high-
throughput methodologies may contribute to devising the
most effective conditions for distinct species. Comprehen-
sive high-throughput studies have helped to evaluate the
effectiveness of the exogenous application of compounds
inducing protective pathways before and during cold stor-
age, including melatonin (MT), jasmonates, and salicylic
acid (SA) [13–15, 73, 76, 151, 171, 172]. These integrative
approaches allow the identification of protective pathways
and provide information on their induction, which may con-
tribute to devising novel postharvest conservation
technologies.

The differential regulation of genes involved in chroma-
tin structure in response to low temperatures during storage
has been demonstrated in apples and other fruit after harvest
[24, 57, 173, 174]. Moreover, extensive transcriptional repro-
gramming has been associated with cold storage [24, 174],

TABLE 1: List of fruit species, principal postharvest technologies, and conservation outcomes selected for the systematic review.

Fruit (scientific name) Technology Outcome

Climacteric

Apple (Malus spp.) Physical treatment Shelf life (time)

Banana (Musa spp.) Atmosphere manipulation Sensory

Peach (Prunus persica L.) Temperature manipulation Quality (physiological)

Pear (Pyrus spp.) Chemical treatment Microbiological

Persimmon (Diospyros spp.)

Nonclimacteric

Cherry (Prunus avium L.)

Citrus (Citrus spp.)

Cucurbitaceae

Grape (Vitis spp.)

Strawberry (Fragaria spp.)

5International Journal of Food Science
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suggesting a causal relationship between chromatin remod-
eling and large-scale transcriptome modifications. In fact,
drastic changes in plant developmental programs have been
associated with temperature shifts, such as vernalization,
germination induced by stratification, and thermomorpho-
genesis [78, 156, 175, 176]. Epigenetic events involved in
fruit ripening are still a scientific gap. The main changes
are known, but there is no development of technological
interventions based on this knowledge, especially from a
postharvest perspective. These observations hint at the pos-
sibility of developing novel conservation technologies capa-

ble of inducing large-scale transcriptional reprogramming
via temperature manipulation.

3.3. Atmosphere Manipulation. At room temperature, atmo-
sphere composition consists of variable amounts of water
vapor, O2, CO2, N2, Ar, and other minor components
[177]. The ratio of gaseous components of the atmosphere
can be altered under contained environments to prevent
fruit senescence after harvest. Technologically designed
changes in the relative contents of atmospheric gases around
fruits may occur during storage, in the form of controlled
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Figure 2: Continued.
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atmosphere (CA) storage, or during packaging, as modified
atmosphere (MA) [177]. Currently, CA and MA technolo-
gies have undergone considerable refinements, giving rise
to new approaches, such as dynamic CA and smart MA.
These technologies employ sensor-based analyses of fruit
responses to storage conditions coupled with automated
adjustments of O2 levels during storage according to physio-
logical modifications. Frequently, sensors in dynamic CA

and smart MA monitor ethanol production, fruit respiration
rates, and chlorophyll fluorescence.

The main biological targets of atmosphere manipulation
to preserve fruit after harvest are cellular respiration, redox
system activation, and microbial growth impairment [103].
In general, recommended conditions for fruit MA packing
consist of O2 levels ranging from 1% to 5%, whereas moder-
ate CO2 concentrations (10%–20%) are advised for

4100

1900

310

(c)

Non-climacteric
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Climacteric
n = 5459

Grape
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Figure 2: Continued.
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microbial prevention. In contrast, CA and dynamic CA con-
ditions are highly variable and depend on the species [177].
Climacteric pome fruits, like apples, pears, and crab apples,
are stored under “double-low gas” conditions, ranging from
1% to 3% O2 and 1% to 3% CO2, under low temperatures
[177, 178]. In pears, browning can be inhibited and shelf life
extended up to 10% O2 and CO2 [177, 178]. In contrast,
drupes, such as peaches, apricots, and dates, are generally
stored at O2 and CO2 concentrations ranging from 3% to
15%, whereas berries are usually stored under single (O2)
or double (O2 and CO2) high gases [103, 177]. Compound
fruits, including pineapple and dragon fruit, can also be
effectively preserved under double-low gas conditions
[177]. The frequency of studies on climacteric and noncli-
macteric fruit under CA was similar (Tables 2 and 3), and
the biological processes frequently affected by atmosphere
manipulation after harvest consist of oxygen and reactive
oxygen species (ROS) metabolism, tricarboxylic acid (TCA)
cycle, lipid and jasmonic acid pathways, and the γ-aminobu-
tyric acid (GABA) metabolism. In climacteric and noncli-

macteric fruit, the interplay between carbohydrate and
lipid metabolic pathways is affected under atmosphere
manipulation conditions [32, 155, 177].

The key regulator of fruit ripening and senescence, the
phytohormone ethylene, naturally occurs in the gaseous
form. Thus, several atmosphere manipulation techniques
block its action by inhibition, absorption, or oxidation. The
inhibitor 1-methylcyclopropene (1-MCP), the absorbent
zeolite, and catalytic oxidants KMnO4, ozone (O3), and
TiO2 can be used to inhibit its action or scavenge the gaseous
hormone after harvest [103]. Ethylene scavengers are often
used in combination with other atmosphere and tempera-
ture manipulation techniques. Among the included studies,
the effects of CA on fruit postharvest conservation were
most frequently investigated in climacteric fruit (Table 2).
Recently, a study with wild type and a nonripening tomato
mutant has identified differences in several key genes con-
trolling ripening and demonstrated that the differences in
their transcription rate are positively regulated by the
expression of their corresponding lncRNAs [179]. The
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Figure 2: (a) Schematic representation of PRISMA flow diagram for the systematic review of omics studies of fruit postharvest conservation
reporting on sensory, quality, shelf life, and microbiological aspects from 2014 to the present. Summary of the investigated studies by (b)
publication year and (c) country of origin. (d) Pie chart of the species of climacteric and nonclimacteric fruit and type of omics study for
(e) climacteric and (f) nonclimacteric fruits.

8 International Journal of Food Science

 1796, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/ijfo/9963581 by C

esar L
uis G

irardi - E
M

B
R

A
PA

 - E
m

presa B
rasileira de Pesquisa A

gropecuaria , W
iley O

nline L
ibrary on [29/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 2: Summary of studies with climacteric fruit included in the analyses. The study target, used omics techniques, and outcome are
described.

Study Outcome Reference

Fruit Target Omics technique

Apple

Firmness loss during storage is associated with
expression of an α-L-arabinofuranosidase

regulated by ethylene

Transcriptome, phenomics (physicochemical
and sensory analyses)

Quality,
sensory, shelf

life
[22]

Changes in peel plastid structure during
ripening

Phenomics (ultrastructural analyses)
Sensory,

quality, shelf
life

[23]

Conservation techniques exert distinct effects
on gene expression

Transcriptome, phenomics (physicochemical
and sensory analyses)

Quality, shelf
life

[24]

Xyloglucan endotransglucosylase/hydrolase
gene family expression during ripening and

softening
Transcriptome

Sensory,
quality, shelf

life
[25]

Apple texture in multifamilies using genome-
wide association (GWA)

Genome (GWA)
Quality, shelf

life
[26]

Hormone-controlled anthocyanin production
after harvest

Transcriptome
Sensory,
quality

[27]

Overexpression of an anthocyanin regulator
basic helix–loop–helix (bHLH) transcription
factor accelerates ethylene biosynthesis and

senescence

Genome (functional analyses)
Sensory,

quality, shelf
life

[28]

Association between anthocyanin
accumulation and internal browning flesh

disorder

Functional analyses (gene overexpression,
metabolome, gene expression)

