

The microbial properties of Cerrado soil are affected by the soil texture and land use

As propriedades microbianas do solo do Cerrado são afetadas pela textura do solo e pelo uso da terra

Las propiedades microbianas del suelo del Cerrado están afectadas por la textura del suelo y por el uso de la tierra

DOI: 10.54033/cadpedv22n11-137

Originals received: 8/11/2025 Acceptance for publication: 9/4/2025

Paulo Henrique Dalto

Doctoral Student in Agricultural Sciences

Institution: Universidade Federal do Piauí (UFPI)

Address: Bom Jesus, Piauí, Brazil E-mail: ph.dalto@ifpi.edu.br

Luiz Fernando Carvalho Leite

PhD in Agronomy

Institution: Embrapa Meio-Norte Address: Teresina, Piauí, Brazil E-mail: luiz.f.leite@embrapa.br

Romário Martins Costa

PhD in Agricultural Sciences

Institution: Universidade Federal do Piauí (UFPI)

Address: Bom Jesus, Piauí, Brazil

E-mail: romario.martins90@hotmail.com

Maria de Fátima Marques Pires

Doctoral Student in Agricultural Sciences

Institution: Universidade Federal do Piauí (UFPI)

Address: Bom Jesus, Piauí, Brazil E-mail: fatimapiresbl@hotmail.com

Marcos Renan Lima Leite

PhD in Agronomy

Institution: Instituto Federal do Piauí (IFPI)

Address: Valença, Piauí, Brazil E-mail: marcos_lleite@hotmail.com

ABSTRACT

Agricultural expansion in the Cerrado has altered the microbial properties of the soil, influenced by soil texture and land use type. The objective was to evaluate the impacts of conventional tillage, no-tillage, silviculture, and pasture on the microbial properties of Cerrado Oxisols with different clay contents. The experimental design was a randomized block design, with soil samples collected at a depth of 0.1 m. The total organic carbon (TOC), microbial biomass carbon (MBC), soil respiration, microbial quotient, respira-tory quotient, and enzymatic activities (dehydrogenase and fluorescein diacetate hydrolysis) were analyzed. The results showed that soils with higher clay content had higher values of TOC, MBC, and microbial activity compared to soils with lower clay content. In clayey soils, no-tillage and silviculture promoted greater carbon retention and microbial activity. Principal component analysis indicated that clay content had a greater influence on microbial properties than soil management. Thus, clay content stood out as a crucial factor in soil quality, with clayey soils, especially under no-tillage and silviculture, showing a great-er potential to preserve microbiological quality.

Keywords: Enzymatic Activity. Soil Management. Microbial Biomass. Tillage.

RESUMO

A expansão agrícola no Cerrado altera as propriedades microbianas do solo, sendo essas influenciadas pela textura do solo e pelo tipo de uso da terra. O objetivo foi avaliar os impactos do preparo convencional, do sistema de plantio direto, da silvicultura e da pastagem sobre as propriedades microbianas de Latossolos do Cerrado com diferentes teores de argila. O delineamento experimental foi em blocos ao acaso, com amostras de solo coletadas na profundidade de 0,1 m. Foram analisados o carbono orgânico total (COT), o carbono da biomassa microbiana (CBM), a respiração do solo, o quociente microbiano, o quociente respiratório e as atividades enzimáticas (desidrogenase e hidrólise do diacetato de fluoresceína). Os resultados mostraram que os solos com maior teor de argila apresentaram valores mais elevados de COT, CBM e atividade microbiana em comparação aos solos com menor teor de argila. Em solos argilosos, o sistema de plantio direto e a silvicultura promoveram maior retenção de carbono e maior atividade microbiana. A análise de componentes principais indicou que o teor de argila teve maior influência sobre as propriedades microbianas do que o manejo do solo. Assim, o teor de argila destacou-se como um fator crucial na qualidade do solo, sendo que os solos argilosos, especialmente sob plantio direto e silvicultura, apresentaram maior potencial para preservar a qualidade microbiológica.

Palavras-chave: Atividade Enzimática. Manejo do Solo. Biomassa Microbiana. Preparo do Solo.

