CHAPTER 4

SOIL CARBON STORAGE
SCENARIOS DRIVEN BY LAND
USE, LAND COVER, AND
MANAGEMENT CHANGES IN THE
STATE OF RIO DE JANEIRO

Fabiano C. Balieiro, Gustavo M. Vasques, Rachel B. Prado, Telmo B. Silveira
Filho, Monise A. F. Magalhdes




1. INTRODUCTION

Soil is a major reservoir of biosphere carbon (FAO, 2018). Forests around
the globe store, on average, 45% of carbon in the soil (up to 1 m deep)
(Pan et al., 2024). Based on data from the Brazilian National Forest
Inventory (NFI), the technical team at Embrapa Soils estimated that forest
soils accumulate 136 Tg (million tons) of carbon (Chapter 2 of this book),
which means that most of the carbon in these forests is in their soil. This
high proportion of carbon in the soil in the Atlantic Forest, when analyzed
in conjunction with the study of Lima et al. (2020), demonstrates that soil
is a resilient carbon reservoir. Despite significant losses of aboveground
biomass associated with biodiversity loss in recent decades, the biome’s
soil still maintains a large carbon reservoir.

Assuming that: At least 1/3 of the pasture lands in the state of Rio de
Janeiro are in an intermediate or severe state of degradation (Bolfe et
al., 2024); agricultural activities are carried out in rugged terrain; and
there is a significant deficit of Legally Protected Areas (~ 111 thousand
ha) and Reserves (~ 82 thousand ha) in the state of Rio de Janeiro (Ribeiro
et al.,, 2021), this chapter presents a theoretical exercise to assess the
(realistic) potential for carbon sequestration or storage in the soils of Rio
de Janeiro, if restoration actions or incentives for reforestation and good
agricultural practices were promoted, as well as economic compensation
mechanisms implemented, for each administrative region.

2. SOIL CARBON: CURRENT AND REACHABLE STOCKS

The potential for carbon accumulation or storage in soils in
agroecosystems is difficult to estimate, considering that these
environments can store more carbon than native vegetation, which is
often used as a storage reference in carbon sequestration projects.

The concept of reachable soil carbon (C-att) (Ingram; Fernandes, 2001)
has been adopted as the soil’s capacity to gain carbon if carbon input
is unrestricted, and plant and soil management increases carbon flow
and stabilization in the finer soil fractions. In other words, the concept
implicitly implies the upper limits that certain soils and land use/
land cover (LULC) classes can achieve through the adoption of better
management practices. In other words, soils with low carbon stocks,
smaller than those considered “reachable”, would provide greater
opportunities for carbon sequestration.

The term “reachable carbon” is associated with the finest soil fraction
(<60 um or 0.060 mm), also called mineral-associated organic matter
(MAOM) (Cambardella; Elliot, 1992; Six et al., 2002; Cotrufo et al.,
2019), which is the fraction of soil organic matter where most of the
soil carbon stock is found (Feller and Beare, 1997; Cotrufo et al., 2019).
Therefore, the same approach by Karunaratne et al. (2024) was used
in the present study to estimate the reachable carbon deficit in the
soils of Rio de Janeiro state.

According to this approach, the difference between the carbon stock (Mg ha?)
in a given land use and its 90" percentile for the state’s different
administrative regions illustrates the reachable carbon deficit, which
indirectly expresses the soil’s carbon sequestration potential, and can
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be used to guide efforts and policies aimed atincreasing the stock of this
natural asset and fostering markets or other mechanisms for economic
compensation (Giorgiou et al., 2022; Karunaratne et al.,, 2024). Given
the limitations of the adapted methodology and the dataset used, it is
worth noting that the C-att value defines only a threshold value, not the
carbon saturation point for the state’s soils. In other words, higher stock
values can be achieved in different regions.

