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Abstract

Land use and land cover (LULC) changes driven by agricultural and livestock expansion
pose significant threats to the Brazilian savanna (Cerrado). This study aimed to analyze,
map, and simulate LULC changes in the southern mesoregion of Maranhao State by gener-
ating geospatial scenarios projected through 2030. LULC changes between 2015 and 2020
were analyzed using Landsat images classified with the Random Forest machine learning
algorithm. A spatial model based on cellular automata was employed to simulate land use
and land cover scenarios for the year 2030. When comparing the simulated map with the
reference map, an overall accuracy of 70.28% and a Kappa index of 0.608 were observed.
Results revealed a decrease in native savanna and grassland areas, with a corresponding
increase in agricultural and pasturelands, notably in municipalities such as Balsas, Ri-
achao, Tasso Fragoso, Carolina and Porto Franco. The 2030 simulation predicts continued
agricultural expansion and a potential reduction of approximately 19% in native Cerrado
vegetation cover, highlighting municipalities of Campestre do Maranhao, Porto Franco, Sao
Jodo do Paraiso, Feira Nova, Estreito, Balsas, Tasso Fragoso and Carolina. These findings
underscore the value of integrating remote sensing and spatial modeling techniques within
the framework of Geomatics to support environmental monitoring and management of
land-use dynamics, including expansion, contraction, diversification, and agricultural
intensification. This approach provides critical insights into anthropogenic impacts on
sensitive ecosystems, informing sustainable planning in tropical savanna regions.

Keywords: remote sensing; machine learning; GIS; Landsat; Cerrado; Brazil

1. Introduction

Land use and land cover (LULC) changes are considered one of the main consequences
of human activities on geographic space, especially due to the rapid pace at which they
occur and the associated biophysical, political, social, and economic impacts. These pro-
cesses can not only affect local areas but also extend to regional and global scales [1-3].
One of the most effective ways to analyze and identify land use and land cover changes is
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through the classification of remote sensing imagery—an important tool for monitoring
transformations on the Earth’s surface. This method allows for systematic and reliable
detection of major spatial changes over time, particularly in large territorial environments,
and at a relatively low cost.

Another significant application of land cover information is the use of dynamic models
to create scenarios of land use and cover. This cartographic technique focuses on repre-
senting dynamic processes and identifying potential impacts, whether associated with
anthropogenic activities or not. It aids in implementing environmental policies, guiding
decision-making, and mitigating potential negative consequences of human actions. High-
lights that these models are primarily based on the concept of cellular automata, which
involves a simulation framework where space is represented as a grid of cells, and a set of
transition rules determines each cell’s attributes, taking into account the attributes of its
neighboring cells [4].

A dynamic model is defined as a representation of real-world processes or phenomena
that seeks to overcome the limitations of static, two-dimensional representations by incor-
porating spatial patterns that change over time [5]. Dynamic modeling aims to understand
the causal mechanisms driving the development of various systems, thereby enabling
the prediction of their likely evolution, the testing of hypotheses, and the exploration of
potential trajectories of spatial change [6]. Dynamic spatial models describe the evolution
of a system’s spatial patterns over time and must address the following questions [7,8]:
Which environmental and cultural variables contribute to explaining the phenomenon?
What are the underlying ecological and socio-economic processes driving the phenomenon?
How does the process evolve? Where do these phenomena occur? These key questions
align with the classical “Why,” “When,” and “Where.” A model capable of answering these
questions can quantitatively describe a phenomenon and predict its evolution, integrating
its temporal and spatial scales.

It is essential to emphasize that LULC dynamic models do not possess the ability to
predict the future. Instead, they provide, with a certain level of confidence, indications
of a phenomenon’s behavior based on predefined parameters, characteristics, or known
patterns. Generally, these models consider various factors to simulate the dynamics of
change, enabling the establishment of measures for land-use planning [9-13].