RESUMEN

La expansión agrícola en el Cerrado altera las propiedades microbianas del suelo, las cuales están influenciadas por la textura del suelo y el tipo de uso de la tierra. El objetivo de este estudio fue evaluar los impactos del laboreo convencional, del sistema de siembra directa, de la silvicultura y de la pastura sobre las

propiedades microbianas de Oxisoles del Cerrado con diferentes contenidos de arcilla. El diseño experimental fue en blogues al azar, con muestras de suelo recolectadas a una profundidad de 0,1 m. Se analizaron el carbono orgánico total (COT), el carbono de la biomasa microbiana (CBM), la respiración del suelo, el cociente microbiano, el cociente respiratorio y las actividades enzimáticas (deshidrogenasa e hidrólisis del diacetato de fluoresceína). Los resultados mostraron que los suelos con mayor contenido de arcilla presentaron valores más altos de COT, CBM y actividad microbiana en comparación con los suelos con menor contenido de arcilla. En suelos arcillosos, el sistema de siembra directa y la silvicultura promovieron una mayor retención de carbono y una mayor actividad microbiana. El análisis de componentes principales indicó que el contenido de arcilla tuvo una influencia más significativa sobre las propiedades microbianas que el manejo del suelo. Así, el contenido de arcilla se destacó como un factor crucial en la calidad del suelo, siendo que los suelos arcillosos, especialmente bajo siembra directa y silvicultura, presentaron un mayor potencial para preservar la calidad microbiológica.

Palabras clave: Actividad Enzimática. Manejo del Suelo. Biomasa Microbiana. Labranza del Suelo.

1 INTRODUCTION

The state of Piauí has significant potential for agricultural expansion, especially in the southern region. Agricultural development in this area has caused intense modifications to the native Cerrado vegetation (Fernandes *et al.*, 2021). Among the soil characteristics that favor this intensification, its good physical conditions stand out, as they support the use of heavy machinery for soil management. However, due to intensive use, the transformation of natural environments into agricultural systems has become increasingly frequent. Furthermore, inadequate management practices can, in a short period, alter soil properties and compromise its quality (Nunes *et al.*, 2018).

The Cerrado predominantly has medium to sandy-textured soils, which strongly influence the soil's chemical and biological properties. Therefore, understanding the sand, silt, and clay content in the soil is essential to assess the impacts of different management practices (Santos *et al.*, 2018). The accelerated conversion of the Cerrado into pastures and agricultural areas in recent years, coupled with inadequate management, is significantly compromising soil

functions and its sustainability, resulting in the loss of physical, chemical, and biological quality (Ramos *et al.*, 2023). Soil changes resulting from its use involve a complex interaction of various factors, so understanding these dynamics is essential for sustainable soil management (Caballero *et al.*, 2023).

With regard to soil quality assessment, greater attention has been given to chemical and physical indicators compared to microbiological ones (Bünemann *et al.*, 2018). However, changes in microbiological properties, such as microbial biomass and enzymatic activity, are more dynamic and occur over shorter periods, making them more sensitive indicators of soil quality (Lopes *et al.*, 2018). Soil microbial biomass is a living part of organic matter, essential for ecosystem functioning (Singh; Gupta, 2018). Microbial biomass performs various functions, such as phosphate solubilization (Gupta *et al.*, 2022), biological nitrogen fixation (Asiloglu *et al.* 2020), and soil aggregate stabilization (Ren *et al.*, 2022). In addition, soil microorganisms produce enzymes that catalyze essential reactions, decompose organic residues, recycle nutrients, and form organic matter (Burns *et al.*, 2013).

Previous studies have shown that changes in land use (Bobul'ská *et al.*, 2021; Souza; Procópio, 2021; Barbosa *et al.*, 2023) and soil texture (Monreal; Bergstrom, 2000; Vinhal-Freitas *et al.*, 2017) affect soil microbial and biochemical indicators. However, it is still not fully understood how land uses affect these microbial properties in soils with different clay contents in the Cerrado biome. Thus, this study evaluates how different land uses affect microbial properties in soils with varying clay contents.

2 METHODOLOGY

The study was conducted between September 2013 and February 2014 in three municipalities in Piauí, Brazil: Uruçuí (lat: 7°14'2"S; long: 44°33'14"W), Sebastião Leal (lat: 7°33'59"S; long: 44°3'52"W), and Regeneração (lat: 6°14'7"S; long: 42°41'10"W), each featuring farms with distinct textural gradients (Figure 1A). The region's climate is tropical (Aw, Köppen classification) with summer rains and dry winters, averaging annual precipitation of 1069, 1006, and 1371

mm and temperatures of 27.2 °C, 26 °C, and 26.4 °C, respectively. The native vegetation in all areas is Cerrado.

The soil of all evaluated areas is classified as Oxisols [Dystrophic Yellow Latosol, according to Santos *et al.* (2018)]. Farm 1 (Uruçuí) has an average clay content of 14%, Farm 2 (Sebastião Leal) has 24%, and Farm 3 (Regeneração) has 45% clay, referred to as low, medium, and high clay content, respectively. All farms had the following land uses: conventional tillage, no-tillage, silviculture, pasture, and native forest (control) (Figure 1B)., with the same management across all.