FIGURE 1. Theoretical relationship between total organic carbon stock (Mg ha?) or carbon stock in the fine fraction (FF) of the soil
(mg g?) (y-axis), and the FF (clay + silt) content of the soil (g kg?) (x-axis)

The solid and dotted lines indicate
the overall relationship between the
soil FF content and the current
organic carbon stock (solid line),
and reachable organic carbon stock
(dotted line). The reachable carbon
stock deficit is indicated by the orange
arrows.

C stock in FF (mg g)
C stock in soil (Mg ha)

v

Soil fine fraction content (clay + Source: Adapted from Karunaratne et al. (2024).
silt) - FF (g kg™)
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The 90" percentile, adopted as a theoretical reference, demonstrates,
for each administrative macro-region, the reachable for each LULC
class (in this case, pasture and forest formation) representative of the
region. Although a recent concept, derived from studies that consider
finer fractions of soil organic matter (Karunaratne et al., 2024), it clearly
illustrates that soil carbon stocks can be increased to certain real values,

in a more viable accumulation scenario, both in time and space. Table 1
summarizes the descriptive statistics of the soil carbon stock (0-50 cm)
and provides an estimate of the reachable carbon deficit per hectare and
the carbon sequestration potential for each region of the state.

TABLE 1. Average and 90" percentile values of soil carbon stock (Mg ha) at 0-50 cm in the main land use/land cover classes from the Brazilian

National Forest Inventory in the state of Rio de Janeiro

Costal Low Lands Forest formation 83,09 127,76 22 44 57 ++
Costal Low Lands Pasture 67,88 91,32 9 23,44 +

Central-South Forest formation 91,24 195,25 10 104,01 +++
Southeast Coast Forest formation 86,44 110,69 4 24,25 ++
Metropolitan Forest formation 87,30 114,46 14 27,16 ++
Metropolitan Pasture 60,13 90,03 4 29,90 i
Paraiba River Valley Forest formation 103,27 126,85 15 23,58 ++
North Forest formation 99,46 166,56 17 67,10 +++
North Pasture 84,62 144,81 14 60,19 +++
Northwest Forest formation 107,01 194,56 7 87,55 +H+
Northwest Pasture 64,67 95,19 16 25,52 ++
Uplands Forest formation 115,61 184,33 19 68,72 +++
Uplands Pasture 100,02 157,64 5 57,62 ++

\_ J

C sequestration potential (Reachable C deficit / 30 years): (+) 0.0-1.0 Mg ha' year?; (++) 1.0-2.0 Mg ha' year!; and (+++) 2.0 -3.0 Mg ha* year™.
Source: Authors.
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3. SOIL CARBON STOCK SCENARIOS IN RIO DE JANEIRO:
METHODOLOGICAL ASPECTS

Carbon stock values were measured via dry combustion in soil samples 2014), were used to generate soil carbon stock scenarios, as a function
collected at 0-20 and 30-50 cm during the first phase of the NFI (SFB, of LULC, for each administrative region of the state, considering their
2018) in the Embrapa Soils laboratories. These data, together with a suitability and historical agricultural practice, according to the framework
harmonized LULC map (MapBiomas, 2016) and maps of the administra- presented in Figure 2.

tive regions and municipalities of the state of Rio de Janeiro (CEPERJ,

FIGURE 2. Framework for generating future scenarios (FS) of soil
carbon stocks for pasture areas and forest formations in the
administrative regions of Rio de Janeiro

FS1 - Increase in soil carbon (25%) in
relation to the C achievable for pasture

FS2 - Increase in soil carbon (50%) in
relation to the C achievable for pasture

FS3 - Increase in soil carbon (100%) in
relation to the C achievable for pasture

Fonte: Authors.
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Due to the methodology adopted by the Brazilian Forest Service, it was
necessary to integrate the carbon stock values at 0-20 and 30-50 cm for the
0-50 cm layer, in Mg ha', using the following equation:

C stock (0-50 cm) =[C stock (0-20 cm) + C stock (30-50 cm)] / 40 * 50

Using an Excel spreadsheet, the following were calculated: mean,
minimum, 90" percentile and number of points sampled in the NFI for
the LULC class in each administrative region (n), based on the carbon
stock data (0-50 cm) obtained in the 168 NFI sampling points, for
each land use/land cover and administrative region. The result of this
analysis supported the generation of the scenarios, as follows:

« Baseline C value for LULC classes and regions: the average
carbon stocks (Mg ha?) for LULC classes and administrative
regions, considered real stocks, that is, those that best represent
the soil carbon stock values in the LULC classes in that region;

« Reachable Cvalue for LULC classes and regions: the carbon stock
values (Mg ha?) of the 90" percentile of the most representative
LULCclassesinthe NFI (forests and pastures), used asareference for
how much carbon can realistically be stored if good management
and conservation practices are adopted; and

« Reachable C deficit for CUCTs and regions: difference between
the reachable and the baseline C stock values, by CUCT and
administrative region (the greater the difference between the
baseline and reachable C stock for a given LULC, the greater
the reachable carbon deficit, that is, the greater the soil carbon
sequestration potential for that LULC and administrative region).

Using this data, it was possible to estimate scenarios for increasing soil
carbon equivalent to 25, 50, and 100% of the carbon deficit up to the
reachable C value. Again, these values define only a limit, not the carbon
saturation value for the soils of Rio de Janeiro state, and can be considered
conservative estimates of the carbon sequestration potential of Rio de
Janeiro soils. Based on these estimated values, maps were derived for the
following future scenarios (FS) for soil C stock:

« Business as usual: maintaining baseline soil C stock (average C
stock) values in forest formations and pastures for 30 years;

« FS1: baseline (average) carbon stock + increase of 25% of the
reachable carbon deficit in pastures in 30 years;

« FS2: baseline (average) carbon stock + increase of 50% of the
reachable carbon deficit in pastures in 30 years;

« FS3: baseline (average) carbon stock + increase of 100% of the
reachable carbon deficit in pastures in 30 years;

« FS4: baseline (average) carbon stock + increase of 25% of the
reachable carbon deficit in forest formations in 30 years;

« FS5: baseline (average) carbon stock + increase of 50% of the
reachable carbon deficit in pastures in forest formations in 30

years;

« FS6: baseline (average) carbon stock + increase of 100% of the
reachable carbon deficit in forest formations in 30 years.
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In addition, a complementary theoretical exercise was conducted,
focusing on the state’s deficit of Legal Reserve areas. To contribute
to estimates of the potential for soil carbon accumulation through
restoration actions, the difference between the baseline carbon
stock values (in Mg ha') of forest formations and pastures was
calculated for each region, assuming the conversion from pastures
with low productivity potential to forest. The potential for soil carbon
accumulation in these converted areas, in Mg ha, was then calculated

for the conversion of 25% and 50% of the pasture areas in each region.
The time required to achieve the reference values is approximately 20
to 30 years of restoration.

4. RESULTS AND DISCUSSION

In general, regardless of the administrative region, higher carbon
stocks at 0-50 cm were observed in forest soils (~96.7 Mg ha') than in

TABLE 2. Total soil carbon stock at 0-50 cm (Mg) by administrative region of the Rio de Janeiro state, in pasture and forest formations, estimated by
the different scenarios

