

Wiley International Journal of Food Science Volume 2025, Article ID 9963581, 33 pages https://doi.org/10.1155/ijfo/9963581

Review Article

Novel Targets for Fruit Conservation Strategies Revealed by Omics Studies: A Systematic Review and Meta-Analysis

Tatiane Timm Storch ,¹ Camila Pegoraro ,² Vera Quecini ,³ Cesar V. Rombaldi ,⁴ and César L. Girardi ,³

Correspondence should be addressed to César L. Girardi; cesar.girardi@embrapa.br

Received 24 February 2025; Revised 14 August 2025; Accepted 16 September 2025

Academic Editor: Mattia Spano

Copyright © 2025 Tatiane Timm Storch et al. International Journal of Food Science published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Fresh fruit is an important dietary source of nutrients and health-related compounds, also contributing to food security and economic development worldwide. Postharvest losses exert a huge negative impact on fruit quality, consumers' acceptance, economic value, and market availability. High-throughput techniques have contributed to elucidating the molecular mechanisms underlying fruit ripening and senescence. However, the application of these findings to develop conservation technologies remains scarce. The current systematic review is aimed at evaluating the literature on omics studies for sensory properties, shelf-life duration, microbiological and physiological quality outcomes during fruit ripening, postharvest conservation, and ex planta senescence. Four databases were investigated from 2014 to 2025, and data from 171 studies were compiled, converted to Gene Ontology terms, and analyzed using multivariate methods. The results reinforced the key role of phytohormones in climacteric and nonclimacteric fruit conservation. Ethylene and abscisic acid-controlled processes are the main contributors to senescence in climacteric and nonclimacteric fruit, respectively. Among the outcomes investigated, most omics studies assessed the effects of conservation technologies on fruit quality and sensory properties. After harvest, carbohydrate and reactive oxygen metabolic pathways are important contributors to conservation strategies. Epigenetic modifications, such as DNA methylation and histones posttranslational changes, are promising targets for novel conservation technologies on fruit genomic, transcriptional, and metabolic changes may contribute to devising novel, paradigm-changing postharvest alternatives.

Keywords: berry; genomics; metabolomics; pome; postharvest; sensory; transcriptomics

1. Introduction

Fresh fruit is an important source of nutrients and healthrelated compounds, contributing to food security and economic growth worldwide. They are considered critical sources of essential vitamins, natural antioxidants, minerals, and dietary fibers, preventing and relieving nutritional ailments and deficiencies [1]. However, after harvest, fruit continues to undergo ripening and senescence processes [2], leading to physiological changes that affect their sensory, shelf life, microbiological, and metabolic properties. Several factors contribute to fruit conservation after removal from the plant, including preharvest factors, such as fertilization, irrigation, soil conditions, and plant spacing, and postharvest, transport, and storage conditions. Due to their highly perishable nature, fresh fruit and vegetables are the largest contributors to food loss and waste, reaching up to 50% of global production [3], which is estimated to represent approximately a third of world food production [3]. Thus, increasing fruit conservation would contribute to food

¹Farroupilha Federal Institute of Education, Science, and Technology, Campus Santo Augusto, Santo Augusto, Brazil

²Plant Genomics and Breeding Center, College of Agronomy "Eliseu Maciel", Pelotas Federal University, Pelotas, Brazil

³Embrapa Grape and Wine, Bento Gonçalves, Brazil

⁴Department of Agroindustrial Science and Technology, College of Agronomy "Eliseu Maciel", Pelotas Federal University, Pelotas, Brazil

security worldwide, promoting sustainability and reducing production costs. The most sought-after fruit conservation outcomes may be summarized in shelf-life period, maintenance of physiological and sensory quality, and avoidance of microbiological spoilage [3, 4]. These outcomes are mainly controlled by developmental processes associated with postripening and senescence metabolic changes, with the exception of microbiological colonization that is determined by environmental conditions after primary production and harvesting, although also influenced by endogenous developmental factors [5].

Fruits undergo several orchestrated physiological, structural, and metabolic processes from flowering to senescence, leading to the differentiation of the ovary and its associated structures into fruit, via cycles of cell division and enlargement [6, 7]. Simultaneously, fruits expand by water accumulation in the vacuoles, driven by the storage of hydrophilic compounds, and activate several metabolic pathways controlling the biosynthesis of specialized metabolites responsible for fruit sensory properties [6, 7]. Traditionally, the progression of respiration rates and hormone accumulation has been used to classify fleshy fruit ripening in climacteric and nonclimacteric. Typically, in climacteric fruit, respiration rates increase sharply, and ethylene biosynthesis is induced in the later stages of ripening (Figure 1a) [6]. In contrast, in nonclimacteric fruit, respiration rates decline toward the end of ripening, and ethylene is not required to complete the process, although responses to the phytohormone might be present (Figure 1b) [6, 7]. Abscisic acid (ABA) is hypothesized to induce ripening and senescence in nonclimacteric fruit [8, 9]. Therefore, climacteric and nonclimacteric fruits display both conserved and divergent physiological and metabolic processes during ripening and after harvest [6, 10].

Traditionally, the processes responsible for ripening and senescence after harvest can be delayed or reduced by manipulating environmental conditions, such as management of temperature, relative humidity, and atmosphere, and by the application of chemical and/or physical treatments [3, 5, 11]. Along with temperature and atmosphere control, advanced postharvest technologies include physical treatments, such as the application of pulsed electric fields (PEFs) and cold plasma (CP), and chemical methods, such as active coating and vacuum impregnation [3, 11, 12]. The application of conservation technologies affects fruit metabolism and physiology, not only modifying targeted pathways but also interfering with biological processes that may lead to undesired consequences, such as chilling injury (CI), aroma production, rotting, and browning [12-16]. The complex nature of developmental and metabolic processes underlying fruit ripening and senescence has benefited greatly from integrated, large-scale studies that allow concurrent surveying of thousands of information-transmitting and effector molecules.

Recently, technical advances allowed the simultaneous investigation of the complete set of molecular players involved in biological processes via high-throughput technologies. These technologies are collectively known as "omics" and include the global study of the genome and epi-

genome, transcriptome, proteome, and targeted or untargeted metabolome, along with machine learning and highthroughput phenotyping [17, 18]. The blueprint of an organism is given by the genes in its genome and its higher order organization, determined by the chemical status of the DNA and histones, which controls its accessibility to transcription and replication machinery. The set of genes transcribed at a given time, in a specific cell or tissue, and under given conditions constitutes the transcriptome, which also includes messenger (mRNA) and small interfering RNAs (siRNAs). The products of mRNA translation are the global set of proteins or the proteome. These molecules are considered the main repositories and effectors of genetic information, which in turn control the growth, development, and metabolic processes of the organism. The metabolome consists of the whole set of metabolites in the organism, targeted to a given chemical class or global (untargeted). Other highthroughput techniques investigate the global expression of phenotypes (phenomics), ion concentrations (ionome), lipid profiling (lipidome), and others [19]. The combination of two or more large-scale studies is labeled "multiomics." The integration of high-throughput multiomics data may provide novel insights and expand our understanding of the complex physiological processes controlling fruit characteristics under postharvest conditions, contributing to enhance food security, reduce fruit loss, and promote availability and accessibility to quality products.

The knowledge on the biology of fruit ripening and senescence and the technological advances of conservation techniques increased greatly in recent years. However, biological and technological data are not unified and lack association with conservation outcomes of interest. Moreover, a significant portion of data arising from integrative studies remains detached from prospective technologies aiming at improving postharvest conservation. To contribute to narrowing this knowledge gap, the current work is aimed at systematically reviewing omics studies on fruit ripening and postharvest to determine the impact of developmental and metabolic pathways on sensory, microbiological, metabolic (quality), and shelf-life aspects of fruit after harvest.

2. Methods

2.1. Search Strategy and Inclusion/Exclusion Criteria. Systematic review and meta-analyses were performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and International Food Information Services (IFIS) Good Review Practice guidelines. Initially, we built a cache of 20 relevant articles to extract the primary search terms related to the research question. The list of terms included synonyms, alternative spellings, and truncations. Three search strings were assembled, consisting of terms related to (i) omics and high-throughput techniques, (ii) fruit and their botanical specifications, and (iii) ripening and postharvest conservation. Strings were connected using operators "AND" and "AND/OR." Data were collected from 2014 to 2025, from queries of Scopus, Web of Science, ScienceDirect, and PubMed databases. References were stored and managed using Zotero 6.0.26.

1796, 2025, I, Downloaded from https://onlinelbitrary.vailey.com/doi/10.1155/ij699963881 by Cesar Lisi Girardi - EMBRAPA - Empresa Braisleira de Pesquisa Agropeacuria, Wiley Online Library on [29/10/2025], See the Terms and Conditions (https://onlinelbitrary.wiley.com/moi/10.1155/ij699963881 by Cesar Lisi Girardi - EMBRAPA - Empresa Braisleira de Pesquisa Agropeacuria, Wiley Online Library on [29/10/2025], See the Terms and Conditions on Wiley Online Library on [29/10/2025].

FIGURE 1: Developmental and physiological processes responsible for fruit growth, ripening, and senescence in (a) climacteric and (b) nonclimacteric fruits. Biological processes are represented by their corresponding Gene Ontology (GO) terms.

Inclusion criteria were publication period, in peer-reviewed scientific journals, and written in English. Studies with tomato (Solanum spp.) and its wild relatives, in planta fruit ripening and senescence, and those that did not provide primary data were excluded. A list of the 10 most representative fruit species, the investigated postharvest technologies, and the outcomes is presented in Table 1.

2.2. Data Selection and Processing. After an initial automated filtering for redundant and nonaccessible works, the retrieved documents were manually checked for duplicates and irrelevant results that were removed. The second round of screening retained and classified the publications according to the inclusion criteria. Manuscripts that did not provide access to primary data were eliminated. The pipeline and search results are schematically presented in Figure 2. Quality assessment was performed by appraising relevance, reliability, validity, and applicability of the evidence, and risk of bias was graphically represented using the package robvis [20] in the statistical computing environment R 4.4.1 [21]. Manuscripts with high overall risk of bias were removed from further analysis.

2.3. Evidence Synthesis and Meta-Analyses. Data synthesis was performed using a structured framework consisting of four outcomes: (1) sensory, (2) shelf-life, (3) microbiological, and (4) physiological quality for climacteric and nonclimacteric fruits (Tables 2 and 3). Evidence tables were built including the outcome, omics method, experimental design, and a representation of the direction of the impact (positive or negative) on each outcome. The categories and classes in the evidence table were constructed using Gene Ontology (GO) terms [160]. GO terms for genes characterized by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were retrieved using KEGGSOAP [161] in R 4.4.1. Categories included in the evidence table were defined according to the GO category under "Biological Process" and "Cellular Component" classifications. Significance levels were retrieved from the original publications. The studies were weighed according to their reliability to provide valid estimates of cumulative information. Inverse variance was used to measure the study precision, consisting of a composite calculation of the global variance and sample size; therefore, studies with larger sample sizes and smaller experimental errors were considered more reliable and received higher weights. To maintain the inferential properties of the studies, global data was normalized by logarithm transformation.

GO data from the manuscripts were used in global multivariate analyses, using term frequency, dispensability, and uniqueness. The association between the co-occurring GO terms and the outcomes was investigated by clustering analyses using z-score normalized data retrieved from the publications. The adjacency matrix between the GO terms and the outcomes was used to construct the relevance network for all the data, using a threshold of 0.50, with igraph [162] in R. Logistic regression model (binomial) between GO terms and postharvest conservation strategies and odds ratio (OR) were calculated in R. The investigated outcomes have

different time span and quantitative measures for the investigated fruit species; therefore, to provide a broader perspective on the influence of developmental and physiological process, regression modes were generated for each fruit. Multivariate analyses were carried out using sparse partial least square-discriminant analysis (sPLS-DA) for the biological process GO terms using the fruit species as discriminant with the mixOmics package [163] in R 4.4.1. The conservation methods used in the studies included in the metaanalysis were evaluated according to the technology readiness level (TRL) of strategy, estimated based on a scale from 1 to 9 with 1 being the least and 9 most mature technology, using an online tool (TRL Calculator) developed by the European Space Agency (ESA) and available online (http:// trlcalculator.esa.int/).

3. Results

3.1. Systematic Review. The literature searches identified a total of 13,111 articles from four investigated databases. Before conducting a detailed screening, duplicate and ineligible records were removed, resulting in 8246 (62.9%) records submitted for automated and manual investigation. From these, a total of 634 (7.7%) records were removed, and a further 352 (4.3%) records could not be retrieved, resulting in 7260 (88%) records assessed for eligibility (Figure 2a). Individual analyses of these records resulted in the elimination of review articles, publications without primary data or outside the scope, written in languages other than English, or other motives, such as retraction. The remaining publications were investigated by relevance, reliability, validity, applicability of the evidence, and risk of bias (Figure S1), and 171 studies matching the inclusion criteria were considered in the meta-analyses.

1796, 2025, 1, Down loaded from https://onlinelibrary.wiley.com/doi/10.1155/jjfo.9963581 by Cesar Luis Girardi - EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria, Wiley Online Library on [29/10/2025], See the Terms and Conditions (https://onlinelibrary.wiley.com/ebrard-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Cecarive Commons Licenses

In the period investigated, the number of published omics studies assessing fruit postharvest increased linearly, reaching 1633 papers in 2022 (Figure 2b). Globally, China was the country with the highest number of publications in the period, producing more than 4000 articles on the subject in 10 years, followed by the United States, Spain, and Italy (Figure 2c). India and Brazil were the countries from the global south producing the highest number of articles in the period (Figure 2c). The number of articles investigating climacteric fruit was slightly higher (5459, 56.6%) than those on nonclimacteric (4178, 43.4%), not considering the studies investigating both fruit types (Figure 2d). Considering that work with tomato (Solanum spp.) and its wild relatives was not included, apple was the most frequently investigated climacteric fruit, followed by banana and peach, whereas grapes and strawberries were the most prevalent nonclimacteric fruit in omics studies (Figure 2d). For both classes of flesh fruit, transcriptome studies were the most frequent, followed by metabolome in climacteric (Figure 2e) and genome in nonclimacteric fruit (Figure 2f). Integrative, multiomics studies were more frequently retrieved for nonclimacteric fruit (Figure 2f). Tables 2 and 3 summarize the studies included in the meta-analyses, describing the fruit species, biological questions, the used omics techniques, and the conservation outcome for climacteric and

	Fruit (scientific name)	Technology	Outcome
	Apple (Malus spp.)	Physical treatment	Shelf life (time)
	Banana (Musa spp.)	Atmosphere manipulation	Sensory
Climacteric	Peach (Prunus persica L.)	Temperature manipulation	Quality (physiological)
	Pear (Pyrus spp.)	Chemical treatment	Microbiological
	Persimmon (Diospyros spp.)		
	Cherry (Prunus avium L.)		
	Citrus (Citrus spp.)		
Nonclimacteric	Cucurbitaceae		
	Grape (Vitis spp.)		
	Strawberry (Fragaria spp.)		

TABLE 1: List of fruit species, principal postharvest technologies, and conservation outcomes selected for the systematic review.

nonclimacteric fruit, respectively. Further details on the studies included in the meta-analysis and their association with the outcomes investigated are presented in the following sections.

3.2. Temperature Control. Temperature is considered one of the most important external factors affecting fruit ripening and postharvest conservation [164, 165]. Accordingly, most studies included in the systematic review discuss the effect of temperature on postharvest conservation (Tables 2 and 3). Climacteric fruit undergo rapid physiological decay and microbiological contamination during transportation and storage at ambient temperature [166]. Apple, pear, and stone fruit are the prevalent species in postharvest studies investigating the effects of temperature on conservation (Table 2). High-throughput studies demonstrated that postharvest conservation under low temperature affects ethylene, auxin, and gibberellin signal transduction pathways, cell wall enzyme metabolism, specialized metabolism pathways, and abiotic stress response pathways in climacteric fruit ([164, 165]; [24]).

Although not as susceptible to high temperature-induced quality loss, nonclimacteric fruit displays several physiological modifications under low temperature [167]. A smaller number of studies investigated the effects of temperature on nonclimacteric fruit (Table 3). In this class of fruit, cold storage after harvest mostly affects biotic and abiotic stress pathways and primary metabolic processes, such as gluconeogenesis and starch biosynthesis, photosynthesis, translation and processing of mRNA, intracellular lipid transport, protein posttranslational processing, and intracellular membrane trafficking [2, 69, 93].

Extensive transcriptional reprogramming caused by temperature brings about developmental and metabolic responses [164, 165]. Low temperatures decrease cellular metabolic rates, delay senescence, reduce microbial growth, and can contribute to retaining the quality of fruits after harvest. However, cold storage may also induce several physiological syndromes leading to quality loss, in a condition called CI [57, 168]. CI is a physiological disorder of horticultural products observed in susceptible fruit tissues caused by exposure to temperatures higher than the freezing point, thus differing from freezing damages. CI-inducing tempera-

tures are variable and dependent on the fruit species; although, in general, susceptible tropical fruit may show symptoms at temperatures lower than 12°C, whereas in more resistant species, the syndrome will manifest itself under 5°C–8°C [168].

Storage temperature and period are considered the most important factors contributing to the appearance of CI in fruit after harvest [57, 168]. In general, CI is caused by chloroplast and mitochondria expansion and disintegration, a decrease in the number and size of starch grains, and accumulation of lipid bodies in chloroplasts and nuclear chromatin [57, 168]. These cellular processes result in a wide range of metabolic disorders, resulting in ripening impairment and flavor and aroma loss [57, 164, 165, 168]. On the outside, CI fruit may exhibit peel abnormalities, such as depression and discoloration, water staining, peel and/or pulp browning, and pulp woodiness or flocculation [169]. Additionally, CI also reduces fruit resistance to microbial pathogens, shortening shelf life after returning to room temperature [57, 168]. Cold-induced lesions in plum were reduced by exogenous application of methyl jasmonate (MeJA), via modulation of the expression of genes and accumulation of metabolites involved in oxidative homeostasis [170]. Despite its injuryinducing potential, continuous or intermittent conservation at low temperature remains one of the most important postharvest techniques applied to fruit; in-depth characterization of specific physiological and metabolic responses using highthroughput methodologies may contribute to devising the most effective conditions for distinct species. Comprehensive high-throughput studies have helped to evaluate the effectiveness of the exogenous application of compounds inducing protective pathways before and during cold storage, including melatonin (MT), jasmonates, and salicylic acid (SA) [13-15, 73, 76, 151, 171, 172]. These integrative approaches allow the identification of protective pathways and provide information on their induction, which may contribute to devising novel postharvest conservation technologies.

The differential regulation of genes involved in chromatin structure in response to low temperatures during storage has been demonstrated in apples and other fruit after harvest [24, 57, 173, 174]. Moreover, extensive transcriptional reprogramming has been associated with cold storage [24, 174],

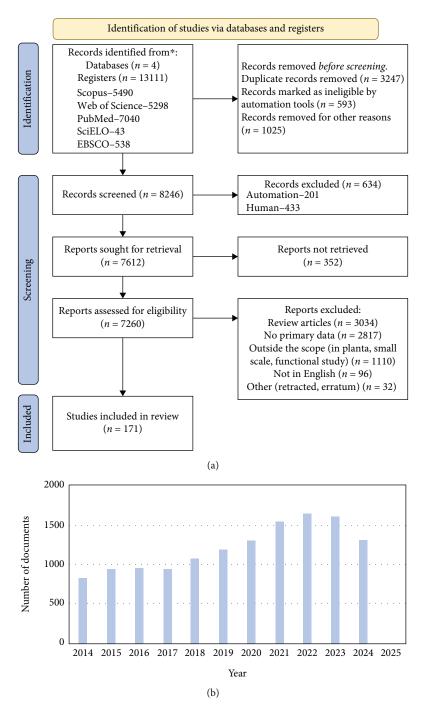


FIGURE 2: Continued.

suggesting a causal relationship between chromatin remodeling and large-scale transcriptome modifications. In fact, drastic changes in plant developmental programs have been associated with temperature shifts, such as vernalization, germination induced by stratification, and thermomorphogenesis [78, 156, 175, 176]. Epigenetic events involved in fruit ripening are still a scientific gap. The main changes are known, but there is no development of technological interventions based on this knowledge, especially from a postharvest perspective. These observations hint at the possibility of developing novel conservation technologies capa-

ble of inducing large-scale transcriptional reprogramming via temperature manipulation.