The Cerrado, Brazil’s second-largest biome, accounts for 35% of the country’s territory,
covering approximately 200 million hectares and spanning the boundaries of 10 states.
It is considered strategic from ecological, economic, social, and cultural perspectives,
primarily due to its environmental characteristics, biodiversity, and ecosystem services.
The biome contains more than 5% of global biodiversity, featuring a rich flora with over
12,000 plant species, as well as a wide variety of mammals and insects. Another critical
characteristic of the Cerrado is its high capacity for hydrological regulation and mainte-
nance, hosting key recharge areas for significant Brazilian river basins [14].

Despite its importance in maintaining water resources and biodiversity, only 13.29%
of the Cerrado’s area is protected by conservation units, Indigenous lands, or quilombola
territories, with merely 5.7% of the biome being fully protected by these mechanisms [13,14].
This limited protection has directly contributed to the high rates of native vegetation loss,
driven mainly by the rapid expansion of agricultural frontiers [15-17].

According to mappings by [16], approximately 45% of this biome has been anthropized,
a consequence of the rapid advance of the modern agricultural frontier into the central
portion of the country, a factor that has placed the Cerrado on the list of global biodiversity
conservation hotspots. Currently, this advance is occurring in the states that comprise the
MATOPIBA region [18,19]. Considered the last frontier of modern national agribusiness
expansion, with an area of approximately 73.0 million hectares—35% of the total Cerrado
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territory—it includes municipalities in Maranhao, Tocantins, Piaui, and Bahia, responsible
for a significant share of national commodity production [19-22].

In the state of Maranhao, the Cerrado biome covers an area of 212,518 km? distributed
across 119 municipalities, and has shown high rates of natural vegetation conversion,
primarily for agriculture and livestock [12,13]. Between 2015 and 2020 alone, the state
lost approximately 835,000 hectares of Cerrado vegetation, with the Southern Maranhao
Mesoregion taking a leading role. Covering an area of approximately 67,600 km?—31% of
the entire Cerrado in Maranhao—this region is characterized as the state’s main agricultural
production hub, accounting for about 30% of Maranhao’s Gross Domestic Product (GDP).
It is also recognized as one of the principal areas for agricultural commodity production
both nationally and globally [13,23].

Although initiated in the 1960s, the process of modern agribusiness expansion in the
area is considered recent, gaining intensity from the 1990s. During this period, municipali-
ties within the region, particularly Balsas, became part of what can be referred to as “pro-
grams and policies for the expansion and modernization of Brazilian agriculture” [24,25].
Notably, PRODECER III and the North-South Export Corridor (later designated as the
North Export Corridor) were fundamental in consolidating Southern Maranhao within
the global agricultural commodity production network. This shift resulted in profound
transformations in the area’s productive structure, which was previously based on livestock
and small-scale farming, primarily rice cultivation. It transitioned to a highly mecha-
nized production system, predominantly featuring soybean monoculture, along with corn,
sugarcane, and cotton [26-28].

As a result, the area has undergone significant transformations in land cover and use,
primarily due to the high rate of natural vegetation loss. The municipalities within the
Southern Maranhao Mesoregion accounted for approximately 7.11% of the total deforested
area in the Cerrado biome between 2015 and 2022. During this period, approximately
650,000 hectares of vegetation were converted to anthropic land classes, positioning the
region among the leaders in vegetation loss. Notably, the municipality of Balsas has led the
list of natural vegetation loss in the Cerrado since 2020 [29]. On the other hand, the area still
holds a vast amount of land with natural vegetation legally available for conversion, placing
it at the center of discussions on environmental conservation, economic development, and
natural resource protection [30-32].