Costal Low Lands| Forest formation 85.095,92 5.776.311,19 948.181,31
Costal Low Lands| Pasture 169.837,39 11.528.562,00 995.247,10 12.523.809,10 1.990.494,21 13.519.056,21 3.980.988,41 15.509.550,41
Central-South | Forest formation 89.829,35 8.196.029,77 2.335.787,63
(s:g:g‘ea“ Forest formation 169.216,04 14.627.034,87 1.025.872,21
Metropolitan Forest formation 211.661,93 18.478.086,15 1.437.184,47
Metropolitan | Pasture 172.053,45 10.345.574,21 1.286.099,57 11.631.673,78 2.572.199,14 12.917.773,35 5.144.398,29 15.489.972,50
;?Vf:;t\’lz lley Forest formation 205.639,64 21.236.406,18 1.212.245,71
North Forest formation 123.496,55 12.282.967,24 2.071.654,69
North Pasture 478.299,19 40.473.677,66 7.197.207,09 47.670.884,75 14.394.414,19 54.868.091,85 28.788.828,39 69.262.506,05
Northwest Forest formation 66.372,10 7.102.571,31 1.452.738,34
Northwest Pasture 408.099,30 26.391.781,70 2.603.673,53 28.995.455,23 5.207.347,06 31.599.128,76 10.414.694,13 36.806.475,83
Uplands Forest formation 300.763,55 34.771.274,71 5.167.117,89
Qplands Pasture 240.792,07 24.084.022,80 3.468.609,76 27.552.632,56 6.937.219,53 31.021.242,33 13.874.439,05 37.958.461,85
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pasture soils (~78.9 Mg ha'), demonstrating the importance of forest
preservation and restoration not only for carbon conservation and
biodiversity, but also for other ecosystem services provided by forests,
including food and fiber production, nutrient cycling, and water
regulation. These results are corroborated by other authors (Vieira
et al.,, 2011; Gomes et al., 2014), who demonstrate that typic forested
biomes store more carbon in the soil than other land uses.

On the other hand, both pastures and other LULC provide higher carbon
sequestration rates if good agricultural and management practices are

6.724.492,50 1.896.362,62 7.672.673,81 3.792.725,25 9.569.036,44
10.531.817,40 4.671.575,27 12.867.605,04 9.343.150,55 17.539.180,32
15.652.907,14 2.051.744,54 16.678.779,41 4.103.489,07 18.730.523,94
19.915.270,62 2.874.368,96 21.352.455,11 5.748.737,91 24.226.824,06
22.448.651,89 2.424.491,42 23.660.897,60 4.848.982,84 26.085.389,02
14.354.621,93 4.143.309,38 16.426.276,62 8.286.618,75 20.569.585,99
8.555.309,65 2.905.476,68 10.008.047,99 5.810.953,36 12.913.524,67
39.938.392,60 10.334.235,78 45.105.510,49 20.668.471,57 55.439.746,28

planned ina coordinated manner and properly executed. It is noteworthy
that Assad et al. (2013) reported, in a meta-analysis carried out on
pastures in the Atlantic Forest biome, for the 0-30 cm layer, carbon stocks
compatible with those found in the present study of 50 Mg ha™.

According to the proposed scenarios FS1, FS2 and FS3, of increases of
25,50 and 100%, respectively, of the reachable C deficit in pastures, the
carbon stocks of the state’s pastures can be increased by 13.57 to 54.26
Tg (million tons) (or 49.66 to 198.60 Tg CO2eq) through the adoption
of good soil management and conservation practices, as well as the
integration of livestock systems with crops and forestry components
in the regions of Costal Lowlands, Metropolitan, North, Northwest
and Uplands, where data were available for the estimates. On the
other hand, the soil C increases in forest formations for all regions of
the state were estimated from 15.65 Tg (increase of 25% of the C-att
deficit) to 62.60 Tg (100% of the C-att deficit), made possible by the
adoption of efficient forest restoration techniques, such as active or
assisted restoration, resulting in multiple benefits, both for biodiversity
conservation and soil carbon sequestration.