3.3. Atmosphere Manipulation. At room temperature, atmosphere composition consists of variable amounts of water vapor, O₂, CO₂, N₂, Ar, and other minor components [177]. The ratio of gaseous components of the atmosphere can be altered under contained environments to prevent fruit senescence after harvest. Technologically designed changes in the relative contents of atmospheric gases around fruits may occur during storage, in the form of controlled

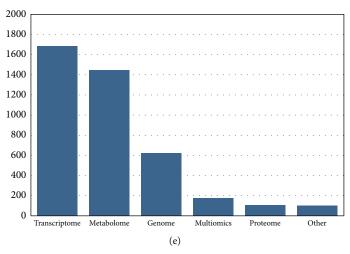

2. Dowloaded from https://onlinelibrary.wile.co.om/ois/10.11535ji/9965381 by Cestar Lisis Girardi - EMBRAPA - Empress Brasileira de Pesquisa Agropecuata, Wiley Online Library on [29/10/2025]. See the Terms and Conditions thttps://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Creative Commons Licensee

FIGURE 2: Continued.

atmosphere (CA) storage, or during packaging, as modified atmosphere (MA) [177]. Currently, CA and MA technologies have undergone considerable refinements, giving rise to new approaches, such as dynamic CA and smart MA. These technologies employ sensor-based analyses of fruit responses to storage conditions coupled with automated adjustments of $\rm O_2$ levels during storage according to physiological modifications. Frequently, sensors in dynamic CA

and smart MA monitor ethanol production, fruit respiration rates, and chlorophyll fluorescence.

The main biological targets of atmosphere manipulation to preserve fruit after harvest are cellular respiration, redox system activation, and microbial growth impairment [103]. In general, recommended conditions for fruit MA packing consist of $\rm O_2$ levels ranging from 1% to 5%, whereas moderate $\rm CO_2$ concentrations (10%–20%) are advised for

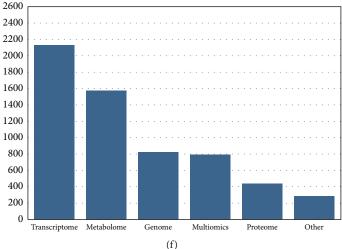


FIGURE 2: (a) Schematic representation of PRISMA flow diagram for the systematic review of omics studies of fruit postharvest conservation reporting on sensory, quality, shelf life, and microbiological aspects from 2014 to the present. Summary of the investigated studies by (b) publication year and (c) country of origin. (d) Pie chart of the species of climacteric and nonclimacteric fruit and type of omics study for (e) climacteric and (f) nonclimacteric fruits.

microbial prevention. In contrast, CA and dynamic CA conditions are highly variable and depend on the species [177]. Climacteric pome fruits, like apples, pears, and crab apples, are stored under "double-low gas" conditions, ranging from 1% to 3% O₂ and 1% to 3% CO₂, under low temperatures [177, 178]. In pears, browning can be inhibited and shelf life extended up to 10% O₂ and CO₂ [177, 178]. In contrast, drupes, such as peaches, apricots, and dates, are generally stored at O2 and CO2 concentrations ranging from 3% to 15%, whereas berries are usually stored under single (O₂) or double (O2 and CO2) high gases [103, 177]. Compound fruits, including pineapple and dragon fruit, can also be effectively preserved under double-low gas conditions [177]. The frequency of studies on climacteric and nonclimacteric fruit under CA was similar (Tables 2 and 3), and the biological processes frequently affected by atmosphere manipulation after harvest consist of oxygen and reactive oxygen species (ROS) metabolism, tricarboxylic acid (TCA) cycle, lipid and jasmonic acid pathways, and the γ-aminobutyric acid (GABA) metabolism. In climacteric and nonclimacteric fruit, the interplay between carbohydrate and lipid metabolic pathways is affected under atmosphere manipulation conditions [32, 155, 177].

The key regulator of fruit ripening and senescence, the phytohormone ethylene, naturally occurs in the gaseous form. Thus, several atmosphere manipulation techniques block its action by inhibition, absorption, or oxidation. The inhibitor 1-methylcyclopropene (1-MCP), the absorbent zeolite, and catalytic oxidants KMnO₄, ozone (O₃), and TiO₂ can be used to inhibit its action or scavenge the gaseous hormone after harvest [103]. Ethylene scavengers are often used in combination with other atmosphere and temperature manipulation techniques. Among the included studies, the effects of CA on fruit postharvest conservation were most frequently investigated in climacteric fruit (Table 2). Recently, a study with wild type and a nonripening tomato mutant has identified differences in several key genes controlling ripening and demonstrated that the differences in their transcription rate are positively regulated by the expression of their corresponding lncRNAs [179]. The

1796, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/ijfo996381 by CesarLuis Girardi - EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria, Wiley Online Library on [29/10/2025], See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA ariches are governed by the applicable Creative Commons License

TABLE 2: Summary of studies with climacteric fruit included in the analyses. The study target, used omics techniques, and outcome are described.

Study			Outcome	Reference
Fruit	Target	Omics technique		
	Firmness loss during storage is associated with expression of an α -L-arabinofuranosidase regulated by ethylene	Transcriptome, phenomics (physicochemical and sensory analyses)	Quality, sensory, shelf life	[22]
	Changes in peel plastid structure during ripening	Phenomics (ultrastructural analyses)	Sensory, quality, shelf life	[23]
	Conservation techniques exert distinct effects on gene expression	Transcriptome, phenomics (physicochemical and sensory analyses)	Quality, shelf life	[24]
	Xyloglucan endotransglucosylase/hydrolase gene family expression during ripening and softening	Transcriptome	Sensory, quality, shelf life	[25]
	Apple texture in multifamilies using genomewide association (GWA)	Genome (GWA)	Quality, shelf life	[26]
	Hormone-controlled anthocyanin production after harvest	Transcriptome	Sensory, quality	[27]
	Overexpression of an anthocyanin regulator basic helix-loop-helix (bHLH) transcription factor accelerates ethylene biosynthesis and senescence	Genome (functional analyses)	Sensory, quality, shelf life	[28]
	Association between anthocyanin accumulation and internal browning flesh disorder	Functional analyses (gene overexpression, metabolome, gene expression)	Sensory, quality, shelf life	[29]
	Expression analyses in individuals with distinct crispness	Genome, transcriptome	Sensory, quality	[30]
Apple	Effect of ozone and 1-MCP on superficial scald disorder during cold storage	Transcriptome, proteome, metabolome	Sensory, quality, shelf life	[31]
	1-MCP prevents the expression of ripening- related genes	Transcriptome	Quality, shelf life	[32]
	Effect of hormones during early ripening	Transcriptome	Sensory, quality	[33]
	Effect of NAC (NAM, ATAF1/2, CUC2 family) transcription factors on flavor ester biosynthesis	Genome (methylation), transcriptome	Sensory, quality	[34]
	Evolution of volatiles and gene expression during ripening	Transcriptome, metabolome	Sensory, quality	[35]
	Senescence is delayed by not prevented by conservation techniques	Transcriptome, phenomics (physicochemical and sensory analyses)	Sensory, quality, shelf life	[36]
	Effect of ethylene responsive factors on histone deacetylase expression during ripening	Genome (chromatin immunoprecipitation sequencing—ChIP-Seq), transcriptome (chromatin immunoprecipitation—quantitative reverse transcription polymerase chain reaction, ChIP-qRT-PCR), functional analyses (heterologous expression)	Quality, shelf life	[37]
	Effect of wax coating on gene expression	Transcriptome	Quality, shelf life	[38]
	Calcium represses ethylene biosynthesis during apple fruit ripening by regulating posttranslational status of an APETALA2/	Gene expression, (RT-qPCR and ChIP-RT-qPCR) functional analyses	Quality, sensory, shelf life	[39]

TABLE 2: Continued.

Study			Outcome	Reference
<u> </u>	ETHYLENE RESPONSE FACTOR (AP2/ERF)			
	protein Calcium represses ethylene biosynthesis during apple fruit ripening by regulating posttranslational status of an AP2/ERF protein	Gene expression, (RT-qPCR and ChIP-RT-qPCR) functional analyses	Sensory, quality, shelf life	[40]
	Effect of ethylene on malate transport via transcription factors network	Transcriptome, functional analyses (yeast-2-hybrid—Y2H, luciferase promoter fusion—Luc pro, ectopic expression)	Quality, shelf life	[41]
	Regulation of volatile ester biosynthesis during ripening	Transcriptome, metabolome	Sensory, quality	[42]
	Identification of a zinc finger homeodomain transcription factor that induces expression of a β -galactosidase	Transcriptome, functional analyses (Y2H, Luc pro, ectopic expression)	Sensory, quality, microbiological	[41]
	Overexpression of a polygalacturonase gene affects fruit development and structure	Functional analyses (overexpression), transcriptome	Quality, shelf life, microbiological	[43]
	Mechanism regulating the formation of watercore during ripening	Transcriptome, functional analyses (Y2H, Luc pro, ectopic expression)	Quality, shelf life	[44]
	Effect of DNA methylation on gene expression in two distinct ripening stages	Genome (bisulfide sequencing), transcriptome, metabolome (sugars and hormones)	Quality	[45-47]
	Mobile mRNA from seed to flesh induces ripening	Genome (resequencing), transcriptome, functional analyses	Shelf life	[45-47]
	NAC and WRYK (WRKYK domain) transcription factors control fruit softening via ethylene mediated regulation of an xyloglucan endotransglucosylase/hydrolase	Transcriptome, functional analyses (ectopic expression, Y2H, Luc)	Quality, shelf life	[45–47]
	Effects of aminoethoxyvinylglycine and 1-MCP on gene expression and quality traits	Transcriptome	Quality, shelf life	[48]
	Expression of AUXIN RESPONSE FACTOR (ARF) genes and metabolite profiling after harvest	Transcriptome, metabolome	Shelf life	[49]
Banana	General metabolite database, ripening as case study	Genome, transcriptome	Sensory, quality	[50]
	General genomics database, ripening as case study	Genome, transcriptome	Sensory, quality	[51]
	Expression of POLYPHENOL OXIDASE (PPO) gene family	Transcriptome	Sensory, quality, microbiological	[52]
	Effect of gibberellin pretreatment on cold storage	Transcriptome	Sensory, quality, shelf life	[53]
Peach	Acid accumulation	Multiomics (GWA mapping and transcriptome)	Quality	[54]
	Biological activity (flavonoid)	Metabolome, genomics	Quality	[55]
	Aroma	Multiomics (metabolome, genomics, transcriptome)	Quality	[56]
	Chilling injury	Metabolome, transcriptome, genome	Shelf life, quality	[57]
Pear	Russeting	Proteome, transcriptome	Quality	[58]
	Russeting	Metabolome, transcriptome, proteome	Quality	[59]

TABLE 2: Continued.

Study			Outcome	Reference
	Ripening	Metabolome, proteome, transcriptome, DNA methylome, small RNAome	Quality, shelf life	[60]
Persimmon	Seedlessness	Phenomics, convolutional neural networks	Quality	[61]
	Chilling injury	Transcriptome, convolutional neural networks	Shelf life, quality	[62]

authors demonstrated that a posttranscriptional process, mRNA acetylation, is differentially regulated throughout ripening and in the wild type and mutant. Integrating transcriptome and global mRNA acetylation analyses, the work showed that acetylation has a role in regulating gene expression [179]. The study also demonstrated the differential acetylation of ripening-related transcripts in the mutant and wild type, suggesting that the differences in ethylene production, fruit texture, and flavor during ripening are controlled by mRNA acetylation [179]. Thus, indicating that posttranscriptional modifications may also function as targets for postharvest conservation techniques.

Other small gaseous molecules, termed gasotransmitters, can be produced endogenously and transmit biological signals, such as hydrogen gas (H2), hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and methane (CH₄) [180]. These molecules are produced in response to environmental and developmental conditions and participate in a wide range of processes, including seed germination, root growth, stomatal closure, and responses to abiotic stresses [180]. Exogenous NO application after harvest has been demonstrated to inhibit ethylene biosynthesis, increase antioxidant capacity, induce a stress defense system, activate the C-repeat binding factor (CBF) pathway, and control sugar and energy metabolism in fruit [181]. The gasotransmitter has several points of interaction with signaling pathways triggered by H₂S, hydrogen peroxide (H₂O₂), oxalic acid (OA), arginine (Arg), GATA factors, or the plant hormone ABA, MT, and MeJA [182]. Similarly, NO has also been demonstrated to influence the expression of genes involved in senescence and to induce protein posttranslational modifications, such as tyrosine nitration, S-nitrosylation, and nitroalkylation [182-184]. However, its effective use in fruit postharvest conservation is complicated by the short half-life of gaseous NO and its conversion into nitrogen dioxide (NO₂), a toxic gas, in the presence of oxygen. The toxic effects of NO₂ compromise fruit quality by causing tissue death, browning, and discoloration [182]. Therefore, NO fumigation after harvest requires airtight containers to prevent contact with oxygen and N2 flushing after NO treatment to prevent NO2 damage. The equipment used to generate N₂ significantly increases production costs. Therefore, NO fumigation to increase fruit postharvest conservation remains restricted to research laboratories [182-184].

Due to its interaction with several hormone pathways and its role in stress responses, H₂S is considered a gas transmitter of interest for fruit conservation strategies, to enhance fruit quality and prolong shelf life [185]. Its role in alleviat-

ing oxidative stress and contributing to preserving cell wall structure has been demonstrated for peaches, tomatoes, and loquat after harvest [13–15, 54, 186, 187]. However, technological aspects concerning the unpredictable kinetics of $\rm H_2S$ release from donor molecules require further investigation for its use in postharvest applications [185].

3.4. Physical Treatments. Recently, physical treatments have emerged as viable, sustainable alternatives to fruit postharvest conservation [188]. These technologies consist of several mechanical and structural approaches employed to manipulate and process horticultural products after harvest. As with other postharvest techniques, physical methods are trifunctional, aiming at quality conservation, shelf-life extension, microbial contamination, and quality loss reduction [188]. The main advantages of these technologies consist of the replacement of thermal processing and chemical treatment by physical forces, the reduction of nutrient losses in fruits, the enhancement of environmental sustainability, and, consequentially, consumer acceptance. The absence of residues in the treated fruit is also an important advantage of nonthermal physical postharvest treatments [188]. Similarly, transcriptional and metabolic reprogramming has been demonstrated to be less extensive in response to current physical postharvest treatments than under other methods, including low temperature and CA storage [189], although biosynthesis or catalysis of certain metabolites may be influenced by physical treatment of the fruit [188, 190]. The most investigated physical treatments applied to fruit after harvest have been shown to downregulate pathways associated with cell wall modification and induce the metabolism of ROS [190–192]. Gene encoding general signaling components, mitogen-activated protein kinases (MAPKs), is involved in the regulation of endogenous plant processes, such as growth, development, and programmed cell death, and responses to external conditions, such as temperature shift, water deficit, production of ROS, light, and microorganisms. These genes were also shown to be affected by physical treatment in fruit after harvest [190].

The most prominent nonthermal physical treatments used in postharvest fruit conservation are vacuum- and hydrocooling, microwave heating, PEF, CP, high hydrostatic pressure (HHP), UV irradiation and pulsed light, and ionizing radiation [188, 190]. Among the investigated postharvest technologies, physical methods were the most infrequent in omics studies with available data (Tables 2 and 3). The use of physical treatments for conservation after harvest is more commonly reported for vegetables [191, 192].

TABLE 3: Summary of studies with nonclimacteric fruit included in the analyses. The study target, used omics techniques, and outcome are described.

Study			Outcome	Reference
Fruit	Target	Omics technique		
	Cold storage and 1-MCP	Metabolome	Shelf life	[63]
	Penicillium expansum responses	Genomics	Quality, shelf life	[64]
	Maturity and quality quantitative trait loci (QTL) mapping	Genomics (GWA mapping)	Quality, shelf life	[65]
	Germplasm carbohydrate profiling	Metabolome	Quality	[66]
Cherry	Effect of ozone treatment on cherry proteome after harvest	Proteome	Shelf life	[67]
	Fruit thinning, orchard management	Phenomics	Quality, shelf life	[68]
	Lipoxygenase-encoding gene families during ripening	Genome, transcriptome, metabolome	Quality	[69]
	Effect of chitosan coating on metabolism in cold storage	Phenomics	Shelf life	[70]
	Dimension and compagned	Tunnamintana matahalama	Shelf life	[71]
	Ripening and senescence Peel texture	Transcriptome, metabolome Transcriptome, metabolome	Quality	[71] [72]
	Nonchilling peel pitting	Transcriptome	Shelf life	[2]
	Mold suppression by salicylic acid (SA) and cinnamon	Transcriptome	Quality, shelf life	[73]
	Cinnamaldehyde on phenylpropanoid pathway	Transcriptome, metabolome	Shelf life	[74]
	Water transport, wax biosynthesis	Transcriptome, metabolome	Shelf life	[75]
Citrus	SA effect on cell wall metabolism	Transcriptome, metabolome	Quality, shelf life	[76]
	Wax coating cold storage	Transcriptome, metabolome	Quality, shelf life	[77]
	Anthocyanin accumulation during drought	Metabolome	Quality, Shelf life	[78]
	Puffing disorder	Phenomics, metabolite profiling	Quality, shelf life	[79]
	Flavonoid biosynthesis	Genome, transcriptome, metabolome, virus-induced gene silencing (VIGS)	Quality	[80]
	Bioactive compounds	Genomics, transcriptome, metabolomics	Quality	[81]
	Expression of abscisic acid (ABA) pathway genes during ripening	Transcriptome	Quality	[82]
	Long noncoding RNA in ripening	Transcriptome	Shelf life	[83]
	Response to biocontrol agent	Transcriptome, proteome	Shelf life	[84]
Cucurbitaceae	Silencing of a gene encoding an ascorbate oxidase	Genetic engineering	Quality, shelf life	[85]
Gucurbitaccae	Sugar metabolism in contrasting genotypes	Transcriptome	Shelf life	[86]
	Flavonoid biosynthesis, nematoid resistance	Transcriptome, proteome	Quality, shelf life	[87]
	Aroma volatiles during ripening	Transcriptome, metabolome	Quality	[88]
	Transcriptome of near-isogenic lines (NILs) with high flesh firmness	Transcriptome	Shelf life	[89]

1796, 2025, 1, Downloaded from https://onlinelbthary.wiley.com/doi/10.1155/ij6v9963581 by Cesar Luis Girard: - EMBRAPA - Empress Braidiein de Pesquisa Agopeanaia, Wiley Online Library on [29/10/2025], See the Terms and Conditions (https://onlinelbthary.wiley.com/ems-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

TABLE 3: Continued.

Study			Outcome	Reference
	Pericarp color, flavonoid accumulation	Genome (QTL mapping), metabolome	Quality	[90]
	Aroma volatiles, flesh color in watermelon germplasm	Genome (GWA), metabolome	Quality	[91]
	Bitterness	Genome, metabolome	Quality	[92]
	Heat shock proteins expression under abiotic stresses	Transcriptome, metabolome	Quality	[93]
	Database, breeding	Genome, transcriptome	Quality, shelf life	[94]
	Ozone effect on phenylpropanoid biosynthesis	Metabolome, enzyme activity, gene expression	Quality, shelf life	[95]
	Ripening regulation in contrasting lines	Genome (QTL mapping), genome editing (clustered regularly interspaced short palindromic repeats/ CRISPR-associated Protein 9, CRISPR/Cas9), transcriptome, DNA affinity and DNase sequencing	Shelf life	[96]
	Fruit size, fruit color	Transcriptome, metabolome	Quality	[97]
	Flesh firmness	Genome (QTL mapping), bulk segregant analysis sequencing, gene function (yeast 1-hybrid—Y1H, dual luciferase)	Shelf life	[98]
	Ultraviolet influence on stilbene biosynthesis	Metabolome, transcriptome	Quality	[99]
	Berry ripening under water stress	Metabolome, transcriptome	Quality	[100]
	Specialized metabolism expression during ripening	Transcriptome	Quality	[101]
	Gene expression networks during ripening	Transcriptome, metabolome	Quality	[102]
	Anthocyanin biosynthesis	Transcriptome, metabolome	Quality	[103]
	MicroRNA (miRNA) regulation during ripening	Transcriptome	Quality	[104]
	Flavonoid variation in grape germplasm	Transcriptome, metabolome	Quality	[105]
	Copper stress during fruit ripening	Transcriptome, proteome, metabolome, and miRNAome	Quality, shelf life	[106]
	Red blotch virus infection during ripening	Transcriptome, metabolome	Quality, shelf life	[107]
Grape	Abiotic and biotic stresses during ripening	Transcriptome, metabolome	Quality, shelf life	[108]
	Grafting on phenolic compounds accumulation in berry skin	Transcriptome, metabolome	Quality	[109]
	Virus infection during ripening	Transcriptome, metabolome	Quality	[110]
	Effect of a deacetylase inhibitor during ripening	Transcriptome, proteome	Quality	[111]
	Microbiota effect on chemical profile	Genome, metabolome	Quality, shelf life	[112]
	Anthocyanin accumulation during ripening	Transcriptome, metabolome	Quality	[113]
	Berry decay, shriveling, and weight loss	Genome (QTL and GWAS mapping), phenomics	Shelf life	[114]
	Sugar transporter gene family expression	Transcriptome	Quality	[115]
	Cadmium stress with distinct rootstocks	Transcriptome, metabolome	Quality	[116]
	Fungicide effect on berry gene expression and chemical profile	Transcriptome, metabolome	Quality, shelf life	[117]
	Effect of microcapsules for berry conservation	Phenomics	Quality, shelf life	[15]

TABLE 3: Continued.