Sensory,
quality, shelf

life
[29]

Expression analyses in individuals with distinct
crispness

Genome, transcriptome
Sensory,
quality

[30]

Effect of ozone and 1-MCP on superficial scald
disorder during cold storage

Transcriptome, proteome, metabolome
Sensory,

quality, shelf
life

[31]

1-MCP prevents the expression of ripening-
related genes

Transcriptome
Quality, shelf

life
[32]

Effect of hormones during early ripening Transcriptome
Sensory,
quality

[33]

Effect of NAC (NAM, ATAF1/2, CUC2 family)
transcription factors on flavor ester

biosynthesis
Genome (methylation), transcriptome

Sensory,
quality

[34]

Evolution of volatiles and gene expression
during ripening

Transcriptome, metabolome
Sensory,
quality

[35]

Senescence is delayed by not prevented by
conservation techniques

Transcriptome, phenomics (physicochemical
and sensory analyses)

Sensory,
quality, shelf

life
[36]

Effect of ethylene responsive factors on histone
deacetylase expression during ripening

Genome (chromatin immunoprecipitation
sequencing—ChIP-Seq), transcriptome

(chromatin
immunoprecipitation—quantitative reverse

transcription polymerase chain reaction, ChIP-
qRT-PCR), functional analyses (heterologous

expression)

Quality, shelf
life

[37]

Effect of wax coating on gene expression Transcriptome
Quality, shelf

life
[38]

Calcium represses ethylene biosynthesis during
apple fruit ripening by regulating

posttranslational status of an APETALA2/

Gene expression, (RT-qPCR and ChIP-RT-
qPCR) functional analyses

Quality,
sensory, shelf

life
[39]

9International Journal of Food Science
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TABLE 2: Continued.

Study Outcome Reference

ETHYLENE RESPONSE FACTOR (AP2/ERF)
protein

Calcium represses ethylene biosynthesis during
apple fruit ripening by regulating

posttranslational status of an AP2/ERF protein

Gene expression, (RT-qPCR and ChIP-RT-
qPCR) functional analyses

Sensory,
quality, shelf

life
[40]

Effect of ethylene on malate transport via
transcription factors network

Transcriptome, functional analyses (yeast-2-
hybrid—Y2H, luciferase promoter fusion—Luc

pro, ectopic expression)

Quality, shelf
life

[41]

Regulation of volatile ester biosynthesis during
ripening

Transcriptome, metabolome
Sensory,
quality

[42]

Identification of a zinc finger homeodomain
transcription factor that induces expression of

a β-galactosidase

Transcriptome, functional analyses (Y2H, Luc
pro, ectopic expression)

Sensory,
quality,

microbiological
[41]

Overexpression of a polygalacturonase gene
affects fruit development and structure

Functional analyses (overexpression),
transcriptome

Quality, shelf
life,

microbiological
[43]

Mechanism regulating the formation of
watercore during ripening

Transcriptome, functional analyses (Y2H, Luc
pro, ectopic expression)

Quality, shelf
life

[44]

Effect of DNA methylation on gene expression
in two distinct ripening stages

Genome (bisulfide sequencing), transcriptome,
metabolome (sugars and hormones)

Quality [45–47]

Mobile mRNA from seed to flesh induces
ripening

Genome (resequencing), transcriptome,
functional analyses

Shelf life [45–47]

NAC and WRYK (WRKYK domain)
transcription factors control fruit softening via
ethylene mediated regulation of an xyloglucan

endotransglucosylase/hydrolase

Transcriptome, functional analyses (ectopic
expression, Y2H, Luc)

Quality, shelf
life

[45–47]

Effects of aminoethoxyvinylglycine and 1-MCP
on gene expression and quality traits

Transcriptome
Quality, shelf

life
[48]

Banana

Expression of AUXIN RESPONSE FACTOR
(ARF) genes and metabolite profiling after

harvest
Transcriptome, metabolome Shelf life [49]

General metabolite database, ripening as case
study

Genome, transcriptome
Sensory,
quality

[50]

General genomics database, ripening as case
study

Genome, transcriptome
Sensory,
quality

[51]

Expression of POLYPHENOL OXIDASE (PPO)
gene family

Transcriptome
Sensory,
quality,

microbiological
[52]

Peach

Effect of gibberellin pretreatment on cold
storage

Transcriptome
Sensory,

quality, shelf
life

[53]

Acid accumulation
Multiomics (GWA mapping and

transcriptome)
Quality [54]

Biological activity (flavonoid) Metabolome, genomics Quality [55]

Aroma
Multiomics (metabolome, genomics,

transcriptome)
Quality [56]

Chilling injury Metabolome, transcriptome, genome
Shelf life,
quality

[57]

Pear Russeting Proteome, transcriptome Quality [58]

Russeting Metabolome, transcriptome, proteome Quality [59]
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authors demonstrated that a posttranscriptional process,
mRNA acetylation, is differentially regulated throughout
ripening and in the wild type and mutant. Integrating tran-
scriptome and global mRNA acetylation analyses, the work
showed that acetylation has a role in regulating gene expres-
sion [179]. The study also demonstrated the differential acet-
ylation of ripening-related transcripts in the mutant and
wild type, suggesting that the differences in ethylene produc-
tion, fruit texture, and flavor during ripening are controlled
by mRNA acetylation [179]. Thus, indicating that posttran-
scriptional modifications may also function as targets for
postharvest conservation techniques.

Other small gaseous molecules, termed gasotransmitters,
can be produced endogenously and transmit biological sig-
nals, such as hydrogen gas (H2), hydrogen sulfide (H2S),
nitric oxide (NO), carbon monoxide (CO), and methane
(CH4) [180]. These molecules are produced in response to
environmental and developmental conditions and partici-
pate in a wide range of processes, including seed germina-
tion, root growth, stomatal closure, and responses to
abiotic stresses [180]. Exogenous NO application after har-
vest has been demonstrated to inhibit ethylene biosynthesis,
increase antioxidant capacity, induce a stress defense system,
activate the C-repeat binding factor (CBF) pathway, and
control sugar and energy metabolism in fruit [181]. The
gasotransmitter has several points of interaction with signal-
ing pathways triggered by H2S, hydrogen peroxide (H2O2),
oxalic acid (OA), arginine (Arg), GATA factors, or the plant
hormone ABA, MT, and MeJA [182]. Similarly, NO has also
been demonstrated to influence the expression of genes
involved in senescence and to induce protein posttransla-
tional modifications, such as tyrosine nitration, S-nitrosyla-
tion, and nitroalkylation [182–184]. However, its effective
use in fruit postharvest conservation is complicated by the
short half-life of gaseous NO and its conversion into nitro-
gen dioxide (NO2), a toxic gas, in the presence of oxygen.
The toxic effects of NO2 compromise fruit quality by causing
tissue death, browning, and discoloration [182]. Therefore,
NO fumigation after harvest requires airtight containers to
prevent contact with oxygen and N2 flushing after NO treat-
ment to prevent NO2 damage. The equipment used to gen-
erate N2 significantly increases production costs. Therefore,
NO fumigation to increase fruit postharvest conservation
remains restricted to research laboratories [182–184].

Due to its interaction with several hormone pathways
and its role in stress responses, H2S is considered a gas trans-
mitter of interest for fruit conservation strategies, to enhance
fruit quality and prolong shelf life [185]. Its role in alleviat-

ing oxidative stress and contributing to preserving cell wall
structure has been demonstrated for peaches, tomatoes,
and loquat after harvest [13–15, 54, 186, 187]. However,
technological aspects concerning the unpredictable kinetics
of H2S release from donor molecules require further investi-
gation for its use in postharvest applications [185].