The experimental design was a randomized block design with a 3x5 subplot scheme and five replications, where the three clay contents (low, medium, high) were the plots and five land uses (conventional tillage, no-tillage, silviculture, pasture, and native forest) were the subplots. Soil sampling occurred during the rainy season (January 2014) at a depth of 0.0-0.1 m, with individual samples collected 3 m apart and a composite sample formed by five individual samples per replication. Samples were kept in coolers until reaching the laboratory, where they were stored in a refrigerator and sifted through a 2 mm mesh on the analysis day.

Figure 1. Characterization of the study areas in Cerrado soil with different clay content (A) and soil management (B).

Native forest (NF) Conventional tillage (CT) No-tillage (NT) Silviculture (S) Pasture (P)

A Uruçui: B Sebastia Livestock Sebastia Livestock

Source: Prepared by the authors (2025).

The total organic carbon (TOC) was determined by oxidizing organic matter with potassium dichromate in the presence of concentrated sulfuric acid (Walkley-Black) and titration with ammoniacal ferrous sulfate, following procedures described by Embrapa (1997). The microbial biomass carbon (MBC) was determined using the irradiation-extraction method, employing a microwave oven (Ferreira; Camargo; Vidor, 1999). The irradiation causes the death of microorganisms and the release of cellular components. An extraction efficiency coefficient of 0.33 was used to convert the carbon difference between irradiated and non-irradiated soil into MBC.

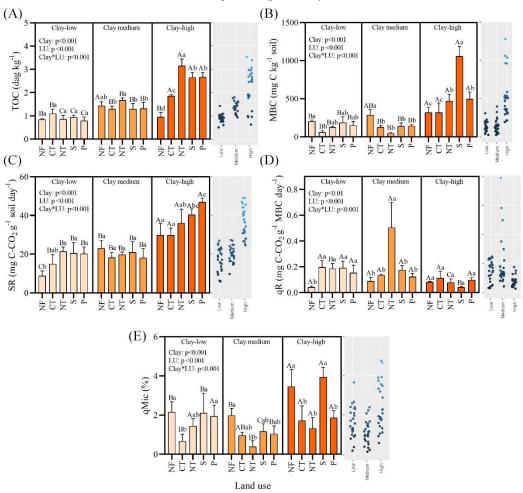
Soil basal respiration (SR) was estimated by the amount of C-CO₂ released over a seven-day period from a 20 g soil sample. The soil incubation was carried out in jars containing bottles with 10 mL of NaOH 1.0 mol L⁻¹. The jars were hermetically sealed, and after the incubation period, the NaOH was titrated with HCl 0.5 mol L⁻¹, using phenolphthalein as an indicator.

Based on the results of MBC and total organic carbon (TOC), the ratio between microbial carbon and organic carbon (MBC:TOC) was calculated, defined as the microbial quotient (qMic). The respiratory quotient (qR) was also determined using the ratio between SR and MBC. The hydrolysis of fluorescein diacetate (FDA) and dehydrogenase (DHA) were used as indicators of soil microbial activity. FDA was determined according to Schnürer and Rosswall (1982), while DHA was determined according to Casida *et al.* (1964). The DHA determination is based on the reduction of triphenyl tetrazolium chloride to triphenyl formazan, with readings taken using a spectrophotometer.

Statistical analyses were conducted in R using the "easyanova" package. Residual normality was tested with the Shapiro-Wilk test, and variance homogeneity with Bartlett's test. A two-way ANOVA was applied to identify significant effects (p<0.05), followed by Tukey's test for mean comparisons. PCA was performed to examine variable associations and groupings across clay contents and soil managements.

3 RESULTS

The TOC, MBC, soil basal respiration, and the respiratory quotient and microbial quotient varied according to the clay content and different land uses (Figure 2). The TOC was significantly higher in the soil with high clay content for the different land uses (Figure 2A), except for the native forest, where the TOC was higher in the soil with medium clay content. In the soil with high clay content, the no-tillage system (NT) showed the highest TOC, followed by silviculture and pasture. In contrast, the lowest TOC values were observed in the soil with low clay content.

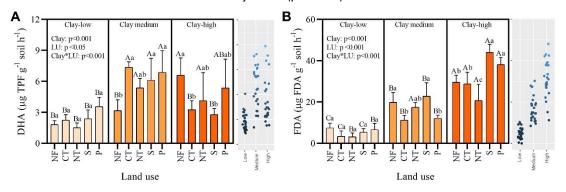

Microbial biomass carbon (MBC) and soil respiration were higher in the soil with high clay content for all the different land uses (Figures 2B, 2C). In the soil with medium clay content, the native forest showed higher microbial biomass carbon than the other land uses. In the soil with high clay content, MBC was significantly higher in the silviculture area, followed by NT and pasture, which did not differ from each other. For soil respiration, the silviculture and pasture areas were higher than NT and CT.