Study			Outcome	Reference
	Treatment with jasmonates on berry gene expression and metabolic profile	Transcriptome, metabolome	Quality	[118]
	Chitosan coating during postharvest	Phenomics	Shelf life	[119]
	Nanomicroplastics in grape seedlings	Transcriptome, metabolome	Quality, shelf life	[120]
	Light and ABA regulation of anthocyanin			
	production	Transcriptome	Quality	[121]
	Flavonoid and phenylpropanoid accumulation during ripening	Transcriptome	Quality, shelf life	[122]
	Regulation of eugenol production in ripe receptacles	Transcriptome, metabolome	Quality	[123]
	Flavonoid pathway genes	Transcriptome, network analyses	Quality	[124]
	Flavonoid and anthocyanin biosynthesis during ripening	Proteome	Quality	[125]
	Effect of exogenous auxin and abscisic acid	Transcriptome	Quality, shelf life	[126]
	Silencing of a β -galactosidase gene	Transcriptome, genetic engineering	Quality, shelf life	[127]
	Changes in cell wall components during ripening	Metabolome	Quality, shelf life	[127]
	Effect of light and temperature on aroma formation	Transcriptome, metabolome	Quality	[128]
	Effect of chitosan coating during harvesting	Transcriptome	Quality, shelf life	[129]
	Role of oxidative phosphorylation during ripening	Transcriptome	Quality, shelf life	[130]
Strawberry	Gene expression and metabolite accumulation during ripening	Transcriptome, metabolome	Quality	[131]
ociumo c ity	Regulation of RNA-directed DNA methylation during ripening	Methylated DNA sequencing	Quality, shelf life	[132]
	Berry metabolome during ripening	Metabolome	Quality, shelf life	[133]
	Effect of alginate oligosaccharide after harvest	Transcriptome, metabolome	Quality, shelf life	[134]
	Ectopic expression of a tonoplast- localized vacuolar phosphate transporter improves postharvest traits	Transcriptome, genetic engineering (overexpression)	Quality	[135]
endotransglucosyla:	Ectopic expression of xyloglucan endotransglucosylase/hydrolase encoding genes accelerate ripening	Transcriptome, genetic engineering (overexpression)	Quality	[136]
	Effect of monochromatic light during fruit ripening	Transcriptome, metabolome	Quality, shelf life	[137]
	Effect of biocontrol agent on fruit quality after harvest	Metabolome, proteome	Quality, shelf life	[138]
	Gene expression in fruit with distinct storability	Transcriptome	Shelf life	[139]
	Characterization and gene expression of PECTIN METHYLESTERASE genes during ripening	Genome, transcriptome	Quality, shelf life	[140]
	Expression of endoxylanase encoding genes in cultivars with different flesh softening	Transcriptome	Quality, shelf life	[141]

- EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria , Wiley Online Library on [29/10/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use. OA articles are governed by the applicable Creative Commons License

TABLE 3: Continued.

Study			Outcome	Reference
	Effect of chitosan on <i>Botrytis cinerea</i> –infected fruit	Metabolome, proteome	Quality, shelf life	[142]
	Profiling of mRNA methylation during ripening	Transcriptome (RNA and N6-methyladenosine, m6A-sequencing), functional analyses (Y2H, Luc pro, in vivo transient expression)	Quality, shelf life	[143]
	Effect of DNA and histone methylation on ripening	Transcriptome, proteome	Quality, shelf life	[144]
	Effect of cold on anthocyanin accumulation	Transcriptome, functional analyses (Y2H, Luc pro in vivo transient expression)	Quality, shelf life	[145]
	Gene expression and metabolite profiling during <i>in planta</i> and <i>off planta</i> ripening	Transcriptome, metabolome	Quality, shelf life	[146]
	Gene expression and metabolite profiling in a mapping population	Genome (QTL and GWAS mapping), transcriptome, metabolome	Quality	[147]
	WRYK transcription factor activates expression of a <i>PECTATE LYASE</i> gene	Transcriptome, genetic engineering	Quality, shelf life	[148]
	Jasmonate (JA) treatment and <i>Botrytis</i> cinerea infection	Transcriptome	Quality, shelf life	[149]
	Effect of preharvest treatments on conservation	Metabolome, transcriptome	Quality, shelf life	[150]
	Methylation inhibition after harvest	Transcriptome	Quality, shelf life	[151]
	Octoploid wild species	Genomics (de novo assembly)	Quality	[152]
	Exogenous melatonin delays ripening by affecting ABA signaling	Transcriptome, phenomics (biochemistry, morphology)	Quality, shelf life	[153]
	Gene expression in natural and transgenic cell wall mutants	Transcriptome, genetic engineering (gene silencing)	Quality, shelf life	[154]
	Coordination of aroma formation and anthocyanin production	Transcriptome, metabolome	Quality, shelf life	[155]
	Effect of nanoselenium application in fungicide treated fruit	Transcriptome, metabolome	Quality, shelf life	[156]
	Patterns of histone modifications control ripening	Genome (ChIP-Seq), transcriptome, small RNA (sRNA) sequencing	Quality, shelf life	[157]
	Silencing of a RHAMNOGALACTURONAN LYASE gene retains firmness after harvest	Genome, transcriptome, metabolome, genetic engineering (gene silencing)	Quality, shelf life	[158]
	Loss of function mutation of an anthocyanin reductase activates anthocyanin biosynthesis	Genome (bulk segregant analysis sequencing, BSA-seq), transcriptome, metabolome	Quality, shelf life	[159]

A study with acerola, a climacteric fruit, demonstrated the effect of pulsed light treatment on several metabolic processes, including cellular respiration, timing of ethylene peak, lipid oxidative metabolism, polyamine, and vitamin C accumulation [193]. The fruit also exhibited increased firmness and reduced weight loss during storage [193]. The authors concluded that treatment with light pulses delayed ripening and promoted quality by activating the antioxidant metabolism. Similar metabolic reprogramming of ascorbic acid accumulation was observed in raspberries and blackberries submitted to cold storage [194]. In blueberries, the integration of physiological and transcriptome data demonstrated that the physical treatment after harvest regulated the dynamic balance of ROS to maintain flesh firmness by promoting the accumulation of compounds with antioxidant activity and the activity of enzymes responsible for ROS

scavenging [190]. The authors observed a significant decrease in the contents of H₂O₂ in blueberries treated with CP, in comparison to the untreated control. Similarly, the expression of genes encoding cell wall degradation enzymes was reduced in fruit treated with CP [190]. Genes associated with the MAPK signaling pathways were also induced in blueberries submitted to the physical treatment after harvest [190], although it remains unclear whether the observed upregulation is solely caused by the treatment with CP. Studies of fruit treatment with electric field have focused mainly on the inactivation of associated microorganisms, and its role in modulating the kinetics of oxidation reactions remains largely uncharacterized [191, 192]. Electric fields have been demonstrated to affect the contents of nutritionally important metabolites such as small antioxidant molecules and vitamins. The application of electric fields of

1796, 2025, 1, Down loaded from https://onlinelibrary.wiley.com/doi/10.1155/jjfo.9963581 by Cesar Luis Girardi - EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria, Wiley Online Library on [29/10/2025], See the Terms and Conditions (https://onlinelibrary.wiley.com/ebrard-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Cecarive Commons Licenses

moderate strength on fruit increases the permeability of cell membranes and has been shown to affect the contents of ascorbic acid and β -carotene in apple slices [195]. In contrast, the application of electric field treatments to vegetables and fruit juice did not affect the content of substances with functional, nutritional, and sensory properties, such as phenolic compounds and vitamins [196]. These contradictory results are likely to be due to the metabolic and cellular differences between vegetables and fleshy fruit. The effects of physical aspects of electric fields applied to fruit conservation, including the strength of the electric field, its frequency, pulse width, total treatment time, and specific energy, are scarcely characterized, and high-throughput integrative studies may contribute to establishing effective conditions for obtaining safe and stable products. Studies on postharvest conservation technologies based on physical treatments remain restricted to certain berries, and integrative omics studies are still scarce (Tables 2 and 3).

3.5. Chemical Treatments. Traditionally, synthetic chemical products, such as chlorine dioxide, NO, SA, 1-MCP, and several insecticides and fungicides, are used in fruit preservation to extend shelf life and maintain the quality after harvest [197]. However, most recently, consumer preferences have driven the use of biological products in the chemical treatment of fruit after harvest, including biological control agents and plant-based products [197]. The main biological target of fruit chemical treatment is the inhibition of microbial growth, along with desiccation protection after harvest and during storage. Accordingly, the food industry has increased the use of bioactive compounds with antioxidant and antimicrobial activity. Biological products can be effective replacements for synthetic compounds in fruit preservation after harvest and during storage. Natural elicitors, such as phenylalanine, have been demonstrated to activate defense-related pathways in fruit, including lipoxygenases and phenylpropanoid biosynthesis [198]. Edible packaging is considered an alternative to the use of chemical products and biocidal agents in the conservation of fruit after harvest [197, 199]. A wide range of biopolymer molecules, including polysaccharides, proteins, lipids, waxes, essential oils, and nanoparticles, have been used in fruit postharvest applications [197, 199]. Moreover, products of plant specialized metabolism, such as polyphenols and phenolic acids, terpenoids and other volatiles, and aldehydes and complex plant extracts, along with organic compounds of microbial and animal origins, have also been used in conservation strategies for fruit after harvest [197, 199]. In horticultural products, including fruit, antifungal activity against Aspergillus niger, Penicillium digitatum, Penicillium italicum, Botrytis cinerea, and several species of Fusarium has been demonstrated for essential oil terpenoids, such as linalool, citral, citronellal, α -terpineol, carvacrol, eugenol, octanal, and thymol, plant aldehydes perill- and cuminaldehyde, alkaloids, saponins, tannins, and polyphenols, including anthocyanins, cinnamic acid, and tannic acid [197]. Moreover, complex metabolite mixtures found in plant extracts were also used to prevent microbial growth in horticultural products, including postharvest fruit [197, 199], including

domesticated species, such as garlic, neem, mint, basil, and thyme leaf extracts, and extracts from several parts of wild species, including Anvillea radiata, Asteriscus graveolens, Bubonium odorum, Ceratonia siliqua, several Cistus species, Hammada scoparia, Ighermia pinifolia, Inula viscosa, Halimium umbellatum, Rubus ulmifolius, and Sanguisorba minor ([197, 200]. However, acute ingestion of essential oils has been demonstrated to trigger severe allergic reactions, damage mucous membranes, promote deterioration of the liver, and reduce the levels of glucose in the blood serum, which may lead to convulsions and coma [201]. In agricultural products not destined for in natura consumption, such as grains, plant-derived essential oils are considered promising alternatives to synthetic biocides during storage [202]. In the case of fruit, destined for human consumption with no or minor processing, the use of biological agents and products in postharvest conservation requires thorough investigation of their many potential mechanisms of action, associated with possibly distinct efficacy and side effects [164, 165, 203]. Ideally, a biological control product should be reliable, effective, widely accepted, patent protected, registered, and suitable for commercialization [164, 165]. The number of products attaining the desired qualities remains small, and the available biocontrol products represent a minor portion of the market [164, 165]. Recently, an edible fruit coating developed by Apeel Sciences has been proposed for organic fruit, consisting of plant-based monoglycerides and diglycerides, citric acid, and sodium bicarbonate [204]. However, the product has been discontinued in 2023, likely due to regulatory gaps concerning its composition and mechanism of action [205]. The situation reinforces the need for a stronger scientific basis for the recommendation of fruit coating products, especially for organic systems.

Similarly, the representativeness of integrative, largescale studies on fruit after harvest remains scarce. Biocontrol strategies have evolved into combinatory approaches using several microbial antagonists or the combination of microbes with physical and chemical techniques [164, 165, 203]. Alternatively, the use of physical agents before storage, including far-red light and ultraviolet radiation, has been demonstrated to reduce cold-induced damages in tomato [206]. Exogenous applications of salicylates, jasmonates, and MT (*N*-acetyl-5-methoxytryptamine) were also effective in increasing the levels of intracellular energy, enhancing the activity of Cytochrome c oxidase enzymes, and preserving membrane fluidity and integrity in tomato [207]. In apple, treatment of harvested fruit with exogenous MT also impaired ethylene production and delayed ripening [208]. The role of MT as a suppressor of ripening was further confirmed by the inverse correlation between the contents of endogenous MT and ethylene production [208]. The compound also repressed the transcription of key genes in ethylbiosynthesis, such as MdACS1 AMINOCYCLOPROPANE-1-CARBOXYLIC ACID THASE) and MdACO1 (ACC OXIDASE), during ripening. Similarly, exogenous MT treatment reduced the expression of transcription factors MdREM10 (REPRODUCTIVE MER-ISTEM10) and MdZF32 (ZINC FINGER32). The protein MdREM10 was shown to bind to the promoter of MdERF3

1796, 2025, L Downloaded from https://onlinelthrary.wiley.com/doi/10.1155/jjfo.9963881 by Cesar Luis Grardi - EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria, Wiley Online Library on [29/10/2025], See the Terms and Conditions (https://onlinelibrary.wiley.com/ebrard-conditions) on Wiley Online Library for rules of use; O A articles are governed by the applicable Centreive Commons License

(ETHYLENE RESPONSE FACTOR3), inducing its transcription, which in turn promoted the transcription of MdACS1 [208]. The work also demonstrated that MdREM10 directly binds the promoter of MdZF32, whose active protein binds the promoter of the MdACO1 promoter, inducing its expression and closing the regulatory loop. The findings demonstrate the potential of MT in apple postharvest conservation. However, information on other fruit species remains largely unavailable. Integrated large-scale approaches may contribute to expanding the current knowledge on the effect of physical agents on less characterized tropical fruit, allowing the development of novel conservation technologies. A simultaneous increase in the number of omics studies on the effects of biological control agents in fruit after harvest would help provide invaluable insight into fruit processes leading to improved quality or extended storage.

3.6. Biological Processes Affected by Postharvest Technologies. After harvest, fruits undergo metabolic and physiological changes, including alterations in pulp firmness, specialized metabolism that controls color and flavor, changes in nutritional content, and macromolecular degradation processes affecting proteins, lipids, and nucleic acids [209]. Although common pathways are shared, the senescence of fruit attached to the plant also involves different processes [9, 210]. Studies of ripening and senescence of fruit attached to the plant were not included in the current review. In this study, initial meta-analyses were conducted separately for climacteric and nonclimacteric fruits to investigate if common pathways could be detected among the different species within the two ripening patterns (Figures 1 and 3a). Subsequently, to achieve a more complete overview of fruit developmental and metabolic processes after harvest, the analyses integrated data from climacteric and nonclimacteric fruits (Figures 3b and 4). To integrate information from distinct omics studies and fruit species, we employed GO terms, which consist of a dynamic and controlled vocabulary that allows classification of biological molecules into expanding and changing categories of biological processes, molecular functions, and cellular components. The analyses focused on terms referring to biological processes since they were designed to describe larger biological phenomena, consisting of a series of events brought about by the ordered assembly of molecular functions occurring in one or more cellular compartments. The use of GO terms allows the comparison of processes described inconsistently in different studies, thus providing a unifying nomenclature for different studies. Omics studies in postharvest fruit ripening provide novel insights into the complex physiological and biochemical processes and regulatory mechanisms responsible for developmental changes. Moreover, integrated omics allow simultaneous investigations of several steps of the transmission of genetic information, from basic genetic information contained in the DNA to effector molecules acting on the metabolism. Comprehension of the molecular mechanisms underlying physiological changes in fruit after harvest and during storage, provided by integrative studies, may contribute to the development of sustainable postharvest strategies to increase quality, impair senescence, and extend shelf life.

Meta-analyses of GO categories from the studies demonstrate the prevalent role of ethylene in climacteric fruit after harvest (Figure 3a). Endogenous ethylene production, controlled by an autoregulatory feedback loop, displays significant interaction with signaling pathways mediated by other hormones, such as ABA, JA, and auxin. Accordingly, GO terms associated with responses to most hormones were significantly enriched in the meta-analyses of the results from studies with climacteric fruit (Figure 3a). The impact of postharvest technologies is represented by the enrichment of terms associated with defense processes, including responses to toxic substances and defense against fungus (Figures 3a and 4c), along with the shared terms fruit ripening, cell wall organization, and small molecule metabolic process. In contrast, in nonclimacteric fruit, processes associated with anabolic processes, such as auxin and ABA responses, signaling, and cell growth, remain significant after harvest (Figure 3b). Terms associated with conservation techniques include responses to light, reactive oxygen metabolic processes, regulation of protein serine/threonine kinase activity, and pectin metabolic process (Figures 3b and 4c). These results agree with the current knowledge on fruit ripening and senescence [8, 78, 96, 156, 211, 212] and demonstrate the validity of the integrative approach using GO terms used in the meta-analyses. The integration of information from several regulatory layers controlling fruit postharvest may guide the development of specific and effective technologies, such as the targeted use of ethylene inhibitors, hormone regulators, and physical or chemical agents adapted to the fruit type and its physiological profile. Results from integrative approaches allow the identification of biomarkers associated with senescence and quality loss that can be incorporated in real-time monitoring systems throughout the storage and commercialization chain.

Processes controlled by other hormones were not significantly represented in the meta-analyses for climacteric fruit, whereas GO representing processes controlling small molecule metabolism was detected (Figure 3a). As expected, GO meta-analyses highlighted the close interaction of growth with ripening and senescence in nonclimacteric fruit, providing further evidence of the association between developmental processes and exogenous environmental responses (Figure 3b). The integration of data from climacteric and nonclimacteric omics studies retained a defined separation between the two categories of ripening (Figure 3c); however, the intermediate patterns observed in certain fruit, such as melon [213] in the Cucurbitaceae family, were confirmed (Figure 3c). Similarly, integrative meta-analyses highlighted the divergent ripening and postharvest behavior of model climacteric and nonclimacteric fruits, apple and strawberry, respectively (Figure 3c).

High-throughput studies also allow investigations of processes occurring in distinct fruit tissues. Multiomics analyses demonstrated significant differences in ripening regulation between the pulp and peel of banana after harvest [214]. In the study, peel ripening was significantly controlled by genes associated with transcriptional regulation, hormone

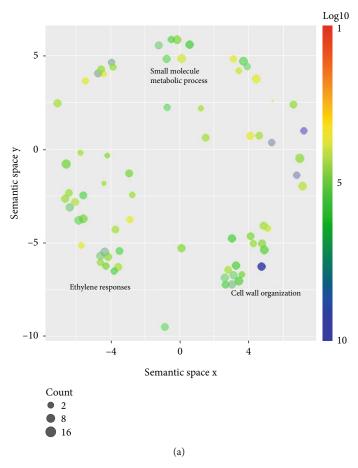


FIGURE 3: Continued.

signaling, cell wall modification, protein modification, and energy metabolism [214]. In the pulp, genes classified in transcriptional regulation, signal transduction, and cell wall modification ontologies were also significantly induced, along with secondary metabolism GO, which was not altered in the peel [214] (Tables 2 and 3). In contrast, at the protein level, energy metabolism, oxidation–reduction reactions, cell wall metabolism, and starch degradation were most significantly altered [214] (Table 2). Accordingly, secondary metabolism, energy metabolism, and protein metabolic processes were found to be involved in banana pulp ripening [215, 216].