The presence of unconverted areas in the region can be a decisive factor in agricultural
expansion, particularly because they retain a significant coverage of native vegetation.
Another important point is that, unlike the Amazon, where legal protection reaches 80%,
the Cerrado’s Legal Reserve requirement is only 35%, according to the Forest Code (Law No.
12.651/2012). This makes the Cerrado more vulnerable to land conversion, as it increases
the availability of areas legally suitable for agricultural use. Furthermore, the emergence of
production incentive public programs and policies favoring agribusiness exert additional
pressure on these remaining areas, reinforcing the perception of the region as a strategic
agricultural frontier. Thus, the combination of lower legal protection and the presence of
unconverted areas promote agricultural expansion, while simultaneously jeopardizing the
conservation of the biome’s biodiversity and ecosystem services.

Given the above, simulating trends in the loss of natural Cerrado vegetation is of
paramount importance for the geoenvironmental planning of this region, as it corresponds
to a priority area for conservation [31,33], primarily due to its importance in maintaining
biodiversity, ecosystem services, and water resources in the state of Maranhao [13,17,18].
From this perspective, this study aims to simulate future land use and land cover sce-
narios for the Southern Maranhao Mesoregion by projecting observed changes between
2015 (t1) and 2020 (t2). The study specifically focuses on analyzing landscape dynamics in



Geomatics 2025, 5, 65

4 0f 31

municipalities affected by the expansion of mechanized agriculture within the Maranhao
Cerrado, a region exhibiting high susceptibility to desertification processes, particularly
in the eastern and southern mesoregions [34]. Using a combination of remote sensing,
Random Forest classification, and cellular automata-based spatial modeling, this research
offers a novel methodological approach to quantifying and predicting land use and land
cover transformations. The outcomes provide detailed insights into the spatial patterns and
trends of natural Cerrado vegetation loss, supporting targeted land management strategies
and informing policy decisions (public and private) aimed at sustainable resource use in
the region of the Maranhao state, Brazil.

2. Materials and Methods
2.1. Study Area Location

The study area comprises the Southern Maranhao Mesoregion (Figure 1), located in
the southern portion of the state of Maranhdo. It covers approximately 67,693.40 km?
and consists of the municipalities of Alto Parnaiba, Balsas, Benedito Leite, Campestre do
Maranhao, Carolina, Estreito, Feira Nova do Maranhao, Fortaleza dos Nogueiras, Loreto,
Nova Colinas, Porto Franco, Riachao, Sambaiba, Sao Domingos do Azeitao, Sao Félix de
Balsas, Sao Joao do Paraiso, Sao Pedro dos Crentes, Sao Raimundo das Mangabeiras, and
Tasso Fragoso.
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Figure 1. Location of the Southern Maranhao State Mesoregion, Brazil. Source: the authors.

The area is bounded to the west and south by the municipalities of Aguiarnépolis,
Babagulandia, Barra do Ouro, Campos Lindos, Darcinépolis, Filadélfia, Goiatins, Lizarda,
Mateiros, and Palmeiras do Tocantins, belonging to the state of Tocantins; to the east by
the state of Piaui; and to the north by the Northern Maranhao, Central Maranhao, and
Eastern Maranhao mesoregions. With a total population of 332,539 inhabitants, it has a low
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population density of 5 inhabitants/km?, where 87% of the population resides in urban
areas. The main economic activity is mechanized agriculture for soybean production, with
the municipality of Balsas as the regional economic hub.

Balsas alone accounts for 3.5% of the GDP of the state of Maranhao and concentrates
the provision of key financial, logistical, industrial, and commercial services. This scenario
is closely linked to the agricultural production dynamics of Balsas, which, along with neigh-
boring municipalities such as Tasso Fragoso, Riachao, and Sao Raimundo das Mangabeiras,
has the largest agricultural production area in the state, a factor that also fosters the devel-
opment of other economic activities directly related to the agricultural sector.

The choice of this area was based on its regional and national relevance, as it represents
the last frontier of agricultural expansion in the Brazilian Cerrado. The region still has
a significant amount of land available for cultivation and plays a fundamental role in
biodiversity conservation [33,34]. Moreover, its social, economic, and environmental
importance transcends national boundaries, since these savanna areas harbor a considerable
share of global biodiversity. From a scientific perspective, this context reinforces the need
for studies that assess the degree of Cerrado degradation and its potential future impacts.