The respiratory quotient showed less variation between the soil clay contents. However, in the soil with medium clay content, the NT system exhibited higher respiratory quotient values compared to the other land uses. In contrast, in the soil with low clay content, the native forest exhibited the lowest respiratory quotient values. No significant differences were found between the evaluated systems in the soil with high clay content (Figure 2D).

The microbial quotient was higher in the soil with higher clay content for most of the soil management systems, except for NT and pasture in the soil with low clay content, and CT with medium clay content (Figure 2E). There was a reduction in microbial quotient in CT in soil with low clay content; in NT in soil with medium clay content; and in CT, NT, and pasture in soil with high clay content.

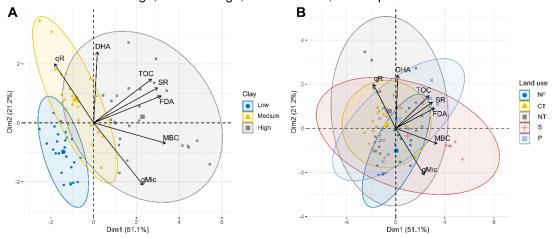
Figure 2. Total organic carbon [TOC; (A)], soil microbial biomass carbon [MBC; (B)], soil respiration [SR; (C)], respiratory quotient [qR; (D)], and microbial quotient [qMic; (E)] in Cerrado soil with different clay content and land uses. NF: native forest; CT: conventional tillage; NT: no-tillage; S: Silviculture; and P: pasture. Uppercase letters compare the same land use in different clay contents, while lowercase letters compare different land uses in the same clay content by Tukey's test (p < 0.05).

Source: Prepared by the authors (2025).


The DHA and FDA varied according to the clay content and soil management (Figure 3). In general, the management systems in the soil with higher clay content showed higher DHA and FDA (Figures 3A and 3B, respectively). However, the DHA of NT in soil with high and medium clay content did not differ, nor did the DHA of CT, silviculture, and pasture in soil with high and low clay content. Curiously, except for NT, the DHA activity in soil with medium clay content increased in all soil management systems compared to native forest. In contrast, in soil with higher clay content, there was a reduction in DHA in CT and silviculture. Regarding FDA, the NT and silviculture management systems in

soil with medium clay content maintained elevated FDA levels, not differing from native forest. In soil with high clay content, a reduction in FDA was observed in NT, while increases were seen in silviculture and pasture.

Figure 3. Dehydrogenase [DHA; (A)] and fluorescein diacetate hydrolysis [FDA; (B)] in Cerrado soil with different clay content and land uses. NF: native forest; CT: conventional tillage; NT: notillage; S: Silviculture; and P: pasture. Uppercase letters compare the same land use in different clay contents, while lowercase letters compare different land uses in the same clay content by Tukey's test (p < 0.05).



Source: Prepared by the authors (2025).

We used principal component analysis to explore the correlation of TOC and microbial properties with clay content (Figure 4). The first two principal components together explained approximately 72.3% of the total variation. A greater separation was observed between the groups with different clay contents (Figure 4A) than between the soil management systems, which were mostly overlapped (Figure 4B). Moreover, with the exception of the respiratory quotient, all the microbial properties evaluated were correlated with soil having a higher clay content. As for the soil management systems, the microbial properties were primarily correlated with silviculture and NT.

Figure 4. Principal component analysis of organic carbon and microbial properties in Cerrado soil with different clay contents (A) and land use (B). TOC: total organic carbon; SR: soil respiration; MBC: microbial biomass carbon; qR: respiratory quotient; qMic: microbial quotient; DHA: dehydrogenase; FDA: fluorescein diacetate hydrolysis; NF: native forest; CT: conventional tillage; NT: no-tillage; S: Silviculture; and P: pasture.

Source: Prepared by the authors (2025).

4 DISCUSSIONS

Clay content and land use have a significant impact on microbial properties, potentially affecting microbial composition, diversity, and activity (Vinhal-Freitas *et al.*, 2017; Souza; Procópio, 2021). Additionally, changes in land use represent one of the most significant human activities that influence ecosystem functioning, having a direct impact on soil quality and health (Gomes *et al.*, 2021). The conversion of native areas into agricultural, urban, or industrial lands significantly alters the physical, chemical, and biological properties of the soil, with repercussions on carbon dynamics, fertility, and biodiversity (Santorufo *et al.*, 2021). In this study, we compared the microbial properties of the soil in three locations within the Cerrado biome, with different clay contents and soil management practices. Our results confirm the hypothesis that different land uses distinctly affect microbial properties depending on the soil's clay content.