Multivariate modeling of the GO terms using the investigated outputs as discriminants clustered the biological processes in five distinct groups (Figure 4a). The first cluster (I) is consistently overrepresented postharvest technologies contributing to all investigated outputs (Figure 4a) and consists of DNA binding, gene expression, signaling, and intracellular processes. Thus, it reinforces the role of conservation techniques in reprogramming fruit development. The second group of GO (II), more closely associated with microbiological conservation, consists of pathogenesis-related (PR) responses, biotic agents, and UV light processes (Figure 4a). The ontologies in the third cluster (III) represent general ripening processes, such as responses to hormone, responses to ethylene, responses to ABA, carbohydrate met-

abolic processes, and specialized metabolism (Figure 4a). The smallest group of GO (IV) is negatively associated with sensory and shelf-life outcomes, corresponding to catabolic processes, hydrolytic activity, and senescence (Figure 4a). The last group of GO, also negatively associated with sensory, quality, and shelf-life outcomes, consists of general catabolic activity, metabolite, and cellular component degradation (Figure 4a). A relevance network constructed based on the sPLS-DA model highlighted the positive association of developmental GOs with shelf life, sensory, and quality outcomes (Figure 4b). In contrast, GO terms corresponding to responses to biotic factors are significantly associated with microbiological conservation (Figure 4b), and those referring to specialized metabolism have a negative association with microbiological and shelf life, but a neutral significant association with sensory and quality outcomes (Figure 4b). These apparently contradictory observations may be explained by the complex role of specialized metabolism in plant protection and evolution of sensory properties [217, 218]. Specialized metabolites have been demonstrated to be synthesized in plants in response to several biotic and abiotic stresses [217, 218], providing effective protection against insects, herbivores, and pathogens and contributing to mitigate the deleterious effects of environmental factors, such as ultraviolet radiation and extreme temperatures [218]. In fruit during ripening and postharvest conservation,

1796, 2025, I, Downloaded from https://onlinelbitrary.vailey.com/doi/10.1155/ij699963881 by Cesar Lisi Girardi - EMBRAPA - Empresa Braisleira de Pesquisa Agropeacuria, Wiley Online Library on [29/10/2025], See the Terms and Conditions (https://onlinelbitrary.wiley.com/moi/10.1155/ij699963881 by Cesar Lisi Girardi - EMBRAPA - Empresa Braisleira de Pesquisa Agropeacuria, Wiley Online Library on [29/10/2025], See the Terms and Conditions on Wiley Online Library on [29/10/2025].

FIGURE 3: Scatterplot of GO enrichment analyses in (a) climacteric and (b) nonclimacteric fruit omics studies. The number of studies is represented by sphere size (count) and GO enrichment by log10 *p* value. (c) Multivariate sparse partial least square (sPLS) model of GO biological process terms in climacteric and nonclimacteric fruits using species as discriminant (DA).

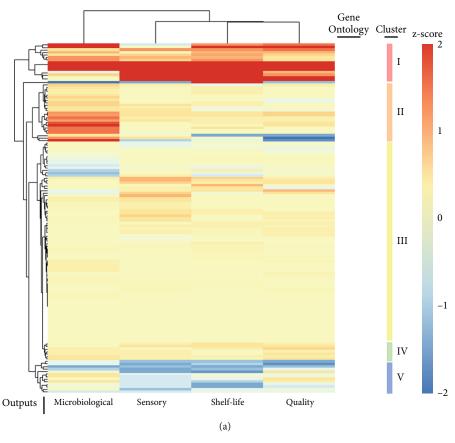


FIGURE 4: Continued.

intermediate metabolites produced by the central carbon metabolism function as precursor molecules for several pathways in the specialized metabolism [218]. Compounds produced by specialized metabolism are important contributors to fruit sensory properties during ripening, such as flavor and aroma [217, 218]. However, conservation technologies have been demonstrated to exert distinct effects on primary and specialized metabolism [9, 24, 212].

Microbial growth and colonization of fruit after harvest cause visual depreciating symptoms, including mold, rot, discoloration, softening, shriveling, browning, or blackening [94]. The most common fungal pathogens affecting fruit postharvest include B. cinerea, Penicillium spp., and Alternaria spp. [219]. Elicitor compounds, biocontrol agents, and genetic approaches are innovative techniques generally recognized as safe to inhibit microbial growth on fruit after harvest [54, 187]. Comprehensive omics studies may contribute to elucidating the molecular components responsible for the complex interactions among fruit microbial populations after harvest and during storage. In banana peel, postharvest application of exogenous MT delayed anthracnose (Colletotrichum musae) pathogenesis by modulating the activity of receptor kinases associated with auxin, ethylene, and MAPK pathways [215, 216] (Table 2). Similarly, the expression of genes responsible for cell wall and wax metabolism was induced by MT application [215, 216] (Table 2). In mandarin citruses, naringenin reduced the onset of microbial colonization by inducing the accumulation of metabolites with antimicrobial activity, such as auraptene, butin, naringenin, and luteolin [220] (Table 3). The metabolic reprogramming was accompanied by increased expression of genes associated with fruit specialized metabolism, including *CcPGT* (phlorizin synthase), *CcFNS* (flavone synthase), *CcF3H* (flavanone 3-hydroxylase), *CcF3'H* (flavonoid 3'-hydroxylase), *CcFLS* (flavonol synthase), and *CcUGT*s (UDP-glycosyltransferase) in the flavonoid and phenylpropanoid biosynthesis pathways, promoting tolerance against pathogenic infection [220].

In grape, tolerance to *B. cinerea* was induced by postharvest application of chitosan via transcriptional activation of genes involved in disease perception, plant hormone biosynthesis, signal transduction, and secondary metabolism [183, 184]. In contrast, ethanol applications to fruit after harvest significantly repressed the expression of disease resistance-related protein families, including PR proteins and chitinase, leading to reduced accumulation of SA-mediated defense pathways [221] (Tables 2 and 3).

The use of biological control yeast *Yarrowia lipolytica* to prevent blue mold (*Penicillium expansum*) in apples after harvest promotes the accumulation of PR proteins and induces the transcription of defense genes [25] (Table 2). Integrative transcriptome and proteome studies demonstrated that defense gene and protein induction were mediated by SA, jasmonate, and ethylene signal transduction pathways [25] (Table 2). Oxidative stress and PR proteins were also induced by the biological control yeast [25].

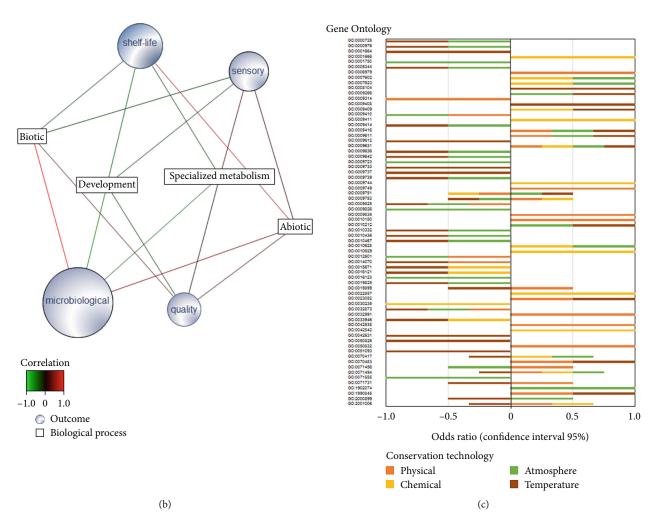


FIGURE 4: (a) Heatmap representation and cluster analysis of the normalized frequency of Gene Ontology (GO) terms in the omics studies in association with the investigated outcomes. (b) Relevance network analysis of hierarchically superior GO groups (biological process) and postharvest outcomes. Significant associations at cutoff = 0.75 are shown. (c) Association between GO terms from the omics studies and the conservation technologies represented as risk ratio at 95% confidence interval (CI).

Similar transcriptional and proteomic responses, including the upregulation of disease resistance genes and jasmonateresponsive transcription factors, were observed in pears receiving treatment with postharvest biocontrol agent Wickerhamomyces anomalus [183, 184]. In contrast, in grapes and citrus treated with Y. lipolytica after harvest, genes and proteins associated with stress responses, energy production, signal transduction, and oxidoreductase activity were upregulated [222] (Table 3). Integrated transcriptome and proteome analyses of strawberries treated with biocontrol agent Rhodotorula mucilaginosa and chitosan after harvest have shown extensive activation of the jasmonate, ethylene, ABA, and gibberellic acid signaling pathways leading to enhanced transcription of disease resistance genes [223] (Table 3). Hormone-mediated pathways also led to the induction of several gene encoding enzymes controlling the biosynthesis of resistance compounds, such as BAHD acyltransferase, vinorine synthase, UDP-glycosyltransferase, flavonol synthase, and long-chain acyl-CoA synthetase [223] (Table 3).

Brassinolide treatment has been demonstrated to alleviate symptoms of CI, and multiomics studies have shown that the steroid hormone precursor regulates the lipoxygenase activity in the α-linolenic acid pathway, enhancing jasmonic acid–CoA (JA-309 CoA) synthesis, which prevents cell wall and membrane lipid damage [224]. Similarly, postharvest application of MeJA reduces CI by inducing the transcription of genes encoding key enzymes of plant hormone, antioxidant, phospholipid, and cell wall modification pathways [224]. Proteins involved in glutathione and fatty acid metabolism were also associated with MeJA-mediated alleviation of CI symptoms in fruit [128] (Tables 2 and 3). Exogenous MT applications were shown to repress the transcription of MYB factors controlling cell wall and energy supply metabolism in cold-stored fruit [225].

The most representative GO terms corresponding to biological processes in the work selected for the meta-analyses include recombinational repair, transcription *cis*-regulatory region binding, G protein-coupled receptor binding, response to hypoxia, photoreceptor outer segment, oxygen carrier activity, response to oxidative stress,

phototransduction, circadian rhythm, protein localization, response to temperature stimulus, response to radiation, response to heat, response to cold, response to xenobiotic stimulus, response to UV, response to water deprivation, response to light stimulus, response to wounding, response to mechanical stimulus, cold acclimation, response to toxic substance, response to light intensity, response to ethylene, response to auxin, response to ABA, response to gibberellin, response to sucrose, response to glucose, response to SA, response to jasmonic acid, multidimensional cell growth, unidimensional cell growth, fruit ripening, leaf senescence, response to ionizing radiation, response to gamma radiation, carotenoid dioxygenase activity, gene expression, positive regulation of gene expression, negative regulation of gene expression, programmed cell death, response to organic cyclic compound, oxygen transport, carotene catabolic process, xanthophyll biosynthetic process, oxygen binding, enzyme binding, transmembrane transporter activity, signaling, NO synthase regulator activity, negative regulation of stress-activated MAPK cascade, protein-containing complex, xyloglucan-specific endo-beta-1,4-glucanase activity, hyperosmotic salinity response, response to H₂O₂, cellular response to water deprivation, response to freezing defense, response to fungus, negative regulation of developmental process, cellular response to cold, detection of hypoxia, cellular response to hypoxia, cellular response to UV-C, cell wall organization, response to NO, response to salt, adaptive thermogenesis, xyloglucan catabolic process, and regulation of cellulose biosynthetic process (Figure 4c, Table S1, Table S2).

The OR of the most representative GO terms in the studies included in the meta-analyses reinforced the role of temperature and atmosphere manipulation to attain the outcomes (Figure 4c). These results contribute to demonstrating the potential of epigenetic changes, induced by low temperatures, in regulating large transcriptional programs in fruit and extending conservation, or even promoting metabolic reprogramming, as shown in apple [24]. The control of chromatin structure and, consequently, gene expression activity is dependent on reversible chemical modifications in the DNA and histone proteins constituting nucleosomes. Methylation of DNA, coding and noncoding RNA, and histone posttranslational modifications, such as acetylation, SUMOylation and ubiquitination, methylation, and phosphorylation, were shown to affect ripening and senescence in apple, apricot, banana, kiwifruit, sweet cherry, and peach [45-47, 79, 226-230]. Epigenetic changes are frequently induced by temperature shifts [78, 156, 176], indicating the potential of temperature manipulation in genetic reprogramming to improve fruit conservation after harvest. However, the transient nature of epigenetic modifications may pose additional difficulties in the commercialization steps after storage.

Although epigenetic changes have been demonstrated to induce partial metabolic reprogramming in fruit [24, 45–47, 79, 226–230], subsequent senescence is considered largely irreversible [8]. In fleshy fruit model species tomato, ultraviolet C has been demonstrated to delay ripening and retain fruit quality after harvest by chromatin remodeling and

inducing methylation of ethylene-associated genes [231]. In citrus and tomato, a combination between exogenous hormone application (GA and a synthetic cytokinin, 2-isopentenyladenine) and additional fluorescent light to natural sunlight background has been shown to re-establish chlorophyll biosynthesis, promote chloroplast redifferentiation, and induce regreening after harvest [232]. The induction of these juvenile traits did not affect other senescence-related processes, such as firmness or weight loss [232]. Thus, although several postharvest approaches may delay some senescence processes, they remain highly species-specific and restricted to certain metabolic pathways.

The current analyses reinforce the biological function of enzymatic kinetics in fruit processes after harvest, for desirable outcomes as development of sensory properties and as a deleterious factor in shelf-life period and microbiological conservation (Figure 4c). The main genes and pathways affected by the conservation technologies investigated in climacteric and nonclimacteric fruit are summarized in Figure 5. Although useful to summarize the meta-analyses results, the OR is a simplified representation of the complex interactions between process and environmental factors controlling fruit ripening and senescence after harvest. Therefore, we consider that models constructed from large data analyses are a better representation of the influence of development and metabolism on the investigated outcomes.

4. Strengths and Weaknesses

To the best of our knowledge, this is the first systematic review and meta-analysis of omics data of fruit postharvest conservation focusing on four outputs: sensory, quality, shelf life, and microbiological aspects. Other reviews have focused on stress and defense responses after harvest [233, 234] or on the control of ripening, including in planta studies [235]. Recently, a review work has investigated the molecular mechanisms underlying postharvest physiology and metabolism of fruit in multiomics studies [210]; however, it does not consider specific outcomes and did not perform meta-analyses of the published data. In our work, a comprehensive search strategy was used to mine five scientific databases and a list of relevant publications, and their primary data were submitted to meta-analysis. The exclusion of studies where biases were detected helped to ensure an evidencebased meta-analysis. However, the integration of data from distinct fruit species is aimed at providing a general overview of the biological processes affected during conservation, without attributing differential weights to specific outcomes that may be distinctly sought after in different fruits. For example, challenges for the conservation of highly perishable fruit such as grapes and bananas are different from those necessary to expand and improve the quality of pears and apples that can remain for more than 9 months under storage conditions after harvest. Thus, the general panorama drawn by the current analyses does not override individual requirements faced by particular fruit species. Instead, the integrated analyses are aimed at identifying crucial pathways associated with the desired outcomes that remain relatively

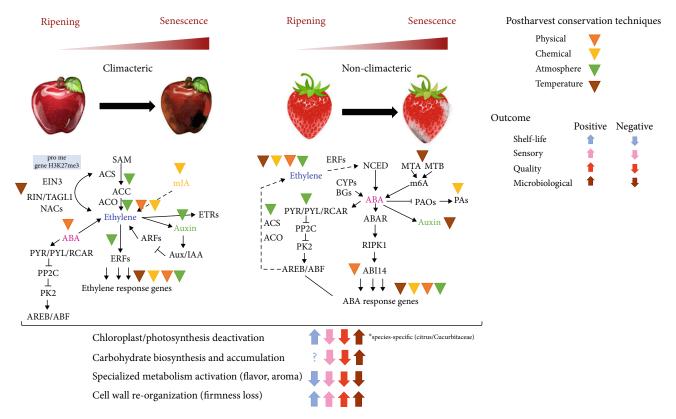


FIGURE 5: Schematic representation of the molecular components involved in postharvest ripening and senescence in climacteric and nonclimacteric species, the targets of conservation technologies, and their effects on the outcomes investigated in the review. Involved hormones are represented as ethylene, abscisic acid (ABA), auxin, and methyl jasmonate (MeJA). Dashed lines represent hypothetical interactions. Induction is shown as an arrowhead and repression as a horizontal line. Metabolites correspond to 1-amino-cyclopropane1-carboxylic acid (ACC), polyamines (PAs), and S-adenosyl-1-methionine (SAM). Proteins involved in metabolic and signaling pathways are shown as ACC synthase (ACS), ACC oxidase (ACO), ABA-response element binding factor/ABA-responsive factor (AREB/ABF), ABA receptor (ABAR), related to ABA Receptor 14 (AB14), auxin response factors (ARFs), auxin/indole-3-acetic acid transcription modulators (Aux/IAA), β-glucosidases (BGs), cytochrome P450 (CYPs), ethylene-insensitive 3 (EIN3), ethylene responsive genes (ETRs), Methyltransferase A (MTA), Methyltransferase B (MATB), NAM, ATAF1/2, and CUC2 family (NAC), 9-cis-epoxycarotenoid dioxygenases (NCEDs), polyamine oxidase (PAO), pyrabactin resistance (PYR)/PYR-like (PYL), Type 2C protein phosphatase (PP2C), Protein Kinase 2 (PK2), ripening inhibitor (RIN), regulatory components of ABA receptor (RCAR), receptor-interacting protein kinase (RIPK), and tomato AGAMOUS-LIKE 1 (TAGL1). Epigenetic modifications are represented as promoter region methylation (pro me), gene body histone methylation (gene H3K27me3), and N6-methyladenosine methylation (m6A). The targets of postharvest technologies are shown as color-coded triangles, and the outcome of the conservation techniques is represented by arrows.

unexplored in the development of conservation technologies.

The weaknesses of the work are the restricted geographic location of the included work and the elimination of studies written in languages other than English. Thus, potentially relevant data may have been kept out of the analyses. Moreover, distinct biological constraints of the investigated fruit, leading to different study designs, may have affected the meta-analyses' outcome. In addition, a bias toward studies with pomes and berries may not have been completely neutralized by the normalization techniques applied.

5. Conclusion

The current systematic review and meta-analysis confirm the crucial role of postharvest technologies in contributing to fresh fruit availability, nutrition, and food security worldwide. The potential of high-throughput, integrative studies

in unveiling novel targets to develop conservation strategies is also presented, although large-scale studies on biocontrol agents after harvest and combined approaches remain scarce. The systematic review also highlights the gap between basic knowledge and technological applications to improve fruit postharvest conservation. When we analyzed the level of use of scientific knowledge generated in the articles included in the meta-analyses, the application of cold storage and atmosphere control technologies, including modified, controlled, and dynamic atmosphere, and the use of chemical compounds and physical agents are in full use and consolidated, with TRLs between 8 and 9. The remaining postharvest technologies remain largely restricted to experimental studies. Furthermore, a restricted set of fruit constitutes the group most benefiting from these technologies, such as apples, pears, mangoes, peaches, grapes, strawberries, and citrus. In the case of articles whose central theme is omics and their potential applications, TRL remains medium-low (three to five), restricted to laboratory level or as a research tool to monitor consolidated technologies. Thus, here lies a big challenge for future research: to transform the scientific knowledge from omics studies into technological products. The compiled results demonstrate that these advances are occurring faster in preharvest than in postharvest.

Recent findings on the function of epigenetic components in controlling plant development in response to environmental cues, such as temperature, may provide novel alternatives in the development of conservation technologies for fruit after harvest. Our meta-analyses reinforce the crucial function of phytohormones in climacteric and nonclimacteric fruit conservation, although demonstrating a closer integration between ripening and senescence in nonclimacteric fruit. Ethylene- and ABA-controlled processes are the main contributors to senescence, negatively affecting all investigated outcomes in climacteric and nonclimacteric fruits, respectively. Gene ontologies associated with carbohydrate and reactive oxygen metabolic pathways were shown to be important players in conservation strategies. Epigenetic modifications, as DNA methylation and histones posttranslational changes, are promising targets for novel conservation techniques. Our review and analyses indicate that further research on epigenetic factors on fruit genomic, transcriptional, and metabolic changes may contribute to devising novel, paradigm-changing postharvest alternatives.