3.4. Physical Treatments. Recently, physical treatments have
emerged as viable, sustainable alternatives to fruit posthar-
vest conservation [188]. These technologies consist of sev-
eral mechanical and structural approaches employed to
manipulate and process horticultural products after harvest.
As with other postharvest techniques, physical methods are
trifunctional, aiming at quality conservation, shelf-life exten-
sion, microbial contamination, and quality loss reduction
[188]. The main advantages of these technologies consist of
the replacement of thermal processing and chemical treat-
ment by physical forces, the reduction of nutrient losses in
fruits, the enhancement of environmental sustainability,
and, consequentially, consumer acceptance. The absence of
residues in the treated fruit is also an important advantage
of nonthermal physical postharvest treatments [188]. Simi-
larly, transcriptional and metabolic reprogramming has
been demonstrated to be less extensive in response to cur-
rent physical postharvest treatments than under other
methods, including low temperature and CA storage [189],
although biosynthesis or catalysis of certain metabolites
may be influenced by physical treatment of the fruit [188,
190]. The most investigated physical treatments applied to
fruit after harvest have been shown to downregulate path-
ways associated with cell wall modification and induce the
metabolism of ROS [190–192]. Gene encoding general sig-
naling components, mitogen-activated protein kinases
(MAPKs), is involved in the regulation of endogenous plant
processes, such as growth, development, and programmed
cell death, and responses to external conditions, such as tem-
perature shift, water deficit, production of ROS, light, and
microorganisms. These genes were also shown to be affected
by physical treatment in fruit after harvest [190].

The most prominent nonthermal physical treatments
used in postharvest fruit conservation are vacuum- and
hydrocooling, microwave heating, PEF, CP, high hydrostatic
pressure (HHP), UV irradiation and pulsed light, and ioniz-
ing radiation [188, 190]. Among the investigated postharvest
technologies, physical methods were the most infrequent in
omics studies with available data (Tables 2 and 3). The use
of physical treatments for conservation after harvest is more
commonly reported for vegetables [191, 192].

TABLE 2: Continued.

Study Outcome Reference

Ripening
Metabolome, proteome, transcriptome, DNA

methylome, small RNAome
Quality, shelf

life
[60]

Persimmon
Seedlessness Phenomics, convolutional neural networks Quality [61]

Chilling injury Transcriptome, convolutional neural networks
Shelf life,
quality

[62]
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TABLE 3: Summary of studies with nonclimacteric fruit included in the analyses. The study target, used omics techniques, and outcome are
described.

Study Outcome Reference

Fruit Target Omics technique

Cherry

Cold storage and 1-MCP Metabolome Shelf life [63]

Penicillium expansum responses Genomics
Quality,
shelf life

[64]

Maturity and quality quantitative trait
loci (QTL) mapping

Genomics (GWA mapping)
Quality,
shelf life

[65]

Germplasm carbohydrate profiling Metabolome Quality [66]

Effect of ozone treatment on cherry
proteome after harvest

Proteome Shelf life [67]

Fruit thinning, orchard management Phenomics
Quality,
shelf life

[68]

Lipoxygenase-encoding gene families
during ripening

Genome, transcriptome, metabolome Quality [69]

Effect of chitosan coating on metabolism
in cold storage

Phenomics Shelf life [70]

Citrus

Ripening and senescence Transcriptome, metabolome Shelf life [71]

Peel texture Transcriptome, metabolome Quality [72]

Nonchilling peel pitting Transcriptome Shelf life [2]

Mold suppression by salicylic acid (SA)
and cinnamon

Transcriptome
Quality,
shelf life

[73]

Cinnamaldehyde on phenylpropanoid
pathway

Transcriptome, metabolome Shelf life [74]

Water transport, wax biosynthesis Transcriptome, metabolome Shelf life [75]

SA effect on cell wall metabolism Transcriptome, metabolome
Quality,
shelf life

[76]

Wax coating cold storage Transcriptome, metabolome
Quality,
shelf life

[77]

Anthocyanin accumulation during
drought

Metabolome
Quality,
Shelf life

[78]

Puffing disorder Phenomics, metabolite profiling
Quality,
shelf life

[79]

Flavonoid biosynthesis
Genome, transcriptome, metabolome, virus-induced

gene silencing (VIGS)
Quality [80]

Bioactive compounds Genomics, transcriptome, metabolomics Quality [81]

Cucurbitaceae

Expression of abscisic acid (ABA)
pathway genes during ripening

Transcriptome Quality [82]

Long noncoding RNA in ripening Transcriptome Shelf life [83]

Response to biocontrol agent Transcriptome, proteome Shelf life [84]

Silencing of a gene encoding an ascorbate
oxidase

Genetic engineering
Quality,
shelf life

[85]

Sugar metabolism in contrasting
genotypes

Transcriptome Shelf life [86]

Flavonoid biosynthesis, nematoid
resistance

Transcriptome, proteome
Quality,
shelf life

[87]

Aroma volatiles during ripening Transcriptome, metabolome Quality [88]

Transcriptome of near-isogenic lines
(NILs) with high flesh firmness

Transcriptome Shelf life [89]
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TABLE 3: Continued.

Study Outcome Reference

Pericarp color, flavonoid accumulation Genome (QTL mapping), metabolome Quality [90]

Aroma volatiles, flesh color in
watermelon germplasm

Genome (GWA), metabolome Quality [91]

Bitterness Genome, metabolome Quality [92]

Heat shock proteins expression under
abiotic stresses

Transcriptome, metabolome Quality [93]

Database, breeding Genome, transcriptome
Quality,
shelf life

[94]

Ozone effect on phenylpropanoid
biosynthesis

Metabolome, enzyme activity, gene expression
Quality,
shelf life

[95]

Ripening regulation in contrasting lines

Genome (QTL mapping), genome editing (clustered
regularly interspaced short palindromic repeats/
CRISPR-associated Protein 9, CRISPR/Cas9),

transcriptome, DNA affinity and DNase sequencing

Shelf life [96]

Fruit size, fruit color Transcriptome, metabolome Quality [97]

Flesh firmness
Genome (QTL mapping), bulk segregant analysis

sequencing, gene function (yeast 1-hybrid—Y1H, dual
luciferase)

Shelf life [98]

Grape

Ultraviolet influence on stilbene
biosynthesis

Metabolome, transcriptome Quality [99]

Berry ripening under water stress Metabolome, transcriptome Quality [100]

Specialized metabolism expression
during ripening

Transcriptome Quality [101]

Gene expression networks during
ripening

Transcriptome, metabolome Quality [102]

Anthocyanin biosynthesis Transcriptome, metabolome Quality [103]

MicroRNA (miRNA) regulation during
ripening

Transcriptome Quality [104]

Flavonoid variation in grape germplasm Transcriptome, metabolome Quality [105]

Copper stress during fruit ripening
Transcriptome, proteome, metabolome, and

miRNAome
Quality,
shelf life

[106]

Red blotch virus infection during
ripening

Transcriptome, metabolome
Quality,
shelf life

[107]

Abiotic and biotic stresses during
ripening

Transcriptome, metabolome
Quality,
shelf life

[108]

Grafting on phenolic compounds
accumulation in berry skin

Transcriptome, metabolome Quality [109]

Virus infection during ripening Transcriptome, metabolome Quality [110]

Effect of a deacetylase inhibitor during
ripening

Transcriptome, proteome Quality [111]

Microbiota effect on chemical profile Genome, metabolome
Quality,
shelf life

[112]

Anthocyanin accumulation during
ripening

Transcriptome, metabolome Quality [113]

Berry decay, shriveling, and weight loss Genome (QTL and GWAS mapping), phenomics Shelf life [114]

Sugar transporter gene family expression Transcriptome Quality [115]

Cadmium stress with distinct rootstocks Transcriptome, metabolome Quality [116]

Fungicide effect on berry gene expression
and chemical profile

Transcriptome, metabolome
Quality,
shelf life

[117]

Effect of microcapsules for berry
conservation

Phenomics
Quality,
shelf life

[15]
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TABLE 3: Continued.