Source: Authors.
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The results show that the regions with the largest reachable carbon
deficits and, therefore, the greatest potential for carbon accumulation,
under pastures, are the North region (with 53% of the state’s potential),
followed by the Uplands (25%) and Northwest (19%) regions. The
regions with the greatest potential for carbon gain in forest formations
areas are the Uplands (33% of the estimated total), the Central-South
(15%), and the North (13%) regions. These results are consistent with
the history of intense land use in these regions. However, the lack of
sampling points under pastures in the Paraiba River Valley, Southeast
Coast, and Central-South regions limited applying the scenarios of soil
Cincrease in pastures in these regions.

Figure 3 presents the maps of the soil C stock baselines for pasture
and forest formations, respectively, and under the six future scenarios
(FS1to FS6), indicating the regions where the greatest and smallest soil
carbon gains could occur in pasture and forest formation areas. Such
scenarios could come true if good agricultural and livestock practices,
soil and water conservation policies, and economic incentives were
included as cornerstones in the the state’s agro-environmental
planning. The color intensities in the different regions highlight what
was previously mentioned: the North, Northwest, and Uplands regions
have the greatest potential for carbon sequestration in pastures should
they be better managed or combined with crops or tree plantations;
and the more central regions, such as Uplands and Central-South, have
high potential for soil carbon gain in forest formations through assisted
or active restoration.
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It is important to emphasize that the government has a duty, through
its public policies and incentives, to support rural producers in building
sustainable rural landscapes throughout the Rio de Janeiro state. In
this context, the increase in soil carbon stocks in Rio de Janeiro, as
envisioned in this document, will be associated with the provision of
multiple ecosystem services by the soil. Carbon sequestration is just
one of them, and producers can also benefit from the C credit market
if they find it interesting. Undoubtedly, those farmers who already
practice regenerative agriculture or livestock farming, and whose farms
have soils with high levels of organic matter should receive economic
or fiscal incentives for continuing managing their soils sustainably,
avoiding the loss of stored carbon, benefiting the society as a whole.



FIGURE 3A. Future soil C stock scenarios for the administrative regions of Rio de Janeiro state: Business as usual (C stock baselines ~ average

C stocks) for pastures (A), and forests (B); C stock baselines (average C stocks) +increases of 25 (FS1), 50 (FS2), and 100% (FS3) of the reachable

carbon deficit in pastures (C, D, and E, respectively); and C stock baselines (average C stocks) + increases of 25 (FS4), 50 (FS5), and 100% (FS6) of

the reachable carbon deficit in forest formations (F, G, and H, respectively)
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FIGURE 3B. Future soil C stock scenarios for the administrative regions of Rio de Janeiro state: Business as usual (C stock baselines ~ average
C stocks) for pastures (A), and forests (B); C stock baselines (average C stocks) +increases of 25 (FS1), 50 (FS2), and 100% (FS3) of the reachable
carbon deficit in pastures (C, D, and E, respectively); and C stock baselines (average C stocks) + increases of 25 (FS4), 50 (FS5), and 100% (FS6) of
the reachable carbon deficit in forest formations (F, G, and H, respectively)
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FIGURE 3C. Future soil C stock scenarios for the administrative regions of Rio de Janeiro state: Business as usual (C stock baselines ~ average

C stocks) for pastures (A), and forests (B); C stock baselines (average C stocks) +increases of 25 (FS1), 50 (FS2), and 100% (FS3) of the reachable
carbon deficit in pastures (C, D, and E, respectively); and C stock baselines (average C stocks) + increases of 25 (FS4), 50 (FS5), and 100% (FS6) of

the reachable carbon deficit in forest formations (F, G, and H, respectively)
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FIGURE 3D. Future soil C stock scenarios for the administrative regions of Rio de Janeiro state: Business as usual (C stock baselines ~ average
C stocks) for pastures (A), and forests (B); C stock baselines (average C stocks) +increases of 25 (FS1), 50 (FS2), and 100% (FS3) of the reachable
carbon deficit in pastures (C, D, and E, respectively); and C stock baselines (average C stocks) + increases of 25 (FS4), 50 (FS5), and 100% (FS6) of
the reachable carbon deficit in forest formations (F, G, and H, respectively)
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FIGURE 3E. Future soil C stock scenarios for the administrative regions of Rio de Janeiro state: Business as usual (C stock baselines ~ average
C stocks) for pastures (A), and forests (B); C stock baselines (average C stocks) +increases of 25 (FS1), 50 (FS2), and 100% (FS3) of the reachable