The present study revealed that, except for the native forest, TOC was higher in soil with high clay content for the different land uses. This can be attributed to the greater water and nutrient retention capacity of clay soils, which contributes to better preservation of organic matter and a lower decomposition rate (Havlin, 2020). Additionally, the greater specific surface area of clay

facilitates the fixation of organic carbon, resulting in higher TOC concentrations (Liu *et al.*, 2024). In native forests, even in clayey soils, the carbon dynamics can be more complex due to vegetation diversity, variations in organic matter decomposition, and the influence of biodiversity, which can affect how carbon is stored in the soil (Mayer *et al.*, 2020). Our study revealed that the no-tillage system was the most effective in maximizing TOC, followed by silviculture, while pasture showed the lowest carbon retention potential.

The high water and nutrient retention capacity of clayey soils enhances the efficiency of no-tillage in the accumulation and preservation of organic carbon, due to its structural stability, which minimizes soil disturbance, reduces erosion, and carbon loss (Abdallah *et al.*, 2021), as well as promoting the incorporation of organic matter from crop residues. Although silviculture also contributes to the increase in TOC, its carbon accumulation capacity may be lower compared to notillage, influenced by factors such as planting density, organic matter decomposition time, tree species type, and variation in vegetation cover (Bukoski *et al.*, 2022). In comparison, pasture has a lesser effect on TOC, which can be attributed to several factors such as continuous grazing, management practices, and soil disturbance caused by animal traffic, which can lead to soil compaction and reduced organic matter (Poeplau, 2021).

The MBC and soil respiration were higher in soil with high clay content for all different land uses. The stable structure and greater availability of resources in soils with high clay content provide ideal conditions for microbial growth and activity, resulting in higher MBC concentrations and more intense respiration (Piotrowska-Długosz et al., 2022). Interestingly, in soils with medium clay content, native forest exhibited higher levels of MBC compared to land uses. This result suggests that, even in soils with medium clay content, the structural complexity of native forest soils supports greater microbial activity. This can be attributed to the continuous addition of organic matter and the diversity of carbon sources, such as plant residues, which provide a continuous supply of nutrients and energy for microorganisms (Liu B. et al., 2022). Our results showed that in soil with high clay content, MBC was significantly higher in silviculture areas, followed by notillage and pasture areas, and was higher than those observed in native forest

and conventional tillage soils (Figure 2B). In silviculture, management practices such as the addition of organic matter and increased soil cover can create more favorable conditions for the survival and growth of microorganisms (Mayer *et al.*, 2020). No-tillage can also promote carbon accumulation due to its lower soil disturbance and maintenance of soil cover (Li *et al.*, 2023). In contrast, conventional tillage, which typically involves soil disturbance, tends to disrupt soil structure and reduce microbial biomass and stored carbon, especially when compared to less intensive practices such as no-tillage and silviculture.

Soil respiration, which reflects microbial activity and organic matter decomposition, showed higher values in silviculture and pasture areas compared to no-tillage and conventional tillage (Figure 2C). The increase in basal respiration in silviculture soil may be associated with management practices that promote greater addition of organic matter and the maintenance of dense vegetation cover (Hojjati *et al.*, 2023). Similarly, in pasture areas, the elevated soil respiration can be explained by the accumulation of organic matter from animal excrement and decomposing plant biomass (Bessi *et al.*, 2024). However, it is important to consider that the intensity of grazing can influence the respiration rate, with potential negative effects, especially if soil degradation and compaction occur.

In the present study, in soil with medium clay content, the no-tillage system showed higher respiratory quotient values compared to other land uses. This increase in the respiratory quotient can be attributed to the greater availability of organic residues on the soil surface, which are incorporated slowly, resulting in more intense microbial activity and consequently a higher soil respiration rate (Liu W. et al., 2022). In contrast, in soil with low clay content, the native forest showed the lowest respiratory quotient values. Native forests typically have a well-developed litter layer, in addition to a decomposition dynamic adapted to local conditions, which tends to reduce microbial activity compared to systems that continuously supply organic matter, such as no-tillage (Ameray et al., 2021).

The microbial quotient has been used to assess changes in carbon dynamics, as it is considered more sensitive than soil organic carbon content and microbial biomass alone (Sparling, 1992). In this study, a higher microbial

quotient value was observed in soil with a higher clay content, mainly due to the increase in soil microbial biomass relative to the TOC. Overall, the no-tillage and CT land uses showed the lowest microbial quotient values, indicating that a small proportion of TOC was immobilized by soil microorganisms. The lower microbial quotient values in CT can be primarily attributed to the reduction in microbial biomass due to soil disturbance and the absence of permanent cover, unlike what occurs in native forests and conservation systems (Badagliacca *et al.*, 2021). In no-tillage, the low microbial quotient value results from the maintenance of TOC through the deposition of plant residues on the soil surface (Li *et al.*, 2018). Additionally, the maintenance of mulch can contribute to reducing temperature fluctuations, increasing soil moisture retention, and providing protection against erosive processes (Du; Effah, 2022).