Regarding the characteristics that shape the local landscape, it has a predominantly
sedimentary geological foundation, composed of partially silicified sandstones with layers
of siltstones and shales, flint, and other more durable cementing compounds, interspersed
with limestone and more erosion-prone sandstones, as well as petromictic conglomerates.
These are overlaid on sequences of sandstones of varying grain sizes, limestones, siltstones,
conglomerates, shales, schists, and argillites [35]. In terms of altimetric conditions, the
Southern Maranhao Mesoregion presents an altimetric range of 684 m, with an average
elevation of 368 m. The lowest altitudes are around 123 m, while the highest reach 814 m.
The topography is predominantly flat, interspersed with a set of steep residual tabular
features—mesas, plateaus, and tablelands—and low hills, generally with flat tops and
varying altitudes. These are overlaid by wide, entrenched valleys, with notable areas of
depressions and broad fluvial plains of the Balsas, Tocantins, Parnaiba, and other rivers [35].

The soils of the microregion within the Southern Maranhao Mesoregion are associated
with sedimentary lithology, predominantly comprising Latosols and Neosols, with lesser
proportions of Argisols, Nitisols, Plinthosols, Gleisols, and Luvissols [35]. The prevailing
climate is tropical subhumid, characterized by two well-defined seasons: a dry season
from July to September and a rainy season from October to March. Precipitation ranges
from moderate to high, with annual totals between 800 and 1600 mm, a summer potential
evapotranspiration rate of 24.6%, and relative humidity above 70%. The region experiences
a water deficit of 467 mm from July to December, followed by water replenishment starting
in January, with a surplus of 660 mm concentrated between October and March [36].

The interaction between climatic, geological, pedological, and topographic factors
conditions the development of vegetation typical of the Cerrado biome. This vegetation
is characterized by trees with twisted trunks and stems, large leaves adapted to climatic
seasonality, and soils that are generally poor, deep, and rich in aluminum. The vegetation
also exhibits significant adaptation to the natural fire dynamics to which the region is
subjected [35,36]. The biome is classified into three distinct phytophysiognomies: (i) forest
formations, (ii) savanna formations, and (iii) grassland formations.

2.2. Methodological Procedures

Figure 2 presents the methodological flowchart for agricultural expansion scenario
modeling, which was conducted in two stages. All spatial datasets used in this study were
referenced to the SIRGAS 2000 geodetic datum and expressed in geographic coordinates
(latitude and longitude), ensuring consistency across all geoprocessing stages.
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Figure 2. Methodological framework showing the phases in this study. Source: the authors.

In the first stage, a classification process was carried out for land use and cover
mapping using Object-Based Image Analysis (OBIA) techniques [37], divided into the
following steps: (a) segmentation, (b) attribute extraction, (c) classification, and (d) statistical
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validation. The second stage involved generating scenarios of natural Cerrado vegetation
loss in the area through 2030, using cellular automata combined with the weights of
evidence method.

The correlation between statistical variables is analyzed. Since the weights-of-evidence
method is based on the conditional probability of the occurrence or non-occurrence of a
transition, the variables must be independent, making it necessary to remove those with
high correlation. In “Dindmica EGO” [6,38], Cramér’s V and Joint Information Uncertainty
(JIU or U) indices are used. These indices assess the spatial dependence between two
variables in relation to a specific type of transition [39]. While Cramér’s V measures the
degree of association using actual area values, providing a more rigorous analysis, the JIU
operates with percentage values of the transition area between different classes.

This was implemented on the environmental modeling platform “Dindmica EGO”
(Environment for Geoprocessing Objects) [6,38] a free, open-source, non-commercial plat-
form developed in C++ with a graphical interface in Java. Its graphical interface is based
on a patented data flow system maintained by the Remote Sensing Center (CSR) at the
Geosciences Institute of the Federal University of Minas Gerais (UFMG) [6].