Study Outcome Reference

Treatment with jasmonates on berry gene
expression and metabolic profile

Transcriptome, metabolome Quality [118]

Chitosan coating during postharvest Phenomics Shelf life [119]

Nanomicroplastics in grape seedlings Transcriptome, metabolome
Quality,
shelf life

[120]

Strawberry

Light and ABA regulation of anthocyanin
production

Transcriptome Quality [121]

Flavonoid and phenylpropanoid
accumulation during ripening

Transcriptome
Quality,
shelf life

[122]

Regulation of eugenol production in ripe
receptacles

Transcriptome, metabolome Quality [123]

Flavonoid pathway genes Transcriptome, network analyses Quality [124]

Flavonoid and anthocyanin biosynthesis
during ripening

Proteome Quality [125]

Effect of exogenous auxin and abscisic
acid

Transcriptome
Quality,
shelf life

[126]

Silencing of a β-galactosidase gene Transcriptome, genetic engineering
Quality,
shelf life

[127]

Changes in cell wall components during
ripening

Metabolome
Quality,
shelf life

[127]

Effect of light and temperature on aroma
formation

Transcriptome, metabolome Quality [128]

Effect of chitosan coating during
harvesting

Transcriptome
Quality,
shelf life

[129]

Role of oxidative phosphorylation during
ripening

Transcriptome
Quality,
shelf life

[130]

Gene expression and metabolite
accumulation during ripening

Transcriptome, metabolome Quality [131]

Regulation of RNA-directed DNA
methylation during ripening

Methylated DNA sequencing
Quality,
shelf life

[132]

Berry metabolome during ripening Metabolome
Quality,
shelf life

[133]

Effect of alginate oligosaccharide after
harvest

Transcriptome, metabolome
Quality,
shelf life

[134]

Ectopic expression of a tonoplast-
localized vacuolar phosphate transporter

improves postharvest traits
Transcriptome, genetic engineering (overexpression) Quality [135]

Ectopic expression of xyloglucan
endotransglucosylase/hydrolase encoding

genes accelerate ripening
Transcriptome, genetic engineering (overexpression) Quality [136]

Effect of monochromatic light during
fruit ripening

Transcriptome, metabolome
Quality,
shelf life

[137]

Effect of biocontrol agent on fruit quality
after harvest

Metabolome, proteome
Quality,
shelf life

[138]

Gene expression in fruit with distinct
storability

Transcriptome Shelf life [139]

Characterization and gene expression of
PECTIN METHYLESTERASE genes

during ripening
Genome, transcriptome

Quality,
shelf life

[140]

Expression of endoxylanase encoding
genes in cultivars with different flesh

softening
Transcriptome

Quality,
shelf life

[141]
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A study with acerola, a climacteric fruit, demonstrated
the effect of pulsed light treatment on several metabolic pro-
cesses, including cellular respiration, timing of ethylene
peak, lipid oxidative metabolism, polyamine, and vitamin
C accumulation [193]. The fruit also exhibited increased
firmness and reduced weight loss during storage [193]. The
authors concluded that treatment with light pulses delayed
ripening and promoted quality by activating the antioxidant
metabolism. Similar metabolic reprogramming of ascorbic
acid accumulation was observed in raspberries and black-
berries submitted to cold storage [194]. In blueberries, the
integration of physiological and transcriptome data demon-
strated that the physical treatment after harvest regulated the
dynamic balance of ROS to maintain flesh firmness by pro-
moting the accumulation of compounds with antioxidant
activity and the activity of enzymes responsible for ROS

scavenging [190]. The authors observed a significant
decrease in the contents of H2O2 in blueberries treated with
CP, in comparison to the untreated control. Similarly, the
expression of genes encoding cell wall degradation enzymes
was reduced in fruit treated with CP [190]. Genes associated
with the MAPK signaling pathways were also induced in
blueberries submitted to the physical treatment after harvest
[190], although it remains unclear whether the observed
upregulation is solely caused by the treatment with CP.
Studies of fruit treatment with electric field have focused
mainly on the inactivation of associated microorganisms,
and its role in modulating the kinetics of oxidation reactions
remains largely uncharacterized [191, 192]. Electric fields
have been demonstrated to affect the contents of nutrition-
ally important metabolites such as small antioxidant mole-
cules and vitamins. The application of electric fields of

TABLE 3: Continued.

Study Outcome Reference

Effect of chitosan on Botrytis cinerea–
infected fruit

Metabolome, proteome
Quality,
shelf life

[142]

Profiling of mRNA methylation during
ripening

Transcriptome (RNA and N6-methyladenosine, m6A-
sequencing), functional analyses (Y2H, Luc pro, in vivo

transient expression)

Quality,
shelf life

[143]

Effect of DNA and histone methylation
on ripening

Transcriptome, proteome
Quality,
shelf life

[144]

Effect of cold on anthocyanin
accumulation

Transcriptome, functional analyses (Y2H, Luc pro
in vivo transient expression)

Quality,
shelf life

[145]

Gene expression and metabolite profiling
during in planta and off planta ripening

Transcriptome, metabolome
Quality,
shelf life

[146]

Gene expression and metabolite profiling
in a mapping population

Genome (QTL and GWAS mapping), transcriptome,
metabolome

Quality [147]

WRYK transcription factor activates
expression of a PECTATE LYASE gene

Transcriptome, genetic engineering
Quality,
shelf life

[148]

Jasmonate (JA) treatment and Botrytis
cinerea infection

Transcriptome
Quality,
shelf life

[149]

Effect of preharvest treatments on
conservation

Metabolome, transcriptome
Quality,
shelf life

[150]

Methylation inhibition after harvest Transcriptome
Quality,
shelf life

[151]

Octoploid wild species Genomics (de novo assembly) Quality [152]

Exogenous melatonin delays ripening by
affecting ABA signaling

Transcriptome, phenomics (biochemistry, morphology)
Quality,
shelf life

[153]

Gene expression in natural and
transgenic cell wall mutants

Transcriptome, genetic engineering (gene silencing)
Quality,
shelf life

[154]

Coordination of aroma formation and
anthocyanin production

Transcriptome, metabolome
Quality,
shelf life

[155]

Effect of nanoselenium application in
fungicide treated fruit

Transcriptome, metabolome
Quality,
shelf life

[156]

Patterns of histone modifications control
ripening

Genome (ChIP-Seq), transcriptome, small RNA (sRNA)
sequencing

Quality,
shelf life

[157]

Silencing of a
RHAMNOGALACTURONAN LYASE
gene retains firmness after harvest

Genome, transcriptome, metabolome, genetic
engineering (gene silencing)

Quality,
shelf life

[158]

Loss of function mutation of an
anthocyanin reductase activates

anthocyanin biosynthesis

Genome (bulk segregant analysis sequencing, BSA-seq),
transcriptome, metabolome

Quality,
shelf life

[159]
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moderate strength on fruit increases the permeability of cell
membranes and has been shown to affect the contents of
ascorbic acid and β-carotene in apple slices [195]. In con-
trast, the application of electric field treatments to vegetables
and fruit juice did not affect the content of substances with
functional, nutritional, and sensory properties, such as phe-
nolic compounds and vitamins [196]. These contradictory
results are likely to be due to the metabolic and cellular dif-
ferences between vegetables and fleshy fruit. The effects of
physical aspects of electric fields applied to fruit conserva-
tion, including the strength of the electric field, its frequency,
pulse width, total treatment time, and specific energy, are
scarcely characterized, and high-throughput integrative
studies may contribute to establishing effective conditions
for obtaining safe and stable products. Studies on posthar-
vest conservation technologies based on physical treatments
remain restricted to certain berries, and integrative omics
studies are still scarce (Tables 2 and 3).