Data Availability Statement

Data is provided as supporting information.

Conflicts of Interest

The authors declare no conflicts of interest.

Author Contributions

Tatiane Timm Storch: conceptualization, methodology, formal analysis, investigation, writing—original draft, and visualization; Camila Pegoraro: conceptualization, methodology, formal analysis, investigation, writing—original draft, and visualization; Vera Quecini: conceptualization, methodology, formal analysis, investigation, writing—review and editing, and visualization; Cesar V. Rombaldi: conceptualization, writing—review and editing, and supervision; César L. Girardi: conceptualization, writing—review and editing, and supervision.

Funding

This study was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (306771/2014-4 and 441856/2014-4), the Empresa Brasileira de Pesquisa Agropecuária (02.13.05.014.00.00), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (15/2014), and the Comité Français d'Évaluation de la Coopération Universitaire et Scientifique avec le Brésil (631/09).

Supporting Information

Additional supporting information can be found online in Information section. Supporting (Supporting Information) Table S1: Gene Ontology (GO) biological processes significantly affected by postharvest treatments and the investigated outputs in climacteric fruit in the articles included in the meta-analyses. Table S2: Gene Ontology (GO) biological processes significantly affected by postharvest treatments and the investigated outputs in nonclimacteric fruit in the articles included in the meta-analyses. Table S3: Odds ratio of Gene Ontology (GO) biological processes significantly affected by postharvest treatments and the investigated outputs at p < 0.05. Postharvest treatments were grouped in physical treatments, atmosphere manipulation, temperature manipulation, and edible coating. Table S4: Quality assessment appraising relevance, reliability, validity, and applicability of the evidence and risk of bias of the articles included in the meta-analyses. Figure S1: Risk-of-bias assessment of the omics studies included in the systematic review. Individual and overall domains are represented by bars and risk by colors.

References

- [1] E. M. Yahia, P. García-Solís, and M. E. M. Celis, "Contribution of Fruits and Vegetables to Human Nutrition and Health," in *Postharvest Physiology and Biochemistry of Fruits and Vegetables* (Woodhead Publishing, 2019), 19–45, https://doi.org/10.1016/B978-0-12-813278-4.00002-6.
- [2] P. Romero, M. T. Lafuente, and F. Alferez, "Differential Transcriptomic Regulation in Sweet Orange Fruit (*Citrus sinensis* L. Osbeck) Following Dehydration and Rehydration Conditions Leading to Peel Damage," *Frontiers in Plant Science* 12 (2021): 732821, https://doi.org/10.3389/fpls.2021.732821.
- [3] E. M. Karoney, T. Molelekoa, M. Bill, N. Siyoum, and L. Korsten, "Global Research Network Analysis of Fresh Produce Postharvest Technology: Innovative Trends for Loss Reduction," *Postharvest Biology and Technology* 208 (2024): 112642, https://doi.org/10.1016/j.postharvbio.2023.112642.
- [4] F. R. Harker, C. M. Roigard, A. E. Colonna, et al., "The Relative Importance of Postharvest Eating Quality and Sustainability Attributes for Apple Fruit: A Case Study Using New Sensory-Consumer Approaches," *Postharvest Biology and Technology* 217 (2024): 113099, https://doi.org/10.1016/j.postharvbio.2024.113099.
- [5] A. B. Snyder, N. Martin, and M. Wiedmann, "Microbial Food Spoilage: Impact, Causative Agents and Control Strategies," *Nature Reviews Microbiology* 22, no. 9 (2024): 528–542, https://doi.org/10.1038/s41579-024-01037-x.
- [6] J. Brumos, "Gene Regulation in Climacteric Fruit Ripening," Current Opinion in Plant Biology 63 (2021): 102042, https://doi.org/10.1016/j.pbi.2021.102042.
- [7] M. F. Perotti, D. Posé, and C. Martín-Pizarro, "Non-Climacteric Fruit Development and Ripening Regulation: 'The Phytohormones Show'," *Journal of Experimental Botany* 74, no. 20 (2023): 6237–6253, https://doi.org/10.1093/jxb/erad271.
- [8] T. Saito, S. Kondo, K. Ohkawa, and H. Ohara, "How Does Abscisic Acid Control Fruit Quality as a Plant Bioregulator

1796, 2025, 1, Down loaded from https://onlinelibrary.wiley.com/doi/10.1155/jjfo.9963581 by Cesar Luis Girardi - EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria, Wiley Online Library on [29/10/2025], See the Terms and Conditions (https://onlinelibrary.wiley.com/ebrard-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Cecarive Commons Licenses

- ?," Horticulture Journal 94, no. 1 (2025): 1–14, https://doi.org/10.2503/hortj.QH-R003.
- [9] T. J. Siebeneichler, R. L. Crizel, G. H. Camozatto, et al., "The Postharvest Ripening of Strawberry Fruits Induced by Abscisic Acid and Sucrose Differs From Their *In Vivo* Ripening," *Food Chemistry* 317 (2020): 126407, https://doi.org/10.1016/ j.foodchem.2020.126407.
- [10] S. Zenoni, S. Savoi, N. Busatto, G. B. Tornielli, and F. Costa, "Molecular Regulation of Apple and Grape Ripening: Exploring Common and Distinct Transcriptional Aspects of Representative Climacteric and Non-Climacteric Fruits," *Journal of Experimental Botany* 74, no. 20 (2023): 6207–6223, https:// doi.org/10.1093/jxb/erad324.
- [11] M. Palumbo, G. Attolico, V. Capozzi, et al., "Emerging Postharvest Technologies to Enhance the Shelf-Life of Fruit and Vegetables: An Overview," *Foods* 11, no. 23 (2022): 3925, https://doi.org/10.3390/foods11233925.
- [12] M. Ali, A. Ali, S. Ali, et al., "Global Insights and Advances in Edible Coatings or Films Toward Quality Maintenance and Reduced Postharvest Losses of Fruit and Vegetables: An Updated Review," Comprehensive Reviews in Food Science and Food Safety 24, no. 1 (2025): e70103, https://doi.org/ 10.1111/1541-4337.70103.
- [13] C. Li, J. Xu, Y. Liu, et al., "Involvement of Energy and Cell Wall Metabolisms in Chilling Tolerance Improved by Hydrogen Sulfide in Cold-Stored Tomato Fruits," *Plant Cell Reports* 43, no. 7 (2024): 180, https://doi.org/10.1007/s00299-024-03263-2.
- [14] H. Li, Y. Si, H. Wang, et al., "The Ca2+-MdCRF4-MdWRKY9 Module Negatively Affects Apple Fruit Water-core Formation by Suppressing the Transcription of *MdSOT2*," *Plant Journal* 118, no. 5 (2024): 1358–1371, https://doi.org/10.1111/tpj.16673.
- [15] Z. Li, X. Bi, X. Xie, et al., "Preparation and Characterization of Iturin A/Chitosan Microcapsules and Their Application in Post-Harvest Grape Preservation," *International Journal of Biology and Macromolecules* 275, pt 1 (2024): 134086, https://doi.org/10.1016/j.ijbiomac.2024.134086.
- [16] Y. Lin, H. Chen, Y. Chen, B. Tan, and X. Jiang, "Melatonin Alleviated Chilling Injury of Cold-Stored Passion Fruit by Modulating Cell Membrane Structure via Acting on Antioxidant Ability and Membrane Lipid Metabolism," *Current Research in Food Science* 10 (2025): 100951, https://doi.org/ 10.1016/j.crfs.2024.100951.
- [17] T. Depuydt, B. De Rybel, and K. Vandepoele, "Charting Plant Gene Functions in the Multi-Omics and Single-Cell Era," *Trends in Plant Science* 28, no. 3 (2023): 283–296, https://doi.org/10.1016/j.tplants.2022.09.008.
- [18] J. Yan and X. Wang, "Machine Learning Bridges Omics Sciences and Plant Breeding," *Trends in Plant Science* 28, no. 2 (2023): 199–210, https://doi.org/10.1016/j.tplants.2022.08.018.
- [19] I. Subramanian, S. Verma, S. Kumar, A. Jere, and K. Anamika, "Multi-Omics Data Integration, Interpretation, and Its Application," *Bioinformatics and Biology Insights* 14 (2020): 1177932219899051, https://doi.org/10.1177/ 1177932219899051.
- [20] L. A. McGuinness and J. P. T. Higgins, "Risk-of-bias Visualization (Robvis): an R Package and Shiny Web App for Visualizing Risk-of-Bias Assessments," *Research Synthesis Methods* 12, no. 1 (2021): 55–61, https://doi.org/10.1002/ jrsm.1411.

- [21] R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024), https://www.R-project.org/.
- [22] T. T. Storch, T. Finatto, C. Pegoraro, et al., "Ethylene-Dependent Regulation of an α-L-Arabinofuranosidase Is Associated to Firmness Loss in 'Gala' Apples Under Long Term Cold Storage," Food Chemistry 182 (2015): 111–119, https://doi.org/10.1016/j.foodchem.2015.02.123.
- [23] S. M. Schaeffer, R. Christian, N. Castro-Velasquez, B. Hyden, V. Lynch-Holm, and A. Dhingra, "Comparative Ultrastructure of Fruit Plastids in Three Genetically Diverse Genotypes of Apple (Malus× Domestica Borkh.) during Development," *Plant Cell Reports* 36, no. 10 (2017): 1627–1640, https:// doi.org/10.1007/s00299-017-2179-z.
- [24] T. T. Storch, T. Finatto, M. Bruneau, et al., "Contrasting Transcriptional Programs Control Postharvest Development of Apples (*Malus x domestica* Borkh.) Submitted to Cold Storage and Ethylene Blockage," *Journal of Agriculture and Food Chemistry* 65, no. 35 (2017): 7813–7826, https:// doi.org/10.1021/acs.jafc.7b01425.
- [25] Z. Zhang, N. Wang, S. Jiang, et al., "Analysis of the Xyloglucan Endotransglucosylase/Hydrolase Gene Family During Apple Fruit Ripening and Softening," *Journal of Agriculture and Food Chemistry* 65, no. 2 (2017): 429–434, https://doi.org/10.1021/acs.jafc.6b04536.
- [26] M. Di Guardo, M. C. A. M. Bink, W. Guerra, et al., "Deciphering the Genetic Control of Fruit Texture in Apple by Multiple Family-Based Analysis and Genome-Wide Association," *Journal of Experimental Botany* 68, no. 7 (2017): 1451–1466, https://doi.org/10.1093/jxb/erx017.
- [27] J. C. Onik, X. Hu, Q. Lin, and Z. Wang, "Comparative Transcriptomic Profiling to Understand Pre- and Post-Ripening Hormonal Regulations and Anthocyanin Biosynthesis in Early Ripening Apple Fruit," *Molecules* 23, no. 8 (2018): 1908, https://doi.org/10.3390/molecules23081908.
- [28] D. G. Hu, J. Q. Yu, P. L. Han, et al., "The Regulatory Module MdPUB29-MdbHLH3 Connects Ethylene Biosynthesis With Fruit Quality in Apple," *New Phytologist* 221, no. 4 (2019): 1966–1982, https://doi.org/10.1111/nph.15511.
- [29] R. V. Espley, D. Leif, B. Plunkett, et al., "Red to Brown: An Elevated Anthocyanic Response in Apple Drives Ethylene to Advance Maturity and Fruit Flesh Browning," Frontiers in Plant Sciences 10 (2019): 1248, https://doi.org/10.3389/ fpls.2019.01248.
- [30] H. Y. Chang and C. B. Tong, "Identification of Candidate Genes Involved in Fruit Ripening and Crispness Retention through Transcriptome Analyses of a 'Honeycrisp' Population," *Plants* 9, no. 10 (2020): 1335, https://doi.org/10.3390/ plants9101335.
- [31] E. Karagiannis, G. Tanou, F. Scossa, et al., "Systems-Based Approaches to Unravel Networks and Individual Elements Involved in Apple Superficial Scald," Frontiers in Plant Sciences 11 (2020): 8, https://doi.org/10.3389/fpls.2020.00008.
- [32] C. F. P. Nunes, I. R. de Oliveira, T. T. Storch, et al., "Technical Benefit on Apple Fruit of Controlled Atmosphere Influenced by 1-MCP at Molecular Levels," *Molecular Genetics and Genomics* 295, no. 6 (2020): 1443–1457, https://doi.org/10.1007/s00438-020-01712-7.
- [33] I. Nawaz, R. Tariq, T. Nazir, et al., "RNA-Seq Profiling Reveals the Plant Hormones and Molecular Mechanisms Stimulating the Early Ripening in Apple," *Genomics* 113,

- no. 1 (2021): 493–502, https://doi.org/10.1016/j.ygeno.2020.09.040.
- [34] X. Cao, C. Wei, W. Duan, et al., "Transcriptional and Epigenetic Analysis Reveals that NAC Transcription Factors Regulate Fruit Flavor Ester Biosynthesis," *Plant Journal* 106, no. 3 (2021): 785–800, https://doi.org/10.1111/tpj.15200.
- [35] X. Liu, N. Hao, R. Feng, Z. Meng, Y. Li, and Z. Zhao, "Transcriptome and Metabolite Profiling Analyses Provide Insight Into Volatile Compounds of the Apple Cultivar 'Ruixue' and Its Parents During Fruit Development," BMC Plant Biology 21, no. 1 (2021): 231, https://doi.org/10.1186/s12870-021-03032-3.
- [36] J. I. Dambros, T. T. Storch, C. Pegoraro, et al., "Physicochemical Properties and Transcriptional Changes Underlying the Quality of 'Gala' Apples (*Malus* × *domestica* Borkh.) Under Atmosphere Manipulation in Long-Term Storage," *Journal of the Science of Food and Agriculture* 103, no. 2 (2023): 576–589, https://doi.org/10.1002/jsfa.12169.
- [37] Y. Hu, Z. Han, T. Wang, et al., "Ethylene Response Factor MdERF4 and Histone Deacetylase MdHDA19 Suppress Apple Fruit Ripening Through Histone Deacetylation of Ripening-Related Genes," *Plant Physiology* 188, no. 4 (2022): 2166–2181, https://doi.org/10.1093/plphys/kiac016.
- [38] Y. Si, T. Lv, H. Li, et al., "The Molecular Mechanism on Suppression of Climacteric Fruit Ripening With Postharvest Wax Coating Treatment via Transcriptome," Frontiers in Plant Science 13 (2022): 978013, https://doi.org/10.3389/fpls.2022.978013.
- [39] T. Li, Z. Liu, T. Lv, et al., "Phosphorylation of MdCYTOKI-NIN RESPONSE FACTOR4 Suppresses Ethylene Biosynthesis During Apple Fruit Ripening," *Plant Physiology* 191, no. 1 (2023): 694–714, https://doi.org/10.1093/plphys/kiac498.
- [40] Y. Xu, Z. Liu, T. Lv, et al., "Exogenous Ca²⁺ Promotes Transcription Factor Phosphorylation to Suppress Ethylene Biosynthesis in Apple," *Plant Physiology* 191, no. 4 (2023): 2475–2488, https://doi.org/10.1093/plphys/kiad022.
- [41] J. H. Wang, K. D. Gu, Q. Y. Zhang, et al., "Ethylene Inhibits Malate Accumulation in Apple by Transcriptional Repression of Aluminum-Activated Malate Transporter 9 via the WRKY31-ERF72 Network," New Phytologist 239, no. 3 (2023): 1014–1034, https://doi.org/10.1111/nph.18795.
- [42] R. Li, D. Yan, C. Tan, et al., "Transcriptome and Metabolomics Integrated Analysis Reveals MdMYB94 Associated With Esters Biosynthesis in Apple (Malus × domestica)," Journal of Agriculture and Food Chemistry 71, no. 20 (2023): 7904–7920, https://doi.org/10.1021/acs.jafc.2c07719.
- [43] K. Gunaseelan, R. Schröder, R. Rebstock, et al., "Constitutive Expression of Apple Endo-POLYGALACTURONASE1 in Fruit Induces Early Maturation, Alters Skin Structure and Accelerates Softening," *Plant Journal* 117, no. 5 (2024): 1413–1431, https://doi.org/10.1111/tpj.16571.
- [44] W. Li, Z. Liu, H. Wang, et al., "Harvest Maturity Stage Affects Watercore Dissipation and Postharvest Quality Deterioration of Watercore 'Fuji' Apples," *Postharvest Biology and Technol*ogy 210 (2024): 112736, https://doi.org/10.1016/ j.postharvbio.2023.112736.
- [45] J. Wang, J. Wang, Y. Li, et al., "Epigenomic Mechanism Regulating the Quality and Ripeness of Apple Fruit With Differing Harvest Maturity," *Physiologia Plantarum* 176, no. 2 (2024): e14278, https://doi.org/10.1111/ppl.14278.
- [46] J. H. Wang, Q. Sun, C. N. Ma, et al., "MdWRKY31-MdNAC7 Regulatory Network: Orchestrating Fruit Softening by Mod-

- ulating Cell Wall-Modifying Enzyme MdXTH2 in Response to Ethylene Signalling," *Plant Biotechnology Journal* 22, no. 12 (2024): 3244–3261, https://doi.org/10.1111/pbi.14445.
- [47] T. Wang, Y. Zheng, C. Xu, et al., "Movement of ACC Oxidase 3 mRNA From Seeds to Flesh Promotes Fruit Ripening in Apple," *Molecular Plant* 17, no. 8 (2024): 1221–1235, https://doi.org/10.1016/j.molp.2024.06.008.
- [48] E. Johnson and M. Farcuh, "Aminoethoxyvinylglicine and 1-Methylcyclopropene: Effects on Preharvest Drop, Fruit Maturity, Quality, and Associated Gene Expression of 'Honeycrisp' Apples in the US Mid-Atlantic," *Plants* 13, no. 17 (2024): 2524, https://doi.org/10.3390/plants13172524.
- [49] W. Hu, J. Zuo, X. Hou, et al., "The Auxin Response Factor Gene Family in Banana: Genome-Wide Identification and Expression Analyses During Development, Ripening, and Abiotic Stress," *Frontiers in Plant Science* 6 (2015): 742, https://doi.org/10.3389/fpls.2015.00742.
- [50] E. J. Price, M. Drapal, L. Perez-Fons, et al., "Metabolite Database for Root, Tuber, and Banana Crops to Facilitate Modern Breeding in Understudied Crops," *Plant Journal* 101, no. 6 (2020): 1258–1268, https://doi.org/10.1111/tpj.14649.
- [51] G. Droc, G. Martin, V. Guignon, et al., "The Banana Genome Hub: A Community Database for Genomics in the Musaceae," *Horticulture Research* 9 (2022): uhac221, https://doi.org/10.1093/hr/uhac221.
- [52] F. Qin, C. Hu, T. Dou, et al., "Genome-Wide Analysis of the Polyphenol Oxidase Gene Family Reveals That *MaPPO1* and *MaPPO6* Are the Main Contributors to Fruit Browning in *Musa acuminate*," *Frontiers in Plant Science* 14 (2023): 1125375, https://doi.org/10.3389/fpls.2023.1125375.
- [53] C. Pegoraro, A. Tadiello, C. L. Girardi, et al., "Transcriptional Regulatory Networks Controlling Woolliness in Peach in Response to Preharvest Gibberellin Application and Cold Storage," BMC Plant Biology 15, no. 1 (2015): 279, https:// doi.org/10.1186/s12870-015-0659-2.
- [54] Q. Wang, K. Cao, L. Cheng, et al., "Multi-Omics Approaches Identify a Key Gene, *PpTST1*, for Organic Acid Accumulation in Peach," *Horticulture Research* 9 (2022): uhac026, https://doi.org/10.1093/hr/uhac026.
- [55] K. Cao, B. Wang, W. Fang, et al., "Combined Nature and Human Selections Reshaped Peach Fruit Metabolome," Genome Biology 23, no. 1 (2022): 146, https://doi.org/ 10.1186/s13059-022-02719-6.
- [56] X. Cao, Y. Su, T. Zhao, et al., "Multi-Omics Analysis Unravels Chemical Roadmap and Genetic Basis for Peach Fruit Aroma Improvement," *Cell Reports* 43, no. 8 (2024): 114623, https://doi.org/10.1016/j.celrep.2024.114623.
- [57] M. Rodrigues, E. J. Ordoñez-Trejo, A. Rasori, S. Varotto, B. Ruperti, and C. Bonghi, "Dissecting Postharvest Chilling Injuries in Pome and Stone Fruit Through Integrated Omics," Frontiers Plant Science 14 (2024): 1272986, https:// doi.org/10.3389/fpls.2023.1272986.
- [58] Y. Wang, M. Dai, D. Cai, and Z. Shi, "Proteome and Transcriptome Profile Analysis Reveals Regulatory and Stress-Responsive Networks in the Russet Fruit Skin of Sand Pear," Horticulture Research 7 (2020): 16, https://doi.org/10.1038/s41438-020-0242-3.
- [59] C. H. Shi, X. Q. Wang, J. F. Xu, Y. X. Zhang, B. Qi, and L. Jun, "Dissecting the Molecular Mechanism of Russeting in Sand Pear (*Pyrus pyrifolia* Nakai) by Metabolomics, Transcriptomics, and Proteomics," *Plant Journal* 108, no. 6 (2021): 1644–1661, https://doi.org/10.1111/tpj.15532.