Enzymatic activity is essential for the efficient functioning of soil, influencing nutrient availability, organic matter dynamics, and soil response to various disturbances resulting from management practices (Barbosa et al., 2023). Additionally, it is a critical component for maintaining agricultural productivity and the health of natural ecosystems (Barbosa et al., 2023). In this study, DHA was influenced by clay content and management practices. DHA activity showed greater variations with increasing clay content in the soil. The increase in DHA with higher clay values may be related to the greater availability of carbon sources (Figure 2A), which aligns with previous reports (Bandyopadhyay; Maiti, 2021; Piotrowska-Długosz et al., 2022). In a metaanalysis of Brazilian biomes, Barbosa et al. (2023) found that DHA is positively related to soil organic matter content. Thus, our results suggest that increased substrate availability may enhance microbial metabolism and nutrient cycling. Additionally, this result may also be associated with differences in the preservation of intra- and extracellular enzyme complexes within stable soil aggregates (Monreal; Bergstrom, 2000). Changes in land use can impact DHA activity (Bobul'ská et al., 2021). In our study, we observed that land use only altered DHA in soils with higher clay content, indicating that soil texture is a more critical factor for microbial activity than land management, as confirmed by our PCA analysis (Figure 4).

The FDA can be hydrolyzed by various soil enzymes, including proteases, lipases, and esterases (Vinhal-Freitas et al., 2017). Consequently, FDA hydrolysis is often used as an indicator of overall soil microbial activity (Gajda; Przewłoka; Gawryjołek, 2013; Melo et al., 2020). FDA is highly sensitive to differences in land use and soil texture (Vinhal-Freitas et al., 2017). In our study, we observed consistent increases in FDA with higher clay content in the soil, which can be attributed to the soil's MBC and TOC (Piotrowska-Długosz et al., 2022), considering that FDA has a positive correlation with microbial biomass and TOC (Gajda; Przewłoka; Gawryjołek, 2013). Among land uses, silviculture did not differ from native forest in soils with low and medium clay content, and showed a significant increase in soil with high clay content, indicating, respectively, microbial activity equivalent to and higher than that in native forest. According to Vinhal-Freitas et al. (2017), FDA is typically higher in natural ecosystems. However, this response is not consistent for all soil types (Melo et al., 2020). In a study conducted by Cunha et al. (2021) in the Piauí Cerrado, FDA in the native forest did not differ from silviculture, but showed lower values compared to the crop-livestock integration system.

In general, PCA analyses revealed that clay content had a more significant effect on organic carbon and microbial properties than soil management. Soils with higher clay content not only had higher organic carbon levels but also exhibited reduced mineralization due to physical protection in stable aggregates (Bhattacharyya et al., 2021). In contrast, soils with higher clay content may also exhibit greater water retention capacity (Reichert et al., 2020), which, in turn, can increase soluble organic matter and promote microbial growth, consequently enhancing enzymatic activity (Bandyopadhyay; Maiti, 2021). The lower variation in soil management practices, especially in soils with lower clay content, is due to smaller fluctuations in TOC values and soil microbial biomass.

5 CONCLUSION

In this study, we evaluated the influence of clay content and land use on organic carbon, microbial biomass, microbial respiration, and microbial activity

(dehydrogenase, fluorescein diacetate hydrolysis). Clay content and changes in land use can lead to significant alterations in the organic carbon and microbial properties of the soil. Organic carbon, microbial biomass, respiration, and microbial activity increase with higher clay content in the soil. Land uses have a more significant impact on microbial properties in Oxisols with higher clay content. Notillage, silviculture, and pasture promote the maintenance and/or increase of organic carbon and microbial biomass, while silviculture enhanced microbial activity.

The results of this study provide important contributions to both society and academia. The study reinforces the importance of conservation practices in enhancing the microbiological quality of Cerrado soils, offering support for public policies that guide farmers and managers in adopting strategies aimed at greater carbon retention, improved fertility, and the conservation of microbial biodiversity. In the scientific field, it advances the understanding of the interactions among soil texture, land use, and microbial properties, highlighting clay content as a central factor for ecosystem stability and functioning.