3.5. Chemical Treatments. Traditionally, synthetic chemical
products, such as chlorine dioxide, NO, SA, 1-MCP, and
several insecticides and fungicides, are used in fruit preserva-
tion to extend shelf life and maintain the quality after har-
vest [197]. However, most recently, consumer preferences
have driven the use of biological products in the chemical
treatment of fruit after harvest, including biological control
agents and plant-based products [197]. The main biological
target of fruit chemical treatment is the inhibition of micro-
bial growth, along with desiccation protection after harvest
and during storage. Accordingly, the food industry has
increased the use of bioactive compounds with antioxidant
and antimicrobial activity. Biological products can be effec-
tive replacements for synthetic compounds in fruit preserva-
tion after harvest and during storage. Natural elicitors, such
as phenylalanine, have been demonstrated to activate
defense-related pathways in fruit, including lipoxygenases
and phenylpropanoid biosynthesis [198]. Edible packaging
is considered an alternative to the use of chemical products
and biocidal agents in the conservation of fruit after harvest
[197, 199]. A wide range of biopolymer molecules, including
polysaccharides, proteins, lipids, waxes, essential oils, and
nanoparticles, have been used in fruit postharvest applica-
tions [197, 199]. Moreover, products of plant specialized
metabolism, such as polyphenols and phenolic acids, terpe-
noids and other volatiles, and aldehydes and complex plant
extracts, along with organic compounds of microbial and
animal origins, have also been used in conservation strate-
gies for fruit after harvest [197, 199]. In horticultural prod-
ucts, including fruit, antifungal activity against Aspergillus
niger, Penicillium digitatum, Penicillium italicum, Botrytis
cinerea, and several species of Fusarium has been demon-
strated for essential oil terpenoids, such as linalool, citral, cit-
ronellal, α-terpineol, carvacrol, eugenol, octanal, and
thymol, plant aldehydes perill- and cuminaldehyde, alka-
loids, saponins, tannins, and polyphenols, including antho-
cyanins, cinnamic acid, and tannic acid [197]. Moreover,
complex metabolite mixtures found in plant extracts were
also used to prevent microbial growth in horticultural prod-
ucts, including postharvest fruit [197, 199], including

domesticated species, such as garlic, neem, mint, basil, and
thyme leaf extracts, and extracts from several parts of wild
species, including Anvillea radiata, Asteriscus graveolens,
Bubonium odorum, Ceratonia siliqua, several Cistus species,
Hammada scoparia, Ighermia pinifolia, Inula viscosa, Hali-
mium umbellatum, Rubus ulmifolius, and Sanguisorba minor
([197, 200]. However, acute ingestion of essential oils has
been demonstrated to trigger severe allergic reactions, dam-
age mucous membranes, promote deterioration of the liver,
and reduce the levels of glucose in the blood serum, which
may lead to convulsions and coma [201]. In agricultural
products not destined for in natura consumption, such as
grains, plant-derived essential oils are considered promising
alternatives to synthetic biocides during storage [202]. In the
case of fruit, destined for human consumption with no or
minor processing, the use of biological agents and products
in postharvest conservation requires thorough investigation
of their many potential mechanisms of action, associated
with possibly distinct efficacy and side effects [164, 165,
203]. Ideally, a biological control product should be reliable,
effective, widely accepted, patent protected, registered, and
suitable for commercialization [164, 165]. The number of
products attaining the desired qualities remains small, and
the available biocontrol products represent a minor portion
of the market [164, 165]. Recently, an edible fruit coating
developed by Apeel Sciences has been proposed for organic
fruit, consisting of plant-based monoglycerides and diglycer-
ides, citric acid, and sodium bicarbonate [204]. However, the
product has been discontinued in 2023, likely due to regula-
tory gaps concerning its composition and mechanism of
action [205]. The situation reinforces the need for a stronger
scientific basis for the recommendation of fruit coating
products, especially for organic systems.

Similarly, the representativeness of integrative, large-
scale studies on fruit after harvest remains scarce. Biocontrol
strategies have evolved into combinatory approaches using
several microbial antagonists or the combination of
microbes with physical and chemical techniques [164, 165,
203]. Alternatively, the use of physical agents before storage,
including far-red light and ultraviolet radiation, has been
demonstrated to reduce cold-induced damages in tomato
[206]. Exogenous applications of salicylates, jasmonates,
and MT (N-acetyl-5-methoxytryptamine) were also effective
in increasing the levels of intracellular energy, enhancing the
activity of Cytochrome c oxidase enzymes, and preserving
membrane fluidity and integrity in tomato [207]. In apple,
treatment of harvested fruit with exogenous MT also
impaired ethylene production and delayed ripening [208].
The role of MT as a suppressor of ripening was further con-
firmed by the inverse correlation between the contents of
endogenous MT and ethylene production [208]. The com-
pound also repressed the transcription of key genes in ethyl-
ene biosynthesis, such as MdACS1 (1-
AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYN-
THASE) and MdACO1 (ACC OXIDASE), during ripening.
Similarly, exogenous MT treatment reduced the expression
of transcription factors MdREM10 (REPRODUCTIVE MER-
ISTEM10) and MdZF32 (ZINC FINGER32). The protein
MdREM10 was shown to bind to the promoter of MdERF3
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(ETHYLENE RESPONSE FACTOR3), inducing its transcrip-
tion, which in turn promoted the transcription of MdACS1
[208]. The work also demonstrated that MdREM10 directly
binds the promoter of MdZF32, whose active protein binds
the promoter of theMdACO1 promoter, inducing its expres-
sion and closing the regulatory loop. The findings demon-
strate the potential of MT in apple postharvest
conservation. However, information on other fruit species
remains largely unavailable. Integrated large-scale
approaches may contribute to expanding the current knowl-
edge on the effect of physical agents on less characterized
tropical fruit, allowing the development of novel conserva-
tion technologies. A simultaneous increase in the number
of omics studies on the effects of biological control agents
in fruit after harvest would help provide invaluable insight
into fruit processes leading to improved quality or extended
storage.