2.2.1. Data Used

Landsat 8 images were used, covering the orbits/paths 220/65, 221/65, 221/66, and
221/67 for the years 2015 and 2020, with a spatial resolution of 30 m, collection 2 level
2, provided already calibrated, with geometric and radiometric corrections and surface
reflectance data supplied by the United States Geological Survey (USGS) image catalog
(https:/ /www.usgs.gov/landsat-missions/landsat-data-access, accessed 15 July 2024).

The selection of satellite images considered the percentage of cloud cover, with images
containing a maximum of 5% cloud cover being chosen [40,41]. To enhance the separability
of targets, a set of spectral indices derived from the images was calculated, including
NDVI [42], SAVI and EVI [42], NDWI [43], and NDBI [44]. All the data were merged into a
single file containing all the layers of information.

2.2.2. Land Use and Land Cover Mapping

The first stage consists of the digital image classification process. Initially, the set
of images was segmented, which corresponds to the grouping of pixels with similar
characteristics—such as specific ranges of intensity, texture, or color—forming discrete, con-
tiguous, and non-overlapping regions. These regions semantically aim to change the image
representation regression and classification algorithm that creates and fits an ensemble of
decision tree classifiers, which, when combined, provide high accuracy [45]. For this pur-
pose, a series of routines were developed in the Python programming environment, based
on the use of the Scikit-Learn machine learning library, where the RF tuning parameters
are implemented—these being the number of variables per leaf (mtry) and the maximum
number of trees (ntree) [46—49].

To train the classifier, a series of sample points were collected, using both imagery
by fragmenting it into areas that may or may not correspond to objects [46,50]. The
region-growing algorithm was used, which aggregates pixels starting from a “seed” pixel
and progressively groups pixels with similar properties based on similarity values and
scale [47]. The choice of region-growing segmentation was primarily driven by its ease
of implementation within a GIS environment. In the CR segmentation algorithm, it is
important to note that the similarity and scale thresholds do not follow a pre-established
rule; rather, they are determined empirically through iterative testing until the optimal
visual pattern is achieved. This approach allows for the semantic separation of distinct
objects according to the analyst’s criteria.
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To optimize the segmentation, multiple tests were conducted varying both area size
and similarity parameters. A similarity threshold of 0.010 and a minimum area of 12 pixels
were selected for all image sets, corresponding to approximately one hectare. These settings
provided the most accurate representation of objects in images with a 30 m spatial resolution,
ensuring that the segmentation captured meaningful landscape features while minimizing
over- or under-segmentation. After the segmentation step, a series of attributes were
calculated, totaling eight statistical indices (mean, standard deviation, variance, kurtosis,
maximum, minimum, median, and skewness) for each of the information layers, resulting
in 77 attributes. To remove magnitude differences and thus avoid data bias, this process
was carried out in a Python 3.10 programming environment using the StandardScaler
algorithm from the preprocessing package implemented in the Scikit-Learn library.

To reduce the dimensionality of the dataset, a Principal Component Analysis (PCA)
was applied. This multivariate statistical technique identifies orthogonal directions of
maximum variance, allowing the data to be represented in a lower-dimensional space
without substantial loss of information [50,51]. The PCA was implemented in Python using
the scikit-learn library. A total of 10 principal components were retained, explaining 98% of
the total variance, thereby ensuring that most of the original information was preserved for
subsequent classification steps. The mean NDWI showed the highest loading on the first
component, followed by the mean NDVI, which together accounted for approximately 78%
of the explained variance among the selected components.

The segments were classified using the Random Forest (RF) classifier, non-parametric
and supervised and field-collected points as reference. The following classes were identi-
fied: forest formations, savanna formations, grassland formations, pastures, agriculture,
temporary crops, silviculture, and water. The sample size considered the coverage pattern
of each thematic class, recognizing that this parameter is not homogeneous.