- [60] C. Gu, M. S. Pei, Z. H. Guo, et al., "Multi-Omics Provide Insights Into the Regulation of DNA Methylation in Pear Fruit Metabolism," *Genome Biology* 25, no. 1 (2024): 70, https://doi.org/10.1186/s13059-024-03200-2.
- [61] K. Masuda, M. Suzuki, K. Baba, et al., "Noninvasive Diagnosis of Seedless Fruit Using Deep Learning in Persimmon," Horticulture Journal 90, no. 2 (2021): 172–180, https://doi.org/10.2503/hortj.UTD-248.
- [62] K. Masuda, E. Kuwada, M. Suzuki, et al., "Transcriptomic Interpretation on Explainable AI-Guided Intuition Uncovers Premonitory Reactions of Disordering Fate in Persimmon Fruit," *Plant Cell and Physiology* 64, no. 11 (2023): 1323– 1330, https://doi.org/10.1093/pcp/pcad050.
- [63] E. Karagiannis, M. Michailidis, K. Karamanoli, A. Lazaridou, I. S. Minas, and A. Molassiotis, "Postharvest Responses of Sweet Cherry Fruit and Stem Tissues Revealed by Metabolomic Profiling," *Plant Physiology and Biochemistry* 127 (2018): 478–484, https://doi.org/10.1016/j.plaphy.2018.04.029.
- [64] D. Luciano-Rosario, N. P. Keller, and W. M. Jurick 2nd, "Penicillium expansum: Biology, Omics, and Management Tools for a Global Postharvest Pathogen Causing Blue Mould of Pome Fruit," Molecular Plant Pathology 21, no. 11 (2020): 1391–1404, https://doi.org/10.1111/mpp.12990.
- [65] K. Holušová, J. Čmejlová, P. Suran, et al., "High-Resolution Genome-Wide Association Study of a Large Czech Collection of Sweet Cherry (*Prunus avium L.*) on Fruit Maturity and Quality Traits," *Horticulture Research* 10, no. 1 (2023): uhac233, https://doi.org/10.1093/hr/uhac233.
- [66] M. G. Miricioiu, R. E. Ionete, D. Costinel, and O. R. Botoran, "Classification of *Prunus* Genus by Botanical Origin and Harvest Year Based on Carbohydrates Profile," *Foods* 11, no. 18 (2022): 2838, https://doi.org/10.3390/foods11182838.
- [67] Y. Zhao, Z. Hou, N. Zhang, et al., "Application of Proteomics to Determine the Mechanism of Ozone on Sweet Cherries (*Prunus avium L.*) by Time-Series Analysis," *Frontiers in Plant Science* 14 (2023): 1065465, https://doi.org/10.3389/fpls.2023.1065465.
- [68] J. González-Villagra, C. Palacios-Peralta, A. Muñoz-Alarcón, M. Reyes-Díaz, P. Osorio, and A. Ribera-Fonseca, "Influence of Fruit Load Regulation on Harvest and Postharvest Fruit Quality and Antioxidant-Related Parameters in Sweet Cherry (*Prunus avium L.*) cv. Regina Cultivated Under Plastic Covers in Southern Chile," *Plants* 13, no. 16 (2024): 2257, https://doi.org/10.3390/plants13162257.
- [69] J. D. Villavicencio, J. Tobar, J. P. Zoffoli, J. A. O'Brien, and C. Contreras, "Identification, Characterization, and Expression of Lipoxygenase Genes in Sweet Cherry (*Prunus avium* L.) cv. Regina and Their Relationship With the Development of an Herbaceous Off-Flavor During Fruit Ripening," *Plant Physiology and Biochemistry* 206 (2024): 108271, https://doi.org/10.1016/j.plaphy.2023.108271.
- [70] H. Zheng, W. Deng, L. Yu, et al., "Chitosan Coatings With Different Degrees of Deacetylation Regulate the Postharvest Quality of Sweet Cherry Through Internal Metabolism," *International Journal of Biological Macromolecules* 254, no. Pt 1 (2024): 127419, https://doi.org/10.1016/ j.ijbiomac.2023.127419.
- [71] Y. Ding, J. Chang, Q. Ma, et al., "Network Analysis of Postharvest Senescence Process in Citrus Fruits Revealed by Transcriptomic and Metabolomic Profiling," *Plant Physiology* 168, no. 1 (2015): 357–376, https://doi.org/10.1104/pp.114.255711.

- [72] H. M. Liu, C. R. Long, S. H. Wang, et al., "Transcriptome and Metabolome Comparison of Smooth and Rough Citrus limon L. Peels Grown on Same Trees and Harvested in Different Seasons," *Frontiers in Plant Science* 12 (2021): 749803, https://doi.org/10.3389/fpls.2021.749803.
- [73] A. Moosa, F. Zulfiqar, and K. H. M. Siddique, "Transcriptional and Biochemical Profiling of Defense Enzymes in Citrus sinensis During Salicylic Acid and Cinnamon Mediated Suppression of Green and Blue Mold," Frontiers in Plant Science 13 (2022): 1048433, https://doi.org/10.3389/fpls.2022.1048433.
- [74] B. Duan, X. Tan, J. Long, Q. Ouyang, Y. Zhang, and N. Tao, "Integrated Transcriptomic-Metabolomic Analysis Reveals That Cinnamaldehyde Exposure Positively Regulates the Phenylpropanoid Pathway in Postharvest Satsuma Mandarin (Citrus unshiu)," Pesticide Biochemistry and Physiology 189 (2023): 105312, https://doi.org/10.1016/j.pestbp.2022.105312.
- [75] M. Zhang, J. Wang, R. Liu, et al., "CsMYB96 Confers Resistance to Water Loss in Citrus Fruit by Simultaneous Regulation of Water Transport and Wax Biosynthesis," Journal of Experimental Botany 73, no. 3 (2022): 953–966, https://doi.org/10.1093/jxb/erab420.
- [76] C. Chen, Q. Huang, X. Peng, et al., "Alleviatory Effects of Salicylic Acid on Postharvest Softening and Cell Wall Degradation of 'Jinshayou' Pummelo (Citrus maxima Merr.): A Comparative Physiological and Transcriptomic Analysis," Food Chemistry 424 (2023): 136428, https://doi.org/10.1016/j.foodchem.2023.136428.
- [77] M. S. M. Hoseini, J. M. Milani, A. Motamedzadegan, and H. Yousefnia Pasha, "Effect of Coating Using Beeswax and Sodium Nitroprusside on Chlorophyll Stability and Quality Factors of Lime During Cold Storage," Food Science and Technology International 31, no. 5 (2025): 425–437, https:// doi.org/10.1177/10820132231210319.
- [78] H. Liu, Y. Jin, L. Huang, et al., "Transcriptomics and Metabolomics Reveal the Underlying Mechanism of Drought Treatment on Anthocyanin Accumulation in Postharvest Blood Orange Fruit," BMC Plant Biology 24, no. 1 (2024): 160, https://doi.org/10.1186/s12870-024-04868-1.
- [79] T. Wang, S. Zheng, F. Ke, et al., "Cytological and Metabolomic Analysis of Citrus Fruit to Elucidate Puffing Disorder," Food Chemistry 459 (2024): 140356, https://doi.org/10.1016/j.foodchem.2024.140356.
- [80] J. Wen, Y. Wang, X. Lu, et al., "An Integrated Multi-Omics Approach Reveals Polymethoxylated Flavonoid Biosynthesis in *Citrus Reticulata cv*," *Chachiensis. Nature Communica*tions 15, no. 1 (2024): 3991, https://doi.org/10.1038/s41467-024-48235-y.
- [81] C. Zhu, C. You, P. Wu, et al., "The Gap-Free Genome and Multi-Omics Analysis of *Citrus reticulata* 'Chachi' Reveal the Dynamics of Fruit Flavonoid Biosynthesis," *Horticulture Research* 11, no. 8 (2024): uhae177, https://doi.org/10.1093/ hr/uhae177.
- [82] Y. Wang, S. Guo, S. Tian, et al., "Abscisic Acid Pathway Involved in the Regulation of Watermelon Fruit Ripening and Quality Trait Evolution," *PLoS One* 12, no. 6 (2017): e0179944, https://doi.org/10.1371/journal.pone.0179944.
- [83] Y. Tian, S. Bai, Z. Dang, J. Hao, J. Zhang, and A. Hasi, "Genome-Wide Identification and Characterization of Long Non-Coding RNAs Involved in Fruit Ripening and the Climacteric in *Cucumis melo*," *BMC Plant Biology* 19, no. 1 (2019): 369, https://doi.org/10.1186/s12870-019-1942-4.

International Journal of Food Science

- [84] M. Yuan, Y. Huang, W. Ge, et al., "Involvement of Jasmonic Acid, Ethylene and Salicylic Acid Signaling Pathways Behind the Systemic Resistance Induced by *Trichoderma longibrachiatum* H9 in Cucumber," *BMC Genomics* 20, no. 1 (2019): 144, https://doi.org/10.1186/s12864-019-5513-8.
- [85] F. Chatzopoulou, M. Sanmartin, I. Mellidou, et al., "Silencing of Ascorbate Oxidase Results in Reduced Growth, Altered Ascorbic Acid Levels and Ripening Pattern in Melon Fruit," *Plant Physiology and Biochemistry* 156 (2020): 291–303, https://doi.org/10.1016/j.plaphy.2020.08.040.
- [86] M. O. Schemberger, M. A. Stroka, L. Reis, et al., "Transcriptome Profiling of Non-Climacteric 'Yellow' Melon During Ripening: Insights on Sugar Metabolism," *BMC Genomics* 21, no. 1 (2020): 262, https://doi.org/10.1186/s12864-020-6667-0.
- [87] X. Wang, C. Cheng, Q. Li, et al., "Multi-Omics Analysis Revealed That MAPK Signaling and Flavonoid Metabolic Pathway Contributed to Resistance Against Meloidogyne incognita in the Introgression Line Cucumber," Journal of Proteomics 220 (2020): 103675, https://doi.org/10.1016/ j.jprot.2020.103675.
- [88] Y. Nagashima, K. He, J. Singh, et al., "Transition of Aromatic Volatile and Transcriptome Profiles During Melon Fruit Ripening," *Plant Science* 304 (2021): 110809, https://doi.org/10.1016/j.plantsci.2020.110809.
- [89] M. Zarid, V. García-Carpintero, C. Esteras, et al., "Transcriptomic Analysis of a Near-Isogenic Line of Melon With High Fruit Flesh Firmness During Ripening," *Journal of the Science of Food and Agriculture* 101, no. 2 (2021): 754–777, https://doi.org/10.1002/jsfa.10688.
- [90] L. Xie, J. Wang, F. Liu, et al., "Integrated Analysis of Multi-Omics and Fine-Mapping Reveals a Candidate Gene Regulating Pericarp Color and Flavonoids Accumulation in Wax Gourd (*Benincasa Hispida*)," Front Plant Science 13 (2022): 1019787, https://doi.org/10.3389/fpls.2022.1019787.
- [91] C. Gong, N. He, H. Zhu, M. Anees, X. Lu, and W. Liu, "Multi-Omics Integration to Explore the Molecular Insight Into the Volatile Organic Compounds in Watermelon," Food Research International 166 (2023): 112603, https://doi.org/10.1016/j.foodres.2023.112603.
- [92] Y. Ma, D. Li, Y. Zhong, et al., "Vacuolar MATE/DTX Protein-Mediated Cucurbitacin C Transport Is Co-Regulated With Bitterness Biosynthesis in Cucumber," New Phytologist 238, no. 3 (2023): 995–1003, https://doi.org/10.1111/nph.18786.
- [93] N. M. Unel, M. C. Baloglu, and Y. Ç. Altunoglu, "Comprehensive Investigation of Cucumber Heat Shock Proteins Under Abiotic Stress Conditions: A Multi-Omics Survey," *Journal of Biotechnology* 374 (2023): 49–69, https://doi.org/10.1016/j.jbiotec.2023.07.010.
- [94] J. Guan, H. Miao, Z. Zhang, et al., "A Near-Complete Cucumber Reference Genome Assembly and Cucumber-DB, a Multi-Omics Database," *Molecular Plant* 17, no. 8 (2024): 1178–1182, https://doi.org/10.1016/j.molp.2024.06.012.
- [95] J. Ren, X. Li, C. Dong, et al., "Effect of Ozone Treatment on Phenylpropanoid Metabolism in Harvested Cantaloupes," *Journal of Food Sciences* 89, no. 8 (2024): 4914–4925, https://doi.org/10.1111/1750-3841.17234.
- [96] M. Santo Domingo, L. Orduña, D. Navarro, et al., "The Ethylene-Responsive Transcription Factor ERF024 Is a Novel Regulator of Climacteric Fruit Ripening in Melon," *Plant Journal* 119, no. 4 (2024): 1844–1858, https://doi.org/ 10.1111/tpj.16889.

- [97] W. Xia, C. Chen, S. Jin, et al., "Multi-Omics Analysis Reveals the Distinct Features of Metabolism Pathways Supporting the Fruit Size and Color Variation of Giant Pumpkin," *Interna*tional Journal of Molecular Sciences 25, no. 7 (2024): 3864, https://doi.org/10.3390/ijms25073864.
- [98] Y. Zhou, Q. Shen, L. Cai, et al., "Promoter Variations of ClERF1 Gene Determines Flesh Firmness in Watermelon," BMC Plant Biology 24, no. 1 (2024): 290, https://doi.org/ 10.1186/s12870-024-05000-z.
- [99] M. Suzuki, R. Nakabayashi, Y. Ogata, et al., "Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation," *Plant Physiology* 168, no. 1 (2015): 47–59, https://doi.org/10.1104/pp.114.254375.
- [100] S. Savoi, D. C. J. Wong, A. Degu, et al., "Multi-Omics and Integrated Network Analyses Reveal New Insights Into the Systems Relationships Between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit," Frontiers in Plant Science 8 (2017): 1124, https://doi.org/10.3389/ fpls.2017.01124.
- [101] D. C. Wong and J. T. Matus, "Constructing Integrated Networks for Identifying New Secondary Metabolic Pathway Regulators in Grapevine: Recent Applications and Future Opportunities," Frontiers in Plant Science 8 (2017): 505, https://doi.org/10.3389/fpls.2017.00505.
- [102] A. Serrano, C. Espinoza, G. Armijo, et al., "Omics Approaches for Understanding Grapevine Berry Development: Regulatory Networks Associated With Endogenous Processes and Environmental Responses," Frontiers in Plant Science 8 (2017): 1486, https://doi.org/10.3389/ fpls.2017.01486.
- [103] B. Yang, S. He, Y. Liu, et al., "Transcriptomics Integrated With Metabolomics Reveals the Effect of Regulated Deficit Irrigation on Anthocyanin Biosynthesis in Cabernet Sauvignon Grape Berries," Food Chemistry 314 (2020): 126170, https://doi.org/10.1016/j.foodchem.2020.126170.
- [104] P. Wang, X. Xuan, Z. Su, et al., "Identification of miRNAs-Mediated Seed and Stone-Hardening Regulatory Networks and their Signal Pathway of GA-Induced Seedless Berries in Grapevine (V. Vinifera L.)," BMC Plant Biology 21, no. 1 (2021): 442, https://doi.org/10.1186/s12870-021-03188-y.
- [105] S. Lu, J. Wang, Y. Zhuge, et al., "Integrative Analyses of Metabolomes and Transcriptomes Provide Insights Into Flavonoid Variation in Grape Berries," *Journal of Agriculture and Food Chemistry* 69, no. 41 (2021): 12354–12367, https://doi.org/10.1021/acs.jafc.1c02703.
- [106] M. Chen, X. Fang, Z. Wang, et al., "Multi-Omics Analyses on the Response Mechanisms of 'Shine Muscat' Grapevine to Low Degree of Excess Copper Stress (Low-ECS)," *Environ*mental Pollution 286 (2021): 117278, https://doi.org/ 10.1016/j.envpol.2021.117278.
- [107] A. C. Rumbaugh, B. Durbin-Johnson, E. Padhi, et al., "Investigating Grapevine Red Blotch Virus Infection in Vitis Vinifera L. cv. Cabernet Sauvignon Grapes: A Multi-Omics Approach," International Journal of Molecular Sciences 23, no. 21 (2022): 13248, https://doi.org/10.3390/ijms232113248.
- [108] S. Savoi, A. Santiago, L. Orduña, and J. T. Matus, "Transcriptomic and Metabolomic Integration as a Resource in Grapevine to Study Fruit Metabolite Quality Traits," *Frontiers in Plant Sciences* 13 (2022): 937927, https://doi.org/10.3389/fpls.2022.937927.

1796, 2025, 1, Down loaded from https://onlinelibrary.wiley.com/doi/10.1155/jjfo.9963581 by Cesar Luis Girardi - EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria, Wiley Online Library on [29/10/2025], See the Terms and Conditions (https://onlinelibrary.wiley.com/ebrard-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Cecarive Commons Licenses

- [109] F. Zhang, H. Zhong, X. Zhou, et al., "Grafting with Rootstocks Promotes Phenolic Compound Accumulation in Grape Berry Skin during Development Based on Integrative Multi-Omics Analysis," *Horticulture Research* 9 (2022): uhac055, https://doi.org/10.1093/hr/uhac055.
- [110] B. Zhang, M. Zhang, X. Jia, et al., "Integrated Transcriptome and Metabolome Dissecting Interaction Between Vitis vinifera L. and Grapevine Fabavirus," International Journal of Molecular Sciences 24, no. 4 (2023): 3247, https://doi.org/ 10.3390/ijms24043247.
- [111] H. Jia, Q. Zuo, E. Sadeghnezhad, et al., "HDAC19 Recruits ERF4 to the *MYB5a* Promoter and Diminishes Anthocyanin Accumulation During Grape Ripening," *Plant Journal* 113, no. 1 (2023): 127–144, https://doi.org/10.1111/tpj.16040.
- [112] V. Martins, A. Szakiel, A. Teixeira, et al., "Combined Omics Approaches Expose Metabolite-Microbiota Correlations in Grape Berries of Three Cultivars of Douro Wine Region," Food Chemistry 429 (2023): 136859, https://doi.org/10.1016/ j.foodchem.2023.136859.
- [113] F. Dou, F. O. Phillip, and H. Liu, "Combined Metabolome and Transcriptome Analysis Revealed the Accumulation of Anthocyanins in Grape Berry (Vitis vinifera L.) Under High-Temperature Stress," Plants 13, no. 17 (2024): 2394, https://doi.org/10.3390/plants13172394.
- [114] J. García-Abadillo, P. Barba, T. Carvalho, et al., "Dissecting the Complex Genetic Basis of Pre- and Post-Harvest Traits *in Vitis vinifera L.* Using Genome-Wide Association Studies," *Horticulture Research* 11, no. 2 (2024): uhad283, https://doi.org/10.1093/hr/uhad283.
- [115] K. Geng, Z. Zhan, X. Xue, C. Hou, D. Li, and Z. Wang, "Genome-Wide Identification of the SWEET Gene Family in Grape (Vitis vinifera L.) and Expression Analysis of VvSWEET14a in Response to Water Stress," Physiology and Molecular Biology of Plants 30, no. 9 (2024): 1565–1579, https://doi.org/10.1007/s12298-024-01501-1.
- [116] Y. Gu, X. Fan, K. Jiang, et al., "Omics Analysis of 'Shine Muscat' Grape Grafted on Different Rootstocks in Response to Cadmium Stress," *Science of Total Environment* 936 (2024): 173472, https://doi.org/10.1016/j.scitotenv.2024.173472.
- [117] Y. Jiang, J. Wang, Y. Han, et al., "Transcriptome and Metabolite Profiles Reveal the Role of Benzothiadiazole in Controlling Isoprenoid Synthesis and Berry Ripening in Chardonnay Grapes," Pesticide Biochemistry and Physiology 204 (2024): 106041, https://doi.org/10.1016/j.pestbp. 2024.106041.
- [118] T. Li, X. Han, L. Yuan, et al., "Time-Course Transcriptome Analysis Reveals Distinct Transcriptional Regulatory Networks in Resistant and Susceptible Grapevine Genotypes in Response to White Rot," *International Journal of Molecular Sciences* 25, no. 21 (2024): 11536, https://doi.org/10.3390/ ijms252111536.
- [119] F. K. Sabir, S. Unal, S. Aydın, and A. Sabir, "Pre- and Posthar-vest Chitosan Coatings Extend the Physicochemical and Bioactive Qualities of Minimally Processed 'Crimson Seedless' Grapes During Cold Storage," *Journal of the Science of Food and Agriculture* 104, no. 13 (2024): 7834–7842, https://doi.org/10.1002/jsfa.13613.
- [120] S. Zhang, F. Zhang, L. Cai, et al., "Visual Observation of Polystyrene Nano-Plastics in Grape Seedlings of Thompson Seedless and Assessing their Effects via Transcriptomics and Metabolomics," *Journal of Hazardous Materials* 478 (2024): 135550, https://doi.org/10.1016/j.jhazmat.2024.135550.