3.6. Biological Processes Affected by Postharvest Technologies.
After harvest, fruits undergo metabolic and physiological
changes, including alterations in pulp firmness, specialized
metabolism that controls color and flavor, changes in nutri-
tional content, and macromolecular degradation processes
affecting proteins, lipids, and nucleic acids [209]. Although
common pathways are shared, the senescence of fruit
attached to the plant also involves different processes [9,
210]. Studies of ripening and senescence of fruit attached
to the plant were not included in the current review. In this
study, initial meta-analyses were conducted separately for
climacteric and nonclimacteric fruits to investigate if com-
mon pathways could be detected among the different species
within the two ripening patterns (Figures 1 and 3a). Subse-
quently, to achieve a more complete overview of fruit devel-
opmental and metabolic processes after harvest, the analyses
integrated data from climacteric and nonclimacteric fruits
(Figures 3b and 4). To integrate information from distinct
omics studies and fruit species, we employed GO terms,
which consist of a dynamic and controlled vocabulary that
allows classification of biological molecules into expanding
and changing categories of biological processes, molecular
functions, and cellular components. The analyses focused
on terms referring to biological processes since they were
designed to describe larger biological phenomena, consisting
of a series of events brought about by the ordered assembly
of molecular functions occurring in one or more cellular
compartments. The use of GO terms allows the comparison
of processes described inconsistently in different studies,
thus providing a unifying nomenclature for different studies.
Omics studies in postharvest fruit ripening provide novel
insights into the complex physiological and biochemical
processes and regulatory mechanisms responsible for devel-
opmental changes. Moreover, integrated omics allow simul-
taneous investigations of several steps of the transmission of
genetic information, from basic genetic information con-
tained in the DNA to effector molecules acting on the
metabolism. Comprehension of the molecular mechanisms
underlying physiological changes in fruit after harvest and
during storage, provided by integrative studies, may contrib-

ute to the development of sustainable postharvest strategies
to increase quality, impair senescence, and extend shelf life.

Meta-analyses of GO categories from the studies demon-
strate the prevalent role of ethylene in climacteric fruit after
harvest (Figure 3a). Endogenous ethylene production, con-
trolled by an autoregulatory feedback loop, displays signifi-
cant interaction with signaling pathways mediated by other
hormones, such as ABA, JA, and auxin. Accordingly, GO
terms associated with responses to most hormones were sig-
nificantly enriched in the meta-analyses of the results from
studies with climacteric fruit (Figure 3a). The impact of
postharvest technologies is represented by the enrichment
of terms associated with defense processes, including
responses to toxic substances and defense against fungus
(Figures 3a and 4c), along with the shared terms fruit ripen-
ing, cell wall organization, and small molecule metabolic
process. In contrast, in nonclimacteric fruit, processes asso-
ciated with anabolic processes, such as auxin and ABA
responses, signaling, and cell growth, remain significant after
harvest (Figure 3b). Terms associated with conservation
techniques include responses to light, reactive oxygen meta-
bolic processes, regulation of protein serine/threonine kinase
activity, and pectin metabolic process (Figures 3b and 4c).
These results agree with the current knowledge on fruit rip-
ening and senescence [8, 78, 96, 156, 211, 212] and demon-
strate the validity of the integrative approach using GO
terms used in the meta-analyses. The integration of informa-
tion from several regulatory layers controlling fruit posthar-
vest may guide the development of specific and effective
technologies, such as the targeted use of ethylene inhibitors,
hormone regulators, and physical or chemical agents
adapted to the fruit type and its physiological profile. Results
from integrative approaches allow the identification of bio-
markers associated with senescence and quality loss that
can be incorporated in real-time monitoring systems
throughout the storage and commercialization chain.

Processes controlled by other hormones were not signif-
icantly represented in the meta-analyses for climacteric fruit,
whereas GO representing processes controlling small mole-
cule metabolism was detected (Figure 3a). As expected, GO
meta-analyses highlighted the close interaction of growth
with ripening and senescence in nonclimacteric fruit, pro-
viding further evidence of the association between develop-
mental processes and exogenous environmental responses
(Figure 3b). The integration of data from climacteric and
nonclimacteric omics studies retained a defined separation
between the two categories of ripening (Figure 3c); however,
the intermediate patterns observed in certain fruit, such as
melon [213] in the Cucurbitaceae family, were confirmed
(Figure 3c). Similarly, integrative meta-analyses highlighted
the divergent ripening and postharvest behavior of model
climacteric and nonclimacteric fruits, apple and strawberry,
respectively (Figure 3c).

High-throughput studies also allow investigations of
processes occurring in distinct fruit tissues. Multiomics anal-
yses demonstrated significant differences in ripening regula-
tion between the pulp and peel of banana after harvest [214].
In the study, peel ripening was significantly controlled by
genes associated with transcriptional regulation, hormone
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signaling, cell wall modification, protein modification, and
energy metabolism [214]. In the pulp, genes classified in
transcriptional regulation, signal transduction, and cell wall
modification ontologies were also significantly induced,
along with secondary metabolism GO, which was not altered
in the peel [214] (Tables 2 and 3). In contrast, at the protein
level, energy metabolism, oxidation–reduction reactions, cell
wall metabolism, and starch degradation were most signifi-
cantly altered [214] (Table 2). Accordingly, secondary
metabolism, energy metabolism, and protein metabolic pro-
cesses were found to be involved in banana pulp ripening
[215, 216].

Multivariate modeling of the GO terms using the inves-
tigated outputs as discriminants clustered the biological pro-
cesses in five distinct groups (Figure 4a). The first cluster (I)
is consistently overrepresented postharvest technologies
contributing to all investigated outputs (Figure 4a) and con-
sists of DNA binding, gene expression, signaling, and intra-
cellular processes. Thus, it reinforces the role of conservation
techniques in reprogramming fruit development. The sec-
ond group of GO (II), more closely associated with microbi-
ological conservation, consists of pathogenesis-related (PR)
responses, biotic agents, and UV light processes
(Figure 4a). The ontologies in the third cluster (III) represent
general ripening processes, such as responses to hormone,
responses to ethylene, responses to ABA, carbohydrate met-

abolic processes, and specialized metabolism (Figure 4a).
The smallest group of GO (IV) is negatively associated with
sensory and shelf-life outcomes, corresponding to catabolic
processes, hydrolytic activity, and senescence (Figure 4a).
The last group of GO, also negatively associated with sen-
sory, quality, and shelf-life outcomes, consists of general cat-
abolic activity, metabolite, and cellular component
degradation (Figure 4a). A relevance network constructed
based on the sPLS-DA model highlighted the positive asso-
ciation of developmental GOs with shelf life, sensory, and
quality outcomes (Figure 4b). In contrast, GO terms corre-
sponding to responses to biotic factors are significantly asso-
ciated with microbiological conservation (Figure 4b), and
those referring to specialized metabolism have a negative
association with microbiological and shelf life, but a neutral
significant association with sensory and quality outcomes
(Figure 4b). These apparently contradictory observations
may be explained by the complex role of specialized metab-
olism in plant protection and evolution of sensory properties
[217, 218]. Specialized metabolites have been demonstrated
to be synthesized in plants in response to several biotic and
abiotic stresses [217, 218], providing effective protection
against insects, herbivores, and pathogens and contributing
to mitigate the deleterious effects of environmental factors,
such as ultraviolet radiation and extreme temperatures
[218]. In fruit during ripening and postharvest conservation,
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Figure 3: Continued.
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Figure 3: Scatterplot of GO enrichment analyses in (a) climacteric and (b) nonclimacteric fruit omics studies. The number of studies is
represented by sphere size (count) and GO enrichment by log10 p value. (c) Multivariate sparse partial least square (sPLS) model of GO
biological process terms in climacteric and nonclimacteric fruits using species as discriminant (DA).
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intermediate metabolites produced by the central carbon
metabolism function as precursor molecules for several
pathways in the specialized metabolism [218]. Compounds
produced by specialized metabolism are important contribu-
tors to fruit sensory properties during ripening, such as fla-
vor and aroma [217, 218]. However, conservation
technologies have been demonstrated to exert distinct effects
on primary and specialized metabolism [9, 24, 212].

