Avaliação das temperaturas de superfície de touros jovens em pastagens com mínima arborização usando termocâmera embarcada em drone

Assessing surface temperatures of yearling bulls in minimally forested pastures using a drone-based thermocamera

Alexandre Rossetto Garcia^{1*}, Christine Elisabeth Grudzinski^{1,2}, Edilson da Silva Guimarães¹, José Ricardo Macedo Pezzopane¹, Alberto Carlos de Campos Bernardi¹, Júlio César de Carvalho Balieiro²

¹Embrapa Pecuária Sudeste, São Carlos, SP, Brasil. ²FMVZ/USP, Pirassununga, SP, Brasil. * Autor correspondente: alexandre.garcia@embrapa.br

O estresse pelo calor é um dos maiores desafios para a produção eficiente de carne e leite nos trópicos. Por isso, o desenvolvimento de ferramentas capazes de revelar a resposta dos bovinos aos desafios térmicos pode ser útil para subsidiar a tomada de decisão dos produtores. Assim, o estudo teve como objetivo avaliar o conforto térmico de bovinos criados a pasto usando câmera térmica embarcada em drone e correlacionar as temperaturas da superfície animal a parâmetros endócrinos e de desempenho zootécnico. O experimento foi realizado na Embrapa Pecuária Sudeste, São Carlos-SP, em subtipo climático tropical de altitude. O microclima das pastagens (12 ha, Urochloa brizantha, ev Piatã) em sistema rotacionado intensivo com sombreamento natural mínimo (1,02%) foi monitorado durante três estações consecutivas (verão, outono e inverno), entre os meses de janeiro e agosto. Durante esse período, foram avaliadas as variáveis de resposta térmica e o desempenho de 20 touros jovens $(15.9 \pm 1.2 \text{ meses}, 296.3 \pm 27.5 \text{ kg PV})$. Mensalmente, foram realizados sobrevoos nas pastagens, entre 10:00 e 14:00 hs e uma câmera termográfica por infravermelho (DJI Zenmuse XT 30HZ 19MM, Shenzhen, China) embarcada em drone (DJI Matrice 210 V2 quadricóptero, Shenzhen, China) foi usada para avaliar a temperatura da superfície corpórea dos animais (T MIN, T MED, T MAX, °C). Mensalmente, amostras de sangue foram coletadas para dosagens de cortisol. Na sequência, os animais foram individualmente pesados em balança eletrônica. Os resultados foram avaliados por ANOVA, seguida do teste de Tukey para comparação entre médias. Os coeficientes de correlação linear foram calculados com uso do teste de Pearson. O nível de significância adotado foi de 5%. As temperaturas da superfície corporal variaram de acordo com a estação climática, com diferença significativa para a T MIN entre estações (verão = $30,12 \pm 0,73^{A}$ vs. outono = $29,86 \pm 0,70^{A}$ vs. inverno = $24,38 \pm 0,87^{B}$ °C; P<0,001). Não houve diferença significativa para T MED e T MAX entre estações. As médias gerais foram de 28,12±0,51 °C (T MIN), 34,13±0,42 °C (T MED) e 38,68±0,46 °C (T MAX). As concentrações de cortisol foram mais elevadas no verão e outono (verão = 26.35 ± 0.33^{A} vs. outono = 23.06 ± 0.33^{A} vs. inverno = 14.31 ± 0.44^{B} ng/mL; P<0.001). Maiores T MIN em associação com concentrações mais elevadas de cortisol no verão e outono são indicativos de maior estresse, em função do maior desafio térmico estabelecido sobre os animais no verão, e o outono sendo um período de transição. Ao final do período experimental, os animais atingiram peso médio de 396,4 kg. Houve correlação negativa significativa entre T MIN, T MED e T MAX com o peso dos animais (r=-0,50, -0,46 e -0,26; P<0,05, respectivamente). Esses resultados evidenciam que animais com temperaturas de superfície corpórea mais elevada e, portanto, menor capacidade de dissipação para o meio do calor acumulado tendem a ter menor peso. Assim, o uso de câmera térmica embarcada em drone foi efetivo para detectar com precisão temperaturas de superfície dos animais, que sinalizam sua capacidade de termorregulação a campo e influenciam seu desempenho zootécnico. A tecnologia parece promissora e, por certo, novos trabalhos devem ser estimulados de modo a permitir um aprofundamento de seu uso em outros contextos produtivos e com outras categorias animais.

Palavras-chave: pecuária de precisão; drone; termografia infravermelha; bovinos de corte Keywords: precision livestock farming; drone; infrared thermography; beef cattle