Field activities for collecting data to support classification and validation were carried
out in 2021 and 2023, where information on the main vegetation cover types and land uses
was collected (Figure 3). The number of samples and their spatial distribution per class used
for classifier training varied. In 2015, a total of 2310 points were collected, distributed as
follows: 380 forest formations, 407 savanna formations, 332 grassland formations, 494 pas-
tures, 458 agriculture — crops, 172 silviculture, 94 exposed soil points, and 73 water points.
For 2020, 2400 points were used, consisting of 381 forest formations, 407 savanna for-
mations, 325 grassland formations, 417 pastures, 518 temporary crops, 183 silviculture,
90 exposed soil points, and 79 water points. For classification, a random balancing proce-
dure was applied, using only 70% of the samples per class to minimize distortions due to
uneven sample distribution and to reduce potential classifier bias. The remaining 30% of
the samples were reserved for subsequent accuracy assessment of the algorithm.

The statistical validation was performed using quantitative metrics derived from
the confusion matrix, from which the following were calculated: Overall Accuracy (OA)
(Equation (1)), which represents the proportion of correctly classified samples relative to
the total number of samples; and Kappa Index (k) (Equation (2)), which measures the
agreement between classified and reference data while accounting for chance agreement.

(= )
OA = =128 1
S )
=K oxi Z}Ll(xﬁ; * Xpi)
_ _N N
= 1_ 2%(:](Xi+2 * X4) @)
N

where x;; is the number of correctly classified observations in class i (diagonal of the
confusion matrix), x;+ and x;; are the row and column totals, N is the total number
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of observations, and k is the number of classes. Here, OA corresponds to the observed
agreement, while k accounts for the expected agreement by chance, ranging from —1 (worse
than chance) to 1 (perfect agreement), with 0 indicating agreement equal to chance.

Figure 3. Examples of photographs taken during fieldwork: (a) Forest Formations, (b) Savanna
Formations, (c) Grassland Formations, (d) Pasture, (e) Agricultural—Crops, and (f) Silviculture.
Municipalities of Carolina, Riachao, Balsas, and Estreito, Maranhao State, Brazil (21-29 June 2021),
and (11-19 February 2023). Source: the authors.

As it reflects the general level of classification precision, the overall accuracy is directly
interpretable, since it corresponds to the general probability that a randomly selected region
is correctly classified. The Kappa index is considered advantageous over overall accuracy,
as it incorporates all elements of the error matrix, including both correctly and incorrectly
classified objects [51]. Furthermore, it evaluates thematic accuracy more effectively due to
its higher sensitivity to variations in commission and omission errors. The Kappa index
ranges from —1 to 1, and the closer it is to 1, the higher the classification accuracy, being
calculated based on the product of overall accuracy and commission errors [52].

For the construction of the confusion matrix and the calculation of the derived indices,
a semi-structured selection of points was carried out, which varied according to the base
year of the imagery, in addition to a set of 453 points collected during field visits conducted
between 2019 and 2023 in the study area. For the year 2015, a total of 1605 points were
used, comprising 231 forest formations, 258 savanna formations, 257 grassland formations,
281 pastures, 328 temporary crops, 154 silviculture, 52 exposed soil, and 44 water. The
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validation of the 2020 classification was conducted using a total of 1819 samples, of which
301 were forest formations, 327 savanna formations, 274 grassland formations, 325 pas-
tures, 350 temporary crops, 132 silviculture, 52 exposed soil, and 58 water. The results
were compared to the performance thresholds established [53], who assigned qualitative
characteristics to classification performance levels, thereby indicating the quality of the
thematic map, as follows: (i) poor (Kappa < 0.0); (ii) slight (between 0.0 and 0.2); (iii) fair
(between 0.2 and 0.4); (iv) moderate (between 0.4 and 0.6); (v) substantial (between 0.6 and
0.8); and (vi) almost perfect (Kappa > 0.8).