The study has limitations regarding its spatial scope, restricted to a single region of the Cerrado, data collection during only one rainy season, and the absence of taxonomic detail of microbial communities. Therefore, it is recommended that future research encompass different regions and soil classes, seasonal variability, and the use of high-throughput molecular tools, integrating microbiological, physical, and chemical attributes with agricultural productivity indicators to generate knowledge applicable to the development of more sustainable production systems for the Cerrado biome.

REFERENCES

ABDALLAH, Ahmed M. *et al.* Conservation agriculture effects on soil water holding capacity and water-saving varied with management practices and agroecological conditions: A review. **Agronomy**, v. 11, n. 9, p. 1681, 2021.

AMERAY, Abderrahmane *et al.* Forest carbon management: a review of silvicultural practices and management strategies across boreal, temperate and tropical forests. **Current Forestry Reports**, v. 7, n. 4, p. 245–266, 2021.

ASILOGLU, Rasit *et al.* Protist-enhanced survival of a plant growth promoting rhizobacteria, *Azospirillum* sp. B510, and the growth of rice (*Oryza sativa* L.) plants. **Applied Soil Ecology**, v. 154, p. 103599, 2020.

BADAGLIACCA, Giuseppe *et al.* Long-term effects of contrasting tillage systems on soil C and N pools and on main microbial groups differ by crop sequence. **Soil and Tillage Research**, v. 211, p. 104995, 2021.

BANDYOPADHYAY, Sneha; MAITI, Subodh Kumar. Different soil factors influencing dehydrogenase activity in mine degraded lands—state-of-art review. **Water, Air, & Soil Pollution**, v. 232, n. 9, p. 360, 2021.

BARBOSA, Julierme Zimmer *et al.* Soil enzymatic activity in Brazilian biomes under native vegetation and contrasting cropping and management. **Applied Soil Ecology**, v. 190, p. 105014, 2023.

BESSI, Débora *et al.* Decomposition and stabilization of the organic matter in integrated livestock production systems. **Agroforestry Systems**, 2024.

BHATTACHARYYA, Ranjan *et al.* Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macroaggregates under different land uses. **Science of The Total Environment**, v. 778, p. 146286, 2021.

BOBUL'SKÁ, L. *et al.* Impact of land use on soil function and bacterial community in the Brazilian savanna. **Anais da Academia Brasileira de Ciências**, v. 93, n. 3, 2021.

BUKOSKI, Jacob J. *et al.* Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. **Nature Communications**, v. 13, n. 1, p. 4206, 2022.

BÜNEMANN, Else K. *et al.* Soil quality – A critical review. **Soil Biology and Biochemistry**, v. 120, p. 105–125, 2018.

BURNS, Richard G. *et al.* Soil enzymes in a changing environment: Current knowledge and future directions. **Soil Biology and Biochemistry**, v. 58, p. 216–234, 2013.

CABALLERO, Cassia Brocca *et al.* Transformation of Brazil's biomes: The dynamics and fate of agriculture and pasture expansion into native vegetation. **Science of The Total Environment**, v. 896, p. 166323, 2023.

CASIDA, L. E. JR.; KLEIN, D. A.; SANTORO, T. Soil dehydrogenase activity. **Soil Science**, v. 98, p. 371–376, 1964.

CUNHA, João Rodrigues da *et al.* Soil biological attributes in monoculture and integrated systems in the Cerrado region of Piauí State, Brazil. **Acta Scientiarum. Agronomy**, v. 43, n. e51814, 2021.

DU, Changliang; LI, Lingling; EFFAH, Zechariah. Effects of straw mulching and reduced tillage on crop production and environment: A review. **Water**, v. 14, n. 16, p. 1-15, 2022.

EMBRAPA. **Manual de métodos de Análise do solo**. 2 ed. ed. Rio de Janeiro, RJ: Embrapa, 1997.

FERNANDES, Gabriel Siqueira Tavares *et al.* Balanço de radiação em áreas de expansão agrícola no Sudoeste do Piauí. **Revista de Geociências do Nordeste**, v. 7, n. 1, p. 13–20, 2021.

FERREIRA, A. S.; CAMARGO, F. A. O.; VIDOR, C. Utilização de microondas na avaliação da biomassa microbiana do solo. **Revista Brasileira de Ciência do Solo**, v. 23, n. 4, p. 991–996, 1999.

GAJDA, A. M.; PRZEWŁOKA, B.; GAWRYJOŁEK, K. Changes in soil quality associated with tillage system applied. **International Agrophysics**, v. 27, n. 2, p. 133–141, 2013.

GOMES, Eduardo *et al.* Future land-use changes and its impacts on terrestrial ecosystem services: A review. **Science of The Total Environment**, v. 781, p. 146716, ago. 2021.

GUPTA, Renu *et al.* Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. **Saudi Journal of Biological Sciences**, v. 29, n. 1, p. 35–42, 2022.