Microbial growth and colonization of fruit after harvest
cause visual depreciating symptoms, including mold, rot,
discoloration, softening, shriveling, browning, or blackening
[94]. The most common fungal pathogens affecting fruit
postharvest include B. cinerea, Penicillium spp., and Alter-
naria spp. [219]. Elicitor compounds, biocontrol agents,
and genetic approaches are innovative techniques generally
recognized as safe to inhibit microbial growth on fruit after
harvest [54, 187]. Comprehensive omics studies may con-
tribute to elucidating the molecular components responsible
for the complex interactions among fruit microbial popula-
tions after harvest and during storage. In banana peel, post-
harvest application of exogenous MT delayed anthracnose
(Colletotrichum musae) pathogenesis by modulating the
activity of receptor kinases associated with auxin, ethylene,
and MAPK pathways [215, 216] (Table 2). Similarly, the
expression of genes responsible for cell wall and wax metab-
olism was induced by MT application [215, 216] (Table 2).
In mandarin citruses, naringenin reduced the onset of
microbial colonization by inducing the accumulation of

metabolites with antimicrobial activity, such as auraptene,
butin, naringenin, and luteolin [220] (Table 3). The meta-
bolic reprogramming was accompanied by increased expres-
sion of genes associated with fruit specialized metabolism,
including CcPGT (phlorizin synthase), CcFNS (flavone syn-
thase), CcF3H (flavanone 3-hydroxylase), CcF3′H (flavonoid
3′-hydroxylase), CcFLS (flavonol synthase), and CcUGTs
(UDP-glycosyltransferase) in the flavonoid and phenylpro-
panoid biosynthesis pathways, promoting tolerance against
pathogenic infection [220].

In grape, tolerance to B. cinerea was induced by posthar-
vest application of chitosan via transcriptional activation of
genes involved in disease perception, plant hormone biosyn-
thesis, signal transduction, and secondary metabolism [183,
184]. In contrast, ethanol applications to fruit after harvest
significantly repressed the expression of disease resistance–
related protein families, including PR proteins and chitinase,
leading to reduced accumulation of SA-mediated defense
pathways [221] (Tables 2 and 3).

The use of biological control yeast Yarrowia lipolytica to
prevent blue mold (Penicillium expansum) in apples after
harvest promotes the accumulation of PR proteins and
induces the transcription of defense genes [25] (Table 2).
Integrative transcriptome and proteome studies demon-
strated that defense gene and protein induction were medi-
ated by SA, jasmonate, and ethylene signal transduction
pathways [25] (Table 2). Oxidative stress and PR proteins
were also induced by the biological control yeast [25].
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Figure 4: Continued.
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Similar transcriptional and proteomic responses, including
the upregulation of disease resistance genes and jasmonate-
responsive transcription factors, were observed in pears
receiving treatment with postharvest biocontrol agent Wick-
erhamomyces anomalus [183, 184]. In contrast, in grapes
and citrus treated with Y. lipolytica after harvest, genes and
proteins associated with stress responses, energy production,
signal transduction, and oxidoreductase activity were upreg-
ulated [222] (Table 3). Integrated transcriptome and prote-
ome analyses of strawberries treated with biocontrol agent
Rhodotorula mucilaginosa and chitosan after harvest have
shown extensive activation of the jasmonate, ethylene,
ABA, and gibberellic acid signaling pathways leading to
enhanced transcription of disease resistance genes [223]
(Table 3). Hormone-mediated pathways also led to the
induction of several gene encoding enzymes controlling the
biosynthesis of resistance compounds, such as BAHD acyl-
transferase, vinorine synthase, UDP-glycosyltransferase, fla-
vonol synthase, and long-chain acyl-CoA synthetase [223]
(Table 3).

Brassinolide treatment has been demonstrated to allevi-
ate symptoms of CI, and multiomics studies have shown that
the steroid hormone precursor regulates the lipoxygenase
activity in the α-linolenic acid pathway, enhancing jasmonic
acid–CoA (JA-309 CoA) synthesis, which prevents cell wall
and membrane lipid damage [224]. Similarly, postharvest
application of MeJA reduces CI by inducing the transcrip-
tion of genes encoding key enzymes of plant hormone, anti-
oxidant, phospholipid, and cell wall modification pathways
[224]. Proteins involved in glutathione and fatty acid metab-
olism were also associated with MeJA-mediated alleviation
of CI symptoms in fruit [128] (Tables 2 and 3). Exogenous
MT applications were shown to repress the transcription of
MYB factors controlling cell wall and energy supply metab-
olism in cold-stored fruit [225].

The most representative GO terms corresponding to bio-
logical processes in the work selected for the meta-analyses
include recombinational repair, transcription cis-regulatory
region binding, G protein–coupled receptor binding,
response to hypoxia, photoreceptor outer segment, oxygen
carrier activity, response to oxidative stress,
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Figure 4: (a) Heatmap representation and cluster analysis of the normalized frequency of Gene Ontology (GO) terms in the omics studies in
association with the investigated outcomes. (b) Relevance network analysis of hierarchically superior GO groups (biological process) and
postharvest outcomes. Significant associations at cutoff = 0 75 are shown. (c) Association between GO terms from the omics studies and
the conservation technologies represented as risk ratio at 95% confidence interval (CI).
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phototransduction, circadian rhythm, protein localization,
response to temperature stimulus, response to radiation,
response to heat, response to cold, response to xenobiotic
stimulus, response to UV, response to water deprivation,
response to light stimulus, response to wounding, response
to mechanical stimulus, cold acclimation, response to toxic
substance, response to light intensity, response to ethylene,
response to auxin, response to ABA, response to gibberellin,
response to sucrose, response to glucose, response to SA,
response to jasmonic acid, multidimensional cell growth,
unidimensional cell growth, fruit ripening, leaf senescence,
response to ionizing radiation, response to gamma radiation,
carotenoid dioxygenase activity, gene expression, positive
regulation of gene expression, negative regulation of gene
expression, programmed cell death, response to organic
cyclic compound, oxygen transport, carotene catabolic pro-
cess, xanthophyll biosynthetic process, oxygen binding,
enzyme binding, transmembrane transporter activity, signal-
ing, NO synthase regulator activity, negative regulation of
stress-activated MAPK cascade, protein-containing com-
plex, xyloglucan-specific endo-beta-1,4-glucanase activity,
hyperosmotic salinity response, response to H2O2, cellular
response to water deprivation, response to freezing defense,
response to fungus, negative regulation of developmental
process, cellular response to cold, detection of hypoxia, cel-
lular response to hypoxia, cellular response to UV-C, cell
wall organization, response to NO, response to salt, adaptive
thermogenesis, xyloglucan catabolic process, and regulation
of cellulose biosynthetic process (Figure 4c, Table S1,
Table S2).

The OR of the most representative GO terms in the stud-
ies included in the meta-analyses reinforced the role of tem-
perature and atmosphere manipulation to attain the
outcomes (Figure 4c). These results contribute to demon-
strating the potential of epigenetic changes, induced by low
temperatures, in regulating large transcriptional programs
in fruit and extending conservation, or even promoting met-
abolic reprogramming, as shown in apple [24]. The control
of chromatin structure and, consequently, gene expression
activity is dependent on reversible chemical modifications
in the DNA and histone proteins constituting nucleosomes.
Methylation of DNA, coding and noncoding RNA, and his-
tone posttranslational modifications, such as acetylation,
SUMOylation and ubiquitination, methylation, and phos-
phorylation, were shown to affect ripening and senescence
in apple, apricot, banana, kiwifruit, sweet cherry, and peach
[45–47, 79, 226–230]. Epigenetic changes are frequently
induced by temperature shifts [78, 156, 176], indicating the
potential of temperature manipulation in genetic repro-
gramming to improve fruit conservation after harvest. How-
ever, the transient nature of epigenetic modifications may
pose additional difficulties in the commercialization steps
after storage.