2.2.3. Dynamic Modeling

After the classification stage, scenario-building steps were carried out to project agri-
cultural expansion trends in the Southern Maranhao mesoregion through the year 2030.
Information on land cover changes between the 2015 (initial year) and 2020 (final year)
maps was used, along with a set of variables that act as external factors to spatial changes,
influencing the probability of a given transition occurring or not.

The appropriate selection of explanatory variables is a determining factor for the
successful use of models. It is through their relationships with the dependent variable
that the cells with higher or lower probability of land cover transition are defined, and
these variables are organized into categorical and continuous types. Categorical variables
correspond to information characterized by discrete classes—such as soil types and geology.
Continuous variables, on the other hand, are measurable on a continuous scale, such as
distance to primary and secondary roads, distance to rivers, distances to cities, distances
to silos and warehouses, percentage of vegetation cover in the pixel, precipitation index,
hypsometry, slope, and distance to conservation units.

The first step in the spatial modeling process in “Dinamica EGO” is the definition
of the transition rates that occur between classes, that is, the number of pixels from one
class that change to another class within the analyzed period [6,7,38,39]. This process is
carried out through the creation of the ergodic matrix, which enables the identification of
the percentage of changes between classes based on global transition matrices. From these,
bidimensional (simple) matrices are developed and subsequently discretized into annual
matrices (multiple step), as shown in Equation (3) [13,42].

1
t

Pt = HViH! 3)

P is the annual matrix, H and V are its eigenvectors and eigenvalues, and t corresponds
to the analyzed period.

In “Dinamica EGO”, the transition matrix represents the probability of a cell changing
its initial state, based on previously observed transitions, through the direct comparison
between two maps (one representing the initial state and the other the final state). From
this comparison, pixel change rates are calculated (e.g., the number of forest pixels in 2015
that were converted to agriculture in 2020) relative to the total number of pixels in the
initial class (e.g., number of forest pixels in 2015). Subsequently, the probabilities of a
pixel changing or not changing its state are calculated. Transition rate calculations were
conducted for the nine transitions identified in the area and they represent the percentage
of pixels that underwent class transitions in both the biennial analysis and the probabilistic
period [6,10,12,52].

This choice reflects two dates (2015 and 2020) with a 5-year interval, effectively captur-
ing the trend of natural Cerrado vegetation loss, as adopted by other studies in the region
of Cerrado [10,11,15]. The longer time series tend to degrade the simulation data and
introduce spurious trends. Using longer intervals can result in models with inconsistent
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errors, as land use and land cover patterns—particularly those influenced by socioeconomic
factors—are highly dynamic, and any structural change can generate inconsistent patterns.

2.2.4. Model Calibration

After the calculation of transitions, model calibration is performed in two stages. In the
first stage, weights of evidence values are calculated for each of the identified transitions. In
the second stage, a correlation analysis among the statistical variables is conducted. Since
the weights of evidence method is based on the conditional probability of occurrence or non-
occurrence of a transition, it requires the independence of each variable used. Therefore, it
is necessary to remove those variables that show high correlation [54].

Based on Bayes’ theorem of conditional probability, the weights of evidence method
calculate the probability of transition of a cell based on its neighborhood—that is, it in-
dicates the probability of occurrence of a transition i — j (e.g., forest to agriculture) due
to the evidence provided by a statistical variable (e.g., roads), calculated according to
Equations (4)—-(7).

_1.( P(BID)
Wt = 1“(13(13\[))) 4)

_ . (P(BJD)
W™ = ln<P(B|D) ) ®)
O(D|B) = O(D) % V" 6)
log(O(D|B)) = log(O(D)) + W™ (7)

where O(D) and O(D | B) correspond, respectively, to the prior odds of the occurrence
of event D and to the odds of D occurring given the presence of a pattern B (explanatory
variable). W represents the positive weight of evidence, indicating a predisposition for the
cell state to change, while W™ is the negative weight of evidence, reflecting resistance to the
occurrence of event D, that is, a repulsion from the transition. Furthermore, non-significant
values (close to zero) indicate that, within a given analysis range, the variable in question
has no measurable effect on the transition [52].