carbon deficit in pastures (C, D, and E, respectively); and C stock baselines (average C stocks) + increases of 25 (FS4), 50 (FS5), and 100% (FS6) of

the reachable carbon deficit in forest formations (F, G, and H, respectively)
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FIGURE 3F. Future soil C stock scenarios for the administrative regions of Rio de Janeiro state: Business as usual (C stock baselines ~ average
C stocks) for pastures (A), and forests (B); C stock baselines (average C stocks) +increases of 25 (FS1), 50 (FS2), and 100% (FS3) of the reachable
carbon deficit in pastures (C, D, and E, respectively); and C stock baselines (average C stocks) + increases of 25 (FS4), 50 (FS5), and 100% (FS6) of
the reachable carbon deficit in forest formations (F, G, and H, respectively)
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FIGURE 3G. Future soil C stock scenarios for the administrative regions of Rio de Janeiro state: Business as usual (C stock baselines ~ average
C stocks) for pastures (A), and forests (B); C stock baselines (average C stocks) +increases of 25 (FS1), 50 (FS2), and 100% (FS3) of the reachable
carbon deficit in pastures (C, D, and E, respectively); and C stock baselines (average C stocks) + increases of 25 (FS4), 50 (FS5), and 100% (FS6) of
the reachable carbon deficit in forest formations (F, G, and H, respectively)
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FIGURE 3H. Future soil C stock scenarios for the administrative regions of Rio de Janeiro state: Business as usual (C stock baselines ~ average
C stocks) for pastures (A), and forests (B); C stock baselines (average C stocks) +increases of 25 (FS1), 50 (FS2), and 100% (FS3) of the reachable
carbon deficit in pastures (C, D, and E, respectively); and C stock baselines (average C stocks) + increases of 25 (FS4), 50 (FS5), and 100% (FS6) of
the reachable carbon deficit in forest formations (F, G, and H, respectively)
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5. EFFORTS TO INCREASE SOIL CARBON STOCKS
IN RIO DE JANEIRO STATE

Rural property planning is the foundation for building sustainable
landscapes, increasing soil organic matter levels, and, consequently,
increasing the supply of soil ecosystem services. The principles of
sustainable, conservation, agroecological, or regenerative agriculture are
widely known and should form the foundation for building healthy soils
with high levels of organic matter. Practices such as contour planting,
crop rotation or intercropping, no-till farming, green manuring, and
integrated pest and waste management should be incorporated into Rio
de Janeiro’s production systems, regardless of the region.

Establishing a relationship of trust with farmers and local and state
governments is essential to establishing and consolidating compensation
mechanisms for sustainable land use in Rio de Janeiro, including C offset
markets. Some challenges to consolidating soil carbon-based offset
markets include: i) the lack of regulations at different levels; ii) scattered and
contradictory information in the academic and non-academic literature,
which often hinder rather than contribute to the discussion on carbon
market regulation; iii) inadequate project timelines, which inspire distrust in
both sellers and buyers; iv) the lack of information and training on the topic;
v) inefficient communication among stakeholders; and vi) the difficulty of
operationalization, and the high cost of monitoring and certifying soil carbon
gains.

Furthermore, the production decline in rural areas, resulting from the
low level of productivity, the difficulty in accessing technical assistance
and rural extension, and the limited financial and marketing support,
will require joint efforts in various spheres in favor of establishing a new
development model for these areas (Vidal et al., 2020).