- [121] Y. Kadomura-Ishikawa, K. Miyawaki, A. Takahashi, T. Masuda, and S. Noji, "Light and Abscisic Acid Independently Regulated FaMYB10 in Fragaria × ananassa Fruit," Planta 241, no. 4 (2015): 953–965, https://doi.org/10.1007/ s00425-014-2228-6.
- [122] L. Medina-Puche, G. Cumplido-Laso, F. Amil-Ruiz, et al., "MYB10 Plays a Major Role in the Regulation of Flavonoid/ Phenylpropanoid Metabolism During Ripening of Fragaria×ananassa Fruits," *Journal of Experimental Botany* 65, no. 2 (2014): 401–417, https://doi.org/10.1093/jxb/ert377.
- [123] L. Medina-Puche, F. J. Molina-Hidalgo, M. Boersma, et al., "An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles," *Plant Physiology* 168, no. 2 (2015): 598–614, https://doi.org/10.1104/pp.114.252908.
- [124] J. Pillet, H. W. Yu, A. H. Chambers, V. M. Whitaker, and K. M. Folta, "Identification of Candidate Flavonoid Pathway Genes Using Transcriptome Correlation Network Analysis in Ripe Strawberry (*Fragaria* × *ananassa*) Fruits," *Journal of Experimental Botany* 66, no. 15 (2015): 4455–4467, https://doi.org/10.1093/jxb/erv205.
- [125] J. Song, L. Du, L. Li, et al., "Quantitative Changes in Proteins Responsible for Flavonoid and Anthocyanin Biosynthesis in Strawberry Fruit at Different Ripening Stages: A Targeted Quantitative Proteomic Investigation Employing Multiple Reaction Monitoring," *Journal of Proteomics* 122 (2015): 1– 10, https://doi.org/10.1016/j.jprot.2015.03.017.
- [126] J. Chen, L. Mao, W. Lu, T. Ying, and Z. Luo, "Transcriptome Profiling of Postharvest Strawberry Fruit in Response to Exogenous Auxin and Abscisic Acid," *Planta* 243, no. 1 (2016): 183–197, https://doi.org/10.1007/s00425-015-2402-5.
- [127] C. Paniagua, R. Blanco-Portales, M. Barceló-Muñoz, et al., "Antisense Down-Regulation of the Strawberry β-Galactosidase Gene FaβGal4 Increases Cell Wall Galactose Levels and Reduces Fruit Softening," *Journal of Experimental Bot*any 67, no. 3 (2016): 619–631, https://doi.org/10.1093/jxb/ erv462.
- [128] X. Fu, S. Cheng, Y. Zhang, et al., "Differential Responses of Four Biosynthetic Pathways of Aroma Compounds in Postharvest Strawberry (Fragaria×ananassa Duch.) Under Interaction of Light and Temperature," Food Chemistry 221 (2017): 356–364, https://doi.org/10.1016/ j.foodchem.2016.10.082.
- [129] M. Petriccione, F. Mastrobuoni, L. Zampella, E. Nobis, G. Capriolo, and M. Scortichini, "Effect of Chitosan Treatment on Strawberry Allergen-Related Gene Expression During Ripening Stages," *Journal of Food Science and Technology* 54, no. 5 (2017): 1340–1345, https://doi.org/10.1007/s13197-017-2554-3.
- [130] Q. H. Wang, C. Zhao, M. Zhang, Y. Z. Li, Y. Y. Shen, and J. X. Guo, "Transcriptome Analysis Around the Onset of Strawberry Fruit Ripening Uncovers an Important Role of Oxidative Phosphorylation in Ripening," *Scientific Reports* 7, no. 1 (2017): 41477, https://doi.org/10.1038/srep41477.
- [131] P. Baldi, S. Orsucci, M. Moser, M. Brilli, L. Giongo, and A. Si-Ammour, "Gene Expression and Metabolite Accumulation During Strawberry (*Fragaria* × *ananassa*) Fruit Development and Ripening," *Planta* 248, no. 5 (2018): 1143–1157, https://doi.org/10.1007/s00425-018-2962-2.
- [132] J. Cheng, Q. Niu, B. Zhang, et al., "Downregulation of RdDM During Strawberry Fruit Ripening," *Genome Biology* 19, no. 1 (2018): 212, https://doi.org/10.1186/s13059-018-1587-x.

- [133] G. D'Urso, C. Pizza, S. Piacente, and P. Montoro, "Combination of LC-MS Based Metabolomics and Antioxidant Activity for Evaluation of Bioactive Compounds in *Fragaria Vesca* Leaves from Italy," *Journal of Pharmaceutical and Biomedical Analysis* 150 (2018): 233–240, https://doi.org/10.1016/j.jpba.2017.12.005.
- [134] S. K. Bose, P. Howlader, X. Jia, W. Wang, and H. Yin, "Alginate Oligosaccharide Postharvest Treatment Preserve Fruit Quality and Increase Storage Life via Abscisic Acid Signaling in Strawberry," *Food Chemistry* 283 (2019): 665–674, https://doi.org/10.1016/j.foodchem.2019.01.060.
- [135] Y. Huang, P. H. Xu, B. Z. Hou, and Y. Y. Shen, "Strawberry Tonoplast Transporter, FaVPT1, Controls Phosphate Accumulation and Fruit Quality," Plant Cell and Environment 42, no. 9 (2019): 2715–2729, https://doi.org/10.1111/pce.13598.
- [136] L. D. Witasari, F. C. Huang, T. Hoffmann, W. Rozhon, S. C. Fry, and W. Schwab, "Higher Expression of the Strawberry Xyloglucan Endotransglucosylase/Hydrolase Genes FvXTH9 and FvXTH6 Accelerates Fruit Ripening," Plant Journal 100, no. 6 (2019): 1237–1253, https://doi.org/10.1111/tpj.14512.
- [137] X. Chen, W. Cai, J. Xia, et al., "Metabolomic and Transcriptomic Analyses Reveal That Blue Light Promotes Chlorogenic Acid Synthesis in Strawberry," *Journal of Agriculture and Food Chemistry* 68, no. 44 (2020): 12485–12492, https://doi.org/10.1021/acs.jafc.0c05020.
- [138] N. Lombardi, A. M. Salzano, A. D. Troise, et al., "Effect of Trichoderma Bioactive Metabolite Treatments on the Production, Quality, and Protein Profile of Strawberry Fruits," Journal of Agriculture and Food Chemistry 68, no. 27 (2020): 7246–7258, https://doi.org/10.1021/acs.jafc.0c01438.
- [139] K. Min, G. Yi, J. G. Lee, et al., "Comparative Transcriptome and Metabolome Analyses of Two Strawberry Cultivars With Different Storability," *PLoS One* 15, no. 12 (2020): e0242556, https://doi.org/10.1371/journal.pone.0242556.
- [140] C. Xue, S. C. Guan, J. Q. Chen, C. J. Wen, J. F. Cai, and X. Chen, "Genome Wide Identification and Functional Characterization of Strawberry Pectin Methylesterases Related to Fruit Softening," *BMC Plant Biology* 20, no. 1 (2020): 13, https://doi.org/10.1186/s12870-019-2225-9.
- [141] M. Hirsch, S. E. Langer, M. Marina, et al., "Expression Profiling of Endo-Xylanases During Ripening of Strawberry Cultivars With Contrasting Softening Rates. Influence of Postharvest and Hormonal Treatments," *Journal of the Science of Food and Agriculture* 101, no. 9 (2021): 3676–3684, https://doi.org/10.1002/jsfa.10997.
- [142] Z. Peian, J. Haifeng, G. Peijie, et al., "Chitosan Induces Jasmonic Acid Production Leading to Resistance of Ripened Fruit Against *Botrytis cinerea* Infection," *Food Chemistry* 337 (2021): 127772, https://doi.org/10.1016/j.foodchem.2020.127772.
- [143] L. Zhou, R. Tang, X. Li, S. Tian, B. Li, and G. Qin, "N⁶-Methyladenosine RNA Modification Regulates Strawberry Fruit Ripening in an ABA-Dependent Manner," *Genome Biology* 22, no. 1 (2021): 168, https://doi.org/10.1186/s13059-021-02385-0.
- [144] H. Jia, H. Jia, S. Lu, et al., "DNA and Histone Methylation Regulates Different Types of Fruit Ripening by Transcriptome and Proteome Analyses," *Journal of Agriculture* and Food Chemistry 70, no. 11 (2022): 3541–3556, https:// doi.org/10.1021/acs.jafc.1c06391.
- [145] W. Mao, Y. Han, Y. Chen, et al., "Low Temperature Inhibits Anthocyanin Accumulation in Strawberry Fruit by Activating FvMAPK3-Induced Phosphorylation of FvMYB10 and

- Degradation of Chalcone Synthase 1," *Plant Cell* 34, no. 4 (2022): 1226–1249, https://doi.org/10.1093/plcell/koac006.
- [146] T. J. Siebeneichler, R. L. Crizel, P. L. Reisser, et al., "Changes in the Abscisic Acid, Phenylpropanoids and Ascorbic Acid Metabolism during Strawberry Fruit Growth and Ripening," *Journal of Food Composition and Analysis* 108 (2022): 104398, https://doi.org/10.1016/j.jfca.2022.104398.
- [147] Z. Fan, D. M. Tieman, S. J. Knapp, et al., "A Multi-Omics Framework Reveals Strawberry Flavor Genes and Their Regulatory Elements," *New Phytologist* 236, no. 3 (2022): 1089– 1107, https://doi.org/10.1111/nph.18416.
- [148] W. W. Zhang, S. Q. Zhao, S. Gu, et al., "FvWRKY48 Binds to the Pectate Lyase *FvPLA* Promoter to Control Fruit Softening in *Fragaria vesca*," *Plant Physiology* 189, no. 2 (2022): 1037–1049, https://doi.org/10.1093/plphys/kiac091.
- [149] Z. Zhang, S. Lu, W. Yu, et al., "Jasmonate Increases Terpene Synthase Expression, Leading to Strawberry Resistance to *Botry-tis cinerea* Infection," *Plant Cell Reports* 41, no. 5 (2022): 1243–1260, https://doi.org/10.1007/s00299-022-02854-1.
- [150] A. Baldwin, R. Dhorajiwala, C. Roberts, et al., "Storage of Halved Strawberry Fruits Affects Aroma, Phytochemical Content and Gene Expression, and Is Affected by Pre-Harvest Factors," Frontiers in Plant Science 14 (2023): 1165056, https://doi.org/10.3389/fpls.2023.1165056.
- [151] Y. Chen, D. Li, X. Zhang, Q. Ma, Y. Xu, and Z. Luo, "Azacyti-dine-Induced Hypomethylation Delays Senescence and Coloration in Harvested Strawberries by Stimulating Antioxidant Enzymes and Modulating Abscisate Metabolism to Minimize Anthocyanin Overproduction," Food Chemistry 407 (2023): 135189, https://doi.org/10.1016/j.foodchem.2022.135189.
- [152] X. Jin, H. Du, C. Zhu, et al., "Haplotype-Resolved Genomes of Wild Octoploid Progenitors Illuminate Genomic Diversifications From Wild Relatives to Cultivated Strawberry," *Nature Plants* 9, no. 8 (2023): 1252–1266, https://doi.org/10.1038/ s41477-023-01473-2.
- [153] S. Mansouri, M. Koushesh Saba, and H. Sarikhani, "Exogenous Melatonin Delays Strawberry Fruit Ripening by Suppressing Endogenous ABA Signaling," *Scientific Reports* 13, no. 1 (2023): 14209, https://doi.org/10.1038/s41598-023-41311-1.
- [154] Y. Shi, B. J. Li, D. Grierson, and K. S. Chen, "Insights Into Cell Wall Changes During Fruit Softening From Transgenic and Naturally Occurring Mutants," *Plant Physiology* 192, no. 3 (2023): 1671–1683, https://doi.org/10.1093/plphys/kiad128.
- [155] X. Fang, J. Shen, L. Zhang, X. Zou, and L. Jin, "Metabolomic and Transcriptomic Integration Reveals the Mechanism of Aroma Formation as Strawberries Naturally Turn Colors While Ripening," *Food Chemistry* 460, no. Pt 3 (2024): 140765, https://doi.org/10.1016/j.foodchem.2024.140765.
- [156] Y. Liu, R. Liu, F. Li, et al., "Nano-Selenium Repaired the Damage Caused by Fungicides on Strawberry Flavor Quality and Antioxidant Capacity by Regulating ABA Biosynthesis and Ripening-Related Transcription Factors," *Pesticide Biochemistry and Physiology* 198 (2024): 105753, https:// doi.org/10.1016/j.pestbp.2023.105753.
- [157] Q. Pan, S. Guo, J. Ding, et al., "Dynamic Histone Modification Signatures Coordinate Developmental Programs in Strawberry Fruit Ripening," *Horticulture Research* 11, no. 8 (2024): uhae158, https://doi.org/10.1093/hr/uhae158.
- [158] P. Ric-Varas, C. Paniagua, G. López-Casado, et al., "Suppressing the Rhamnogalacturonan Lyase Gene FaRGLyase1 Preserves RGI Pectin Degradation and Enhances Strawberry

1796, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/jjfo.9963581 by Cesar Luis Girardi - EMBRAPA - Empresa Brasileira de Pesquisa Agropecuaria , Wiley Online Library on [29/10/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/emra-ad-conditions) on Wiley Online Library for rules of use, OA articles are governed by the applicable Decartive Commons License

- Fruit Firmness," *Plant Physiology and Biochemistry* 206 (2024): 108294, https://doi.org/10.1016/j.plaphy.2023.108294.
- [159] P. Xu, M. Li, C. Ma, et al., "Loss-of-Function Mutation in Anthocyanidin Reductase Activates the Anthocyanin Synthesis Pathway in Strawberry," *Molecular Horticulture* 4, no. 1 (2024): 33, https://doi.org/10.1186/s43897-024-00106-2.
- [160] M. Ashburner, C. A. Ball, J. A. Blake, et al., "Gene Ontology: Tool for the Unification of Biology," *Gene Ontology Consortium. Nature Genetics* 25, no. 1 (2000): 25–29, https://doi.org/10.1038/75556.
- [161] J. Zhang and R. Gentleman, "KEGGSOAP: A Package that Provides a Client Interface to the KEGG SOAP Server" 2013, R package version 2.7. https://CRAN.R-project.org/package=KEGGSOAP.
- [162] G. Csárdi, T. Nepusz, V. Traag, et al., "igraph: Network Analysis and Visualization in R" 2024, R package version 2.2.0, https://CRAN.R-project.org/package=igraph.
- [163] F. Rohart, B. Gautier, A. Singh, and K. A. Lê Cao, "mixOmics: An R Package for 'Omics Feature Selection and Multiple Data Integration," *PLoS computational biology* 13, no. 11 (2017): e1005752, https://doi.org/10.1371/journal.pcbi.1005752.
- [164] H. Zhang, N. A. Serwah Boateng, G. L. Ngolong Ngea, et al., "Unravelling the Fruit Microbiome: The Key for Developing Effective Biological Control Strategies for Postharvest Diseases," Comprehensive Reviews in Food Science and Food Safety 20, no. 5 (2021): 4906–4930, https://doi.org/10.1111/ 1541-4337.12783.
- [165] W. Zhang, H. Jiang, J. Cao, and W. Jiang, "Advances in Biochemical Mechanisms and Control Technologies to Treat Chilling Injury in Postharvest Fruits and Vegetables," *Trends in Food Science & Technology* 113 (2021): 355–365, https://doi.org/10.1016/j.tifs.2021.05.009.
- [166] C. Huan, X. An, M. Yu, et al., "Effect of Combined Heat and 1-MCP Treatment on the Quality and Antioxidant Level of Peach Fruit During Storage," *Postharvest Biology and Technology* 145 (2018): 193–202, https://doi.org/10.1016/ j.postharvbio.2018.07.013.
- [167] J. C. Pech, M. Bouzayen, and A. J. P. S. Latché, "Climacteric Fruit Ripening: Ethylene-Dependent and Independent Regulation of Ripening Pathways in Melon Fruit," *Plant Science* 175, no. 1-2 (2008): 114–120, https://doi.org/10.1016/ j.plantsci.2008.01.003.
- [168] Y. Shan, D. Zhang, Z. Luo, et al., "Advances in Chilling Injury of Postharvest Fruit and Vegetable: Extracellular ATP Aspects," Comprehensive Reviews in Food Science and Food Safety 21, no. 5 (2022): 4251–4273, https://doi.org/10.1111/ 1541-4337.13003.
- [169] S. Lurie and C. H. Crisosto, "Chilling Injury in Peach and Nectarine," *Postharvest Biology and Technology* 37, no. 3 (2005): 195–208, https://doi.org/10.1016/j.postharvbio.2005.04.012.
- [170] Y. Zhao, Y. Wu, X. Zhang, et al., "Methyl Jasmonate Attenuates Chilling Injury of Prune Fruit by Maintaining ROS Homeostasis and Regulating GABA Metabolism and Energy Status," *Postharvest Biology and Technology* 220 (2025): 113303, https://doi.org/10.1016/j.postharvbio. 2024.113303.
- [171] L. Zhang, Y. Yu, L. Chang, X. Wang, and S. Zhang, "Melatonin Enhanced the Disease Resistance by Regulating Reactive Oxygen Species Metabolism in Postharvest Jujube Fruit," *Journal of Food Processing and Preservation* 46, no. 3 (2022): e16363, https://doi.org/10.1111/jfpp.16363.