Given a spatial pattern B, this is the posterior probability of a transition i — j, using k
spatial variables—that is, more than one spatial pattern is expressed by Equation (8) [7,9,13,55].

L i0y) exp™ M=y
Pli= = S ko 8)
\ 1+ Y exp™ W M=ty

where V refers to a vector of K spat_ial variables measured at location (x, y), each represented
by its corresponding weight WL?, where k =1, ...,K s the index of the spatial variable,
and n = 1,...,Ny is the index of the category of variable k (for categorical variables).
Vin(x, y) indicates the value or indicator of category n of variable k at location (x, y). For
continuous variables, the sum over n disappears, and it is sufficient to use Vi (x, y). W,_’
is the weight of variable k, category n (if applicable) for the transition i — j. x, y are the
spatial coordinates. In other words, the vector V(x,y) contains the values of all spatial
variables measured at the cell location in geographic space [56].

According to [10,52], for the application of the Weights of Evidence method, the
variables must be discretized into class intervals, since the weight calculation is based
on the occurrence or non-occurrence of a transition within the analyzed interval. The
contrast is obtained from the difference between the positive and negative weights, as
shown in Equation (9). The confidence level is derived from the contrast variance S? (C),
presented in Equation (10), and indicates whether the analysis is statistically significant
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at the 95% confidence level when IC| > 1.96 S (C), which confirms that the variable has a
significant influence on the transition process [52,55,56].

C=W"-—W~ (9)

! + ! + ! + L (10)
P(BND) ' P(BND) ' P(BND) P(BND)

S*(C) =

where (C) corresponds to the contrast, a statistic of interest that measures the difference
between the positive and negative weights of evidence. (W*) represents the positive weight,
derived from the logarithm of the conditional probability of the event given the presence of
a spatial variable, whereas (W ™) represents the negative weight, derived from the logarithm
of the conditional probability of the event given the absence of that variable. S>(C) denotes
the variance of the contrast, while S(C) is its standard deviation (the square root of the
variance). B denotes event (or condition) 1, for example, the presence of a spatial variable
or attribute, and D denotes event (or condition) 2, such as the occurrence of the target event
(e.g., pasture expansion). B and D represent the complements of B and D, respectively,
indicating their absence. P (B N D): probability that both B and D occur together; P (B N D):
probability that B occurs and D does not; P (B N D): probability that B does not occur and
D does; P (B N D): probability that neither B nor D occurs [57,58].

Contrast is used to measure both association and repulsion effects. Positive values
favor the occurrence of a given transition within a specific range of the analyzed statistical
variable [52,53]. Conversely, negative values indicate a repulsion to the same transition,
and values close to zero can be disregarded (non-significant), as they do not influence
the dynamic modeling process for that category [56]. This approach makes it possible to
quantify influence, allowing inferences about how each variable may affect the conversion
process in the area [52,53].

In the second stage, a correlation analysis among the statistical variables is carried
out, since the weights of evidence method is based on the conditional probability of the
occurrence or non-occurrence of a transition, requiring the independence of each variable
used. Therefore, it is necessary to remove variables that exhibit high correlation. In
“Dindmica EGO”, the Cramér’s V and Joint Information Uncertainty (U) indices are used.
Typically, U and V values greater than 0.50 indicate high correlation (strong dependence),
and the static variable containing the highest number of non-significant values should be
excluded. However, the criteria described in [52] were followed, and values greater than
0.40 for U and V were considered to indicate high correlation (Table 1), thus requiring their
removal from the model. After the correlation analysis and the exclusion of dependent
variables, the weights of evidence coefficients are recalculated, and their results are then
incorporated into the simulation stages.

Table 1. Variables with values greater than 0.40 for study in the Southern Maranhao Mesore