Although epigenetic changes have been demonstrated to
induce partial metabolic reprogramming in fruit [24, 45–47,
79, 226–230], subsequent senescence is considered largely
irreversible [8]. In fleshy fruit model species tomato, ultravi-
olet C has been demonstrated to delay ripening and retain
fruit quality after harvest by chromatin remodeling and

inducing methylation of ethylene-associated genes [231]. In
citrus and tomato, a combination between exogenous hor-
mone application (GA and a synthetic cytokinin, 2-isopente-
nyladenine) and additional fluorescent light to natural
sunlight background has been shown to re-establish chloro-
phyll biosynthesis, promote chloroplast redifferentiation,
and induce regreening after harvest [232]. The induction of
these juvenile traits did not affect other senescence-related
processes, such as firmness or weight loss [232]. Thus,
although several postharvest approaches may delay some
senescence processes, they remain highly species-specific
and restricted to certain metabolic pathways.

The current analyses reinforce the biological function of
enzymatic kinetics in fruit processes after harvest, for desir-
able outcomes as development of sensory properties and as a
deleterious factor in shelf-life period and microbiological
conservation (Figure 4c). The main genes and pathways
affected by the conservation technologies investigated in cli-
macteric and nonclimacteric fruit are summarized in
Figure 5. Although useful to summarize the meta-analyses
results, the OR is a simplified representation of the complex
interactions between process and environmental factors
controlling fruit ripening and senescence after harvest.
Therefore, we consider that models constructed from large
data analyses are a better representation of the influence of
development and metabolism on the investigated outcomes.

4. Strengths and Weaknesses

To the best of our knowledge, this is the first systematic
review and meta-analysis of omics data of fruit postharvest
conservation focusing on four outputs: sensory, quality, shelf
life, and microbiological aspects. Other reviews have focused
on stress and defense responses after harvest [233, 234] or
on the control of ripening, including in planta studies
[235]. Recently, a review work has investigated the molecu-
lar mechanisms underlying postharvest physiology and
metabolism of fruit in multiomics studies [210]; however,
it does not consider specific outcomes and did not perform
meta-analyses of the published data. In our work, a compre-
hensive search strategy was used to mine five scientific data-
bases and a list of relevant publications, and their primary
data were submitted to meta-analysis. The exclusion of stud-
ies where biases were detected helped to ensure an evidence-
based meta-analysis. However, the integration of data from
distinct fruit species is aimed at providing a general overview
of the biological processes affected during conservation,
without attributing differential weights to specific outcomes
that may be distinctly sought after in different fruits. For
example, challenges for the conservation of highly perishable
fruit such as grapes and bananas are different from those
necessary to expand and improve the quality of pears and
apples that can remain for more than 9 months under stor-
age conditions after harvest. Thus, the general panorama
drawn by the current analyses does not override individual
requirements faced by particular fruit species. Instead, the
integrated analyses are aimed at identifying crucial pathways
associated with the desired outcomes that remain relatively
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unexplored in the development of conservation
technologies.

The weaknesses of the work are the restricted geographic
location of the included work and the elimination of studies
written in languages other than English. Thus, potentially
relevant data may have been kept out of the analyses. More-
over, distinct biological constraints of the investigated fruit,
leading to different study designs, may have affected the
meta-analyses' outcome. In addition, a bias toward studies
with pomes and berries may not have been completely neu-
tralized by the normalization techniques applied.

5. Conclusion

The current systematic review and meta-analysis confirm
the crucial role of postharvest technologies in contributing
to fresh fruit availability, nutrition, and food security world-
wide. The potential of high-throughput, integrative studies

in unveiling novel targets to develop conservation strategies
is also presented, although large-scale studies on biocontrol
agents after harvest and combined approaches remain
scarce. The systematic review also highlights the gap
between basic knowledge and technological applications to
improve fruit postharvest conservation. When we analyzed
the level of use of scientific knowledge generated in the arti-
cles included in the meta-analyses, the application of cold
storage and atmosphere control technologies, including
modified, controlled, and dynamic atmosphere, and the use
of chemical compounds and physical agents are in full use
and consolidated, with TRLs between 8 and 9. The remain-
ing postharvest technologies remain largely restricted to
experimental studies. Furthermore, a restricted set of fruit
constitutes the group most benefiting from these technolo-
gies, such as apples, pears, mangoes, peaches, grapes, straw-
berries, and citrus. In the case of articles whose central
theme is omics and their potential applications, TRL

?
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Figure 5: Schematic representation of the molecular components involved in postharvest ripening and senescence in climacteric and
nonclimacteric species, the targets of conservation technologies, and their effects on the outcomes investigated in the review. Involved
hormones are represented as ethylene, abscisic acid (ABA), auxin, and methyl jasmonate (MeJA). Dashed lines represent hypothetical
interactions. Induction is shown as an arrowhead and repression as a horizontal line. Metabolites correspond to 1-amino-cyclopropane-
1-carboxylic acid (ACC), polyamines (PAs), and S-adenosyl-l-methionine (SAM). Proteins involved in metabolic and signaling pathways
are shown as ACC synthase (ACS), ACC oxidase (ACO), ABA-response element binding factor/ABA-responsive factor (AREB/ABF),
ABA receptor (ABAR), related to ABA Receptor 14 (AB14), auxin response factors (ARFs), auxin/indole-3-acetic acid transcription
modulators (Aux/IAA), β-glucosidases (BGs), cytochrome P450 (CYPs), ethylene-insensitive 3 (EIN3), ethylene responsive genes (ETRs),
Methyltransferase A (MTA), Methyltransferase B (MATB), NAM, ATAF1/2, and CUC2 family (NAC), 9-cis-epoxycarotenoid
dioxygenases (NCEDs), polyamine oxidase (PAO), pyrabactin resistance (PYR)/PYR-like (PYL), Type 2C protein phosphatase (PP2C),
Protein Kinase 2 (PK2), ripening inhibitor (RIN), regulatory components of ABA receptor (RCAR), receptor-interacting protein kinase
(RIPK), and tomato AGAMOUS-LIKE 1 (TAGL1). Epigenetic modifications are represented as promoter region methylation (pro me),
gene body histone methylation (gene H3K27me3), and N6-methyladenosine methylation (m6A). The targets of postharvest technologies
are shown as color-coded triangles, and the outcome of the conservation techniques is represented by arrows.
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remains medium-low (three to five), restricted to laboratory
level or as a research tool to monitor consolidated technolo-
gies. Thus, here lies a big challenge for future research: to
transform the scientific knowledge from omics studies into
technological products. The compiled results demonstrate
that these advances are occurring faster in preharvest than
in postharvest.

Recent findings on the function of epigenetic compo-
nents in controlling plant development in response to envi-
ronmental cues, such as temperature, may provide novel
alternatives in the development of conservation technologies
for fruit after harvest. Our meta-analyses reinforce the cru-
cial function of phytohormones in climacteric and noncli-
macteric fruit conservation, although demonstrating a
closer integration between ripening and senescence in non-
climacteric fruit. Ethylene- and ABA-controlled processes
are the main contributors to senescence, negatively affecting
all investigated outcomes in climacteric and nonclimacteric
fruits, respectively. Gene ontologies associated with carbohy-
drate and reactive oxygen metabolic pathways were shown
to be important players in conservation strategies. Epige-
netic modifications, as DNA methylation and histones post-
translational changes, are promising targets for novel
conservation techniques. Our review and analyses indicate
that further research on epigenetic factors on fruit genomic,
transcriptional, and metabolic changes may contribute to
devising novel, paradigm-changing postharvest alternatives.
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