- [172] Y. Zhang, M. Guo, J. Mei, and J. Xie, "Effects of Different Postharvest Precooling Treatments on Cold-Storage Quality of Yellow Peach (*Amygdalus Persica*)," *Plants* 11, no. 18 (2022): 2334, https://doi.org/10.3390/plants11182334.
- [173] N. Cainelli, C. Forestan, D. Angeli, et al., "Transcriptomic Insights on the Preventive Action of Apple (cv Granny Smith) Skin Wounding on Superficial Scald Development," *International Journal of Molecular Sciences* 22, no. 24 (2021): 13425, https://doi.org/10.3390/ijms222413425.
- [174] J. Zhao, P. Quan, H. Liu, et al., "Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline During Long-Term Cold Storage," *Journal* of Agricultural and Food Chemistry 68, no. 16 (2020): 4699– 4716, https://doi.org/10.1021/acs.jafc.9b07107.
- [175] D. Go, B. Lu, M. Alizadeh, S. Gazzarrini, and L. Song, "Voice From Both Sides: A Molecular Dialogue Between Transcriptional Activators and Repressors in Seed-to-Seedling Transition and Crop Adaptation," Frontiers in Plant Science 15 (2024): 1416216, https://doi.org/10.3389/fpls.2024.1416216.
- [176] S. Penfield, "Beyond Floral Initiation: the Role of Flower Bud Dormancy in Flowering Time Control of Annual Plants," *Journal of Experimental Botany* 75, no. 19 (2024): 6056–6062, https://doi.org/10.1093/jxb/erae223.
- [177] Y. Fang and M. Wakisaka, "A Review on the Modified Atmosphere Preservation of Fruits and Vegetables With Cutting-Edge Technologies," *Agriculture* 11, no. 10 (2021): 992, https://doi.org/10.3390/agriculture11100992.
- [178] E. E. Schultz, F. J. Soldateli, V. Both, et al., "Elevated CO₂ in Dynamic Controlled Atmosphere Storage: Impact on Anaerobic Metabolism and Overall Quality of 'Maxi Gala' Apples," *Journal of the Science of Food and Agriculture* 105, no. 6 (2025): 3326–3334, https://doi.org/10.1002/jsfa.14091.
- [179] L. Ma, Y. Zheng, Z. Zhou, et al., "Dissection of mRNA ac⁴C Acetylation Modifications in AC and *Nr* Fruits: Insights Into the Regulation of Fruit Ripening by Ethylene," *Molecular Horticulture* 4, no. 1 (2024): 5, https://doi.org/10.1186/s43897-024-00082-7.
- [180] S. Jaiswal, S. P. Singh, S. Singh, et al., "Hydrogen Sulphide: A Key Player in Plant Development and Stress Resilience," *Plant Cell and Environment* 48, no. 3 (2025): 2445–2459, https://doi.org/10.1111/pce.15309.
- [181] L. L. Zhang, S. H. Zhu, C. B. Chen, and J. Zhou, "Metabolism of Endogenous Nitric Oxide During Growth and Development of Apple Fruit," *Scientia Horticulturae* 127, no. 4 (2011): 500– 506, https://doi.org/10.1016/j.scienta.2010.11.016.
- [182] C. Li, W. Yu, and W. Liao, "Role of Nitric Oxide in Posthar-vest Senescence of Fruits," *International Journal of Molecular Sciences* 23, no. 17 (2022): 10046, https://doi.org/10.3390/ijms231710046.
- [183] J. Zhang, Y. Ma, C. Dong, et al., "Meta-Analysis of the Effects of 1-Methylcyclopropene (1-MCP) Treatment on Climacteric Fruit Ripening," *Horticulture Research* 7, no. 1 (2020): 208, https://doi.org/10.1038/s41438-020-00405-x.
- [184] W. Zhang, J. Cao, X. Fan, and W. Jiang, "Applications of Nitric Oxide and Melatonin in Improving Postharvest Fruit Quality and the Separate and Crosstalk Biochemical Mechanisms," *Trends in Food Science and Technology* 99 (2020): 531–541, https://doi.org/10.1016/j.tifs.2020.03.024.
- [185] V. Pandey and T. Pandey, "The Role of Hydrogen Sulfide (H₂S) in Postharvest Fruits: A Comprehensive Analysis," *Plant Physiology and Biochemistry* 217 (2024): 109204, https://doi.org/10.1016/j.plaphy.2024.109204.

International Journal of Food Science

- [186] X. Shen, Y. Liu, Y. Zeng, et al., "Hydrogen Sulfide Attenuates Chilling Injury in Loquat Fruit by Alleviating Oxidative Stress and Maintaining Cell Membrane Integrity," Food Chemistry 463, no. Pt 2 (2025): 141094, https://doi.org/ 10.1016/j.foodchem.2024.141094.
- [187] L. Wang, S. Chen, J. Shao, et al., "Hydrogen Sulfide Alleviates Chilling Injury in Peach Fruit by Maintaining Cell Structure Integrity via Regulating Endogenous H₂S, Antioxidant and Cell Wall Metabolisms," Food Chemistry 391 (2022): 133283, https://doi.org/10.1016/j.foodchem.2022.133283.
- [188] M. L. de Chiara, J. M. Castagnini, and V. Capozzi, "Cutting-Edge Physical Techniques in Postharvest for Fruits and Vegetables: Unveiling their Power, Inclusion in 'Hurdle' Approach, and Latest Applications," *Trends in Food Science & Technology* 151 (2024): 104619, https://doi.org/10.1016/j.tifs.2024.104619.
- [189] F. Sonntag, H. Liu, and S. Neugart, "Nutritional and Physiological Effects of Postharvest UV Radiation on Vegetables: A Review," *Journal of Agriculture and Food Chemistry* 71, no. 26 (2023): 9951–9972, https://doi.org/10.1021/acs.jafc.3c00481.
- [190] C. Zhang and J. H. Cheng, "Assessing the Effect of Cold Plasma on the Softening of Postharvest Blueberries through Reactive Oxygen Species Metabolism Using Transcriptomic Analysis," *Foods* 13, no. 7 (2024): 1132, https://doi.org/10.3390/foods13071132.
- [191] A. Bárcena, G. Martínez, and L. Costa, "The Use of Visible LEDs as Technology to Delay Postharvest Senescence of Vegetables: A Review," *Plant Molecular Biology Reporter* 43, no. 1 (2025): 11–12, https://doi.org/10.1007/s11105-024-01480-3.
- [192] W. P. Perera, S. B. Navaratne, and I. Wickramasinghe, "Review on Effect of Postharvest Illumination by Fluorescent and Ultraviolet Light Waves on the Quality of Vegetables," *Journal of Food Process Engineering* 45, no. 2 (2022): e13960, https://doi.org/10.1111/jfpe.13960.
- [193] J. J. Macedo, A. G. Sanches, M. C. Rabelo, et al., "Pulsed Light Influences Several Metabolic Routes, Delaying Ripening and Improving the Postharvest Quality of Acerola," *Scientia Horticulturae* 307 (2023): 111505, https://doi.org/10.1016/j.scienta.2022.111505.
- [194] I. Ganganelli, M. C. Molina Agostini, A. Galatro, and G. E. Grozeff, "Specific Wavelength LED Light Pulses Modify Vitamin C and Organic Acids Content in Raspberry and Blackberry Fruit During Postharvest," *Journal of Horticultural Science and Biotechnology* 98, no. 5 (2023): 649–661, https://doi.org/10.1080/14620316.2023.2180438.
- [195] D. Kalkavan and N. S. Yesilcubuk, "Effects of Moderate Electric Field Pretreatment on the Efficiency and Nutritional Quality of Hot Air-Dried Apple Slices," *Foods* 14, no. 13 (2025): 2160, https://doi.org/10.3390/foods14132160.
- [196] I. P. C. Brito and E. K. Silva, "Pulsed Electric Field Technology in Vegetable and Fruit Juice Processing: A Review," Food Research International 184 (2024): 114207, https://doi.org/10.1016/j.foodres.2024.114207.
- [197] M. U. Shahbaz, M. Arshad, K. Mukhtar, et al., "Natural Plant Extracts: An Update About Novel Spraying as an Alternative of Chemical Pesticides to Extend the Postharvest Shelf Life of Fruits and Vegetables," *Molecules* 27, no. 16 (2022): 5152, https://doi.org/10.3390/molecules27165152.
- [198] M. Saidi, S. Eshghi, and E. Tafazoli, "Elicitation of Fruit Defense Response by Active Edible Coatings Embedded With Phenylalanine to Improve Quality and Storability of Avocado

- Fruit," Scientia Horticulturae 174 (2021): 109958, https://doi.org/10.1016/j.postharvbio.2020.111442.
- [199] A. Promwee and N. Matan, "Revealing the Mechanism Underlying the Use of Preharvest Nano-Emulsion of Citrus Essential Oil for Reducing Browning Injury and Maintaining Postharvest Quality of Chili During Cold Storage," *Postharvest Biology and Technology* 219 (2025): 113274, https://doi.org/10.1016/j.postharvbio.2024.113274.
- [200] A. Kumar, T. S. Raghuvanshi, V. Gupta, Vivekanand, N. Kohar, and B. Prakash, "Investigating the Efficacy of Chitosan-Enriched *Cuminum Cyminum* Essential Oil Against Food-Borne Molds, Aflatoxin B₁, and Post-Harvest Quality of *Arachis Hypogaea* L," *Food Biophysics* 19, no. 4 (2024): 982– 993, https://doi.org/10.1007/s11483-024-09877-z.
- [201] S. Sharma, S. Barkauskaite, A. K. Jaiswal, and S. Jaiswal, "Essential Oils as Additives in Active Food Packaging," *Food Chemistry* 343 (2021): 128403, https://doi.org/10.1016/j.foodchem.2020.128403.
- [202] N. A. Almeida, L. Freire, L. Carnielli-Queiroz, A. P. A. Bragotto, N. C. C. Silva, and L. O. Rocha, "Essential Oils: An Eco-Friendly Alternative for Controlling Toxigenic Fungi in Cereal Grains," Comprehensive Reviews in Food Science and Food Safety 23, no. 1 (2024): e13251, https://doi.org/10.1111/1541-4337.13251.
- [203] A. Hosseini, M. Koushesh Saba, and C. B. Watkins, "Microbial Antagonists to Biologically Control Postharvest Decay and Preserve Fruit Quality," *Critical Reviews in Food Science and Nutrition* 64, no. 21 (2024): 7330–7342, https://doi.org/10.1080/10408398.2023.2184323.
- [204] Leasca, S. An Invisible, Edible Coating Is Making Avocados Last Longer (Finally!). Food & Wine, 3 jun. 2025. https:// www.foodandwine.com/game-changers-apeel-11737903. Accessed 7 ago 2025.
- [205] M. Goldberg, "Key Takeaways From the Apeel Controversy and Where We Go From Here" 2023, Organic Insider. https://organicinsider.com/newsletter/organipeel-apeelcontroversy-key-takeaways-coating-fungicide-your-weeklyorganic-insider/. Accessed 7 Ago 2025.
- [206] F. Y. Affandi, J. C. Verdonk, T. Ouzounis, Y. Ji, E. J. Woltering, and R. E. Schouten, "Far-Red Light During Cultivation Induces Postharvest Cold Tolerance in Tomato Fruit," *Postharvest Biology and Technology* 159 (2020): 111019, https://doi.org/10.1016/j.postharvbio.2019.111019.
- [207] A. Jannatizadeh, S. A. Morteza, Z. Luo, and F. Razavi, "Impact of Exogenous Melatonin Application on Chilling Injury in Tomato Fruits During Cold Storage," Food Bioprocess and Technology 12, no. 5 (2019): 741–750, https:// doi.org/10.1007/s11947-019-2247-1.
- [208] W. Li, N. Ye, P. Xie, and Z. Zhang, "Regulatory Mechanism of Methyl Jasmonate and Methyl Dihydrojasmonate in Enhancing Aroma in 'Cabernet Gernischt' via the Lipoxygenase Pathway," *Journal of the Science of Food and Agriculture* 105, no. 2 (2025): 807–815, https://doi.org/10.1002/jsfa.13871.
- [209] T. M. Sirangelo, H. J. Rogers, and N. D. Spadafora, "Multi-Omic Approaches to Investigate Molecular Mechanisms in Peach Post-Harvest Ripening," *Agriculture* 12, no. 4 (2022): 553, https://doi.org/10.3390/agriculture12040553.
- [210] F. Habibi, D. A. Boakye, Y. Chang, et al., "Molecular Mechanisms Underlying Postharvest Physiology and Metabolism of Fruit and Vegetables Through Multi-Omics Technologies," *Scientia Horticulturae* 324 (2024): 112562, https://doi.org/10.1016/j.scienta.2023.112562.

- [211] S. Savoi, M. Shi, G. Sarah, A. Weber, L. Torregrosa, and C. Romieu, "Time-Resolved Transcriptomics of Single Vitis Vinifera Fruits: Membrane Transporters as Switches of the Double Sigmoidal Growth," Journal of Experimental Botany 76, no. 11 (2024): 3105–3124, https://doi.org/10.1093/jxb/erae502.
- [212] T. J. Siebeneichler, R. L. Crizel, C. V. Rombaldi, and V. Galli, "Regulation of Phenylpropanoid Biosynthesis in Strawberry Ripening: Molecular and Hormonal Mechanisms," *Phyto-chemistry Reviews* 23, no. 3 (2024): 923–941, https://doi.org/ 10.1007/s11101-023-09907-7.
- [213] M. Pujol and J. Garcia-Mas, "Regulation of Climacteric Fruit Ripening in Melon: Recent Advances and Future Challenges," *Journal of Experimental Botany* 74, no. 20 (2023): 6224–6236, https://doi.org/10.1093/jxb/erad256.
- [214] Z. Yun, T. Li, H. Gao, et al., "Integrated Transcriptomic, Proteomic, and Metabolomics Analysis Reveals Peel Ripening of Harvested Banana under Natural Condition," *Biomolecules* 9, no. 5 (2019): 167, https://doi.org/10.3390/biom9050167.
- [215] T. Li, Q. Wu, H. Zhu, et al., "Comparative Transcriptomic and Metabolic Analysis Reveals the Effect of Melatonin on Delaying Anthracnose Incidence upon Postharvest Banana Fruit Peel," *BMC Plant Biology* 19, no. 1 (2019): 289, https://doi.org/10.1186/s12870-019-1855-2.
- [216] T. Li, Z. Yun, Q. Wu, H. Qu, X. Duan, and Y. Jiang, "Combination of Transcriptomic, Proteomic, and Metabolomic Analysis Reveals the Ripening Mechanism of Banana Pulp," *Biomolecules* 9, no. 10 (2019): 523, https://doi.org/10.3390/biom9100523.
- [217] T. P. Rieseberg, A. Dadras, J. M. Fürst-Jansen, et al., "Crossroads in the Evolution of Plant Specialized Metabolism," *In Seminars in Cell & Developmental Biology* 134 (2023): 37–58, https://doi.org/10.1016/j.semcdb.2022.03.004.
- [218] A. Agorio, E. Mena, M. F. Rockenbach, and I. Ponce De León, "The Evolution of Plant Responses Underlying Specialized Metabolism in Host-Pathogen Interactions," *Philosophical Transactions of the Royal Society of London B Biological Sciences* 379, no. 1914 (2024): 20230370, https://doi.org/10.1098/rstb.2023.0370.
- [219] R. Rajestary, L. Landi, and G. Romanazzi, "Chitosan and Postharvest Decay of Fresh Fruit: Meta-Analysis of Disease Control and Antimicrobial and Eliciting Activities," Comprehensive Reviews in Food Science and Food Safety 20, no. 1 (2021): 563–582, https://doi.org/10.1111/1541-4337.12672.
- [220] J. Zeng, C. Chen, M. Chen, and J. Chen, "Comparative Transcriptomic and Metabolomic Analyses Reveal the Delaying Effect of Naringin on Postharvest Decay in Citrus Fruit," Frontiers in Plant Science 13 (2022): 1045857, https://doi.org/10.3389/fpls.2022.1045857.
- [221] Y. Ji, W. Hu, Z. Xiu, X. Yang, and Y. Guan, "Integrated Transcriptomics-Proteomics Analysis Reveals the Regulatory Network of Ethanol Vapor on Softening of Postharvest Blueberry," Lwt 180 (2023): 114649, https://doi.org/10.1016/ j.lwt.2023.114649.
- [222] L. Zhao, M. Wang, B. Li, et al., "Investigating Proteome and Transcriptome Defense Response of Table Grapes Induced by *Yarrowia Lipolytica*," *Scientia Horticulturae* 276 (2021): 109742, https://doi.org/10.1016/j.scienta.2020.109742.
- [223] N. Gu, X. Zhang, X. Gu, et al., "Transcriptomic and Proteomic Analysis of the Mechanisms Involved in Enhanced Disease Resistance of Strawberries Induced by Rhodotorula Mucilaginosa Cultured with Chitosan," Postharvest Biology

- and Technology 172 (2021): 111355, https://doi.org/10.1016/j.postharvbio.2020.111355.
- [224] C. Bai, Y. Zheng, C. B. Watkins, et al., "Revealing the Specific Regulations of Brassinolide on Tomato Fruit Chilling Injury by Integrated Multi-Omics," *Frontiers in Nutrition* 8 (2021): 769715, https://doi.org/10.3389/fnut.2021.769715.
- [225] R. Xu, L. Wang, K. Li, J. Cao, and Z. Zhao, "Integrative Transcriptomic and Metabolomic Alterations Unravel the Effect of Melatonin on Mitigating Postharvest Chilling Injury Upon Plum (cv. Friar) Fruit," Postharvest Biology and Technology 186 (2022): 111819, https://doi.org/10.1016/j.postharvbio.2021.111819.
- [226] D. Hermawaty, Ubaidullah, M. A. Putri, S. Prabhandiya, F. M. Dwivany, and K. Meitha, "Epigenetic Regulation of Banana Fruit Ripening: Global and Specific DNA Methylation Profile, and Characterization of DNA Methylation-Related Genes," Cogent Food & Agriculture 11, no. 1 (2025): 2448267, https://doi.org/10.1080/23311932.2024.2448267.
- [227] N. Kuhn, M. Arellano, C. Ponce, et al., "RNA-Seq and WGBS Analyses During Fruit Ripening and in Response to ABA in Sweet Cherry (*Prunus Avium*) Reveal Genetic and Epigenetic Modulation of Auxin and Cytokinin Genes," *Journal of Plant Growth Regulation* 44, no. 3 (2025): 1165–1187, https:// doi.org/10.1007/s00344-024-11340-9.
- [228] G. Ortuno-Hernandez, D. Ruiz, P. Martínez-Gómez, and J. A. Salazar, "Differentially Methylated DNA Regions in Apricot (*Prunus Armeniaca L.*) and Japanese Plum (*Prunus Salicina L.*) During Fruit Ripening After Ethylene-Related Treatments," *Scientia Horticulturae* 330 (2024): 113052, https://doi.org/10.1016/j.scienta.2024.113052.
- [229] D. Su, P. Shu, N. Hu, et al., "Dynamic m6A mRNA Methylation Reveals the Involvement of AcALKBH10 in Ripening-Related Quality Regulation in Kiwifruit," New Phytologist 243, no. 6 (2024): 2265–2278, https://doi.org/10.1111/nph.20008.
- [230] M. Wang, Y. Wu, W. Zhan, et al., "The Apple Transcription Factor MdZF-HD11 Regulates Fruit Softening by Promoting Mdβ-GAL18 Expression," Journal of Experimental Botany 75, no. 3 (2024): 819–836, https://doi.org/10.1093/jxb/erad441.
- [231] J. Tao, Y. Wang, A. R. Fernie, et al., "Transcriptomic and Epigenetic Signatures of Tomato Fruit After Postharvest UV-C Irradiation Are Associated With the Maintenance of Fruit Quality," *Plant Biotechnology Journal* 23, no. 10 (2025): 4500, https://doi.org/10.1111/pbi.70210.
- [232] T. Mesa, C. Mariani, and S. Munné-Bosch, "Postharvest Regreening: A Species- and Variety-Dependent Process Triggered by Phytohormones and Light," *Annals of Botany*, Article ID mcaf094 (2025, Advance online publication. https://doi.org/10.1093/aob/mcaf094.
- [233] F. Wang, J. Xiao, Y. Zhang, R. Li, L. Liu, and J. Deng, "Biocontrol Ability and Action Mechanism of *Bacillus Halotolerans* Against *Botrytis Cinerea* Causing Grey Mould in Postharvest Strawberry Fruit," *Postharvest Biology and Technology* 174 (2021): 111456, https://doi.org/10.1016/j.postharvbio.2020.111456.
- [234] Z. A. Belay and O. J. Caleb, "Role of Integrated Omics in Unravelling Fruit Stress and Defence Responses During Postharvest: A Review," *Food Chemistry: Molecular Sciences* 5 (2022): 100118, https://doi.org/10.1016/j.fochms.2022.100118.
- [235] C. C. Wee, V. K. Subbiah, M. Arita, and H. H. Goh, "The Applications of Network Analysis in Fruit Ripening," *Scientia Horticulturae* 311 (2023): 111785, https://doi.org/10.1016/j.scienta.2022.111785.