HAVLIN, John L. Soil: fertility and nutrient management. *In*: **Landscape and Land Capacity**. Second edition. | Boca Raton: CRC Press, [2020] | Revised edition of: Encyclopedia of natural resources. [2014].: CRC Press, 2020. p. 251–265.

HOJJATI, Seyed Mohammad *et al.* Soil respiration and carbon stock responses to land use changes in the temperate forest of northern Iran. **Environmental Earth Sciences**, v. 82, n. 18, p. 413, 2023.

- LI, Peng *et al.* Global-scale no-tillage impacts on soil aggregates and associated carbon and nitrogen concentrations in croplands: A meta-analysis. **Science of The Total Environment**, v. 881, p. 163570, 2023.
- LI, Yuan *et al.* Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. **Soil Biology and Biochemistry**, v. 121, p. 50–58, 2018.

LIU, Bitao *et al.* Root traits and soil nutrient and carbon availability drive soil microbial diversity and composition in a northern temperate forest. **Plant and Soil**, v. 479, n. 1–2, p. 281–299, 2022.

LIU, Dong *et al.* 'Super-stable' interlayer organic carbon in soil clay minerals and its impact on soil carbon sequestration. **Science China Earth Sciences**, v. 67, n. 11, p. 3626–3630, 2024.

LIU, Wen-Xuan *et al.* Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. **Science of The Total Environment**, v. 847, p. 157518, 2022.

LOPES, André Alves Castro *et al.* Temporal variation and critical limits of microbial indicators in oxisols in the Cerrado, Brazil. **Geoderma Regional**, v. 12, p. 72–82, 2018.

MAYER, Mathias *et al.* Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. **Forest Ecology and Management**, v. 466, p. 118127, 2020.

MELO, Wanderley José de *et al.* Soil microbial biomass and enzyme activity in six Brazilian oxisols under cropland and native vegetation. **Bragantia**, v. 79, n. 4, p. 623–629, 2020.

MONREAL, C. M.; BERGSTROM, D. W. Soil enzymatic factors expressing the influence of land use, tillage system and texture on soil biochemical quality. **Canadian Journal of Soil Science**, v. 80, n. 3, p. 419–428, 2000.

NUNES, Luís Alfredo Pinheiro Leal *et al.* Microbiological attributes of yellow oxissol under different monocultures in the savanna region of Piauí state. **Bioscience Journal**, p. 1210–1218, 2018.

PIOTROWSKA-DŁUGOSZ, Anna *et al.* Enzymatic activity and functional diversity of soil microorganisms along the soil profile – A matter of soil depth and soil-forming processes. **Geoderma**, v. 416, p. 115779, 2022.

POEPLAU, Christopher. Grassland soil organic carbon stocks along management intensity and warming gradients. **Grass and Forage Science**, v. 76, n. 2, p. 186–195, 2021.

RAMOS, Herbert Moraes Moreira *et al.* Estoque de carbono de um neossolo quartzarênico sob diferentes usos. **Brazilian Journal of Animal and Environmental Research**, v. 6, n. 1, p. 910–922, 2023.

REICHERT, José Miguel *et al.* Estimating water retention and availability in cultivated soils of southern Brazil. **Geoderma Regional**, v. 21, n. e00277, 2020.

REN, Cheng *et al.* Soil nutrients drive microbial changes to alter surface soil aggregate stability in typical grasslands. **Journal of Soil Science and Plant Nutrition**, v. 22, n. 4, p. 4943–4959, 2022.

SANTORUFO, Lucia *et al.* Impact of anthropic activities on soil quality under different land uses. **International Journal of Environmental Research and Public Health**, v. 18, n. 16, p. 8423, 2021.

SANTOS, Humberto Gonçalves *et al.* **Sistema brasileiro de classificação de solos.** 5 ed. ed. Brasília, DF: Embrapa, 2018.

SCHNÜRER, Johan; ROSSWALL, Thomas. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. **Applied and Environmental Microbiology**, v. 43, n. 6, p. 1256–1261, 1982.

SINGH, Jay Shankar; GUPTA, Vijai Kumar. Soil microbial biomass: A key soil driver in management of ecosystem functioning. **Science of The Total Environment**, v. 634, p. 497–500, 2018.

SOUZA, Lucas Conceição; PROCÓPIO, Luciano. The profile of the soil microbiota in the Cerrado is influenced by land use. **Applied Microbiology and Biotechnology**, v. 105, n. 11, p. 4791–4803, 2021.

SPARLING, Graham P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. **Soil Research**, v. 30, n. 2, p. 195, 1992.

VINHAL-FREITAS, Isabel C. *et al.* Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. **Ecological Indicators**, v. 74, p. 182–190, 2017.