Multi-activity, with incentives for developing specific niches (such as
housing for leisure, rest, and rural tourism), the production of value-added
goods (organic and artisanal), and traditional productive activities
(community- and family-based), can also benefit from the different
compensation mechanisms for the conservationist use of soil, forests
and biodiversity, with gains that extend to the entire society, going
beyond the limits of the rural landscape.

Public policies, such as the Brazilian Low Carbon Agriculture Plan
(Plano de Agricultura de Baixo Carbono), Organic Agriculture
Program (Programa de Agricultura Organica), and National Water
Resources Policy (Politica Nacional de Recursos Hidricos), as well as
environmental (or economic) compensation mechanisms that support
farmers who adopt sustainable production practices, with favorable
credit conditions or in the form of compensatory incentives, must be
aligned with social demands and conducted with the least political
interference.

To this end, and to overcome these challenges, the State Secretariat
for Environment and Sustainability (Secretaria de Estado de Ambiente
e Sustentabilidade), the State Secretariat for Agriculture, Fisheries, and
Supply (Secretaria de Estado de Agricultura, Pesca e Abastecimento),
and the Technical Assistance and Rural Extension Company of Rio de
Janeiro (Empresa de Assisténcia Técnica e Extensao Rural do Rio de
Janeiro) are working collaboratively to develop the Agroecological
Transition Assessment Instrument (Instrumento de Avaliacdo da
Transicdo Agroecologica). This instrument brings together a set of
methodological tools to characterize and classify the different phases
of the agroecological transition of agroecosystems in the Rio de Janeiro
state, enabling the development of a participatory transition plan,
developed by the Social Nucleus for Agroecosystem Management
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(Nucleo Social de Gestdo do Agroecossistema) and the team of
extension workers responsible for monitoring the transition (SEAS,
2025). These actions are supported by the following legal instruments:

1) Technical Note SEAS/SEAPPA/EMATER-RIO n. 01/2024,
instrument for assessing the agroecological transition (IATA) and
preparing the agroecological transition plan in agroecosystems
within the state of Rio de Janeiro (Rio de Janeiro, 2024);

2) Joint Resolution SEAPPA/SEAS/EMATER-RIO/INEA n. 16, of
November 26, 2024, which establishes criteria and procedures for
recognizing agroecological transition in the production unit, and
establishes a methodology for classifying the transition phases of
agroecological production in agroecosystems within the state of
Rio de Janeiro (Rio de Janeiro, 2024).

Along these lines, the State Secretariat for Agriculture, Fisheries, and
SupplyandthelLPFNetwork (Crop-Livestock-Forest Integration Network),
a public-private entity, signed a Memorandum of Understanding in May
2025 to strengthen sustainable agriculture in the state of Rio de Janeiro
through the implementation of integrated, low-carbon production
systems. The work plan outlined in the Technical Cooperation Agreement
will involve several teaching, research and extension institutions in the
state, as well as state decision-makers, and include technical training,
technical dissemination events, territorial assessments, and scientific
research focused on the state’s needs.

Finally, the capacity and potential of conservation agriculture for

improving soil health and, consequently, productivity, including
enabling the delivery of multiple ecosystem services, are noteworthy.
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Rio de Janeiro’s soil has the capacity to store significant amounts of
carbon, as demonstrated by robust estimates generated from real
data collected using a consistent sampling and carbon analysis
methodology.

Embrapa Solos will continue working with the NFI samples to obtain
more accurate estimates of reachable carbon in the different regions
of the state. The data from the first NFI phase obtained so far already
provide a regional overview of the potential of agriculture and the
forestry sector to sequester carbon in the soil in the context of the
farmers’ adaptation to climate change, recognizing the externalities
generated in the field by the adoption of conservation and sustainable
practices. The carbon stored in the soil, resulting from good
production and soil conservation practices, will certainly increase the
farmers’ resilience in the face of ongoing climate change, and benefit
the both rural and urban populations through the multiple goods and
services generated on their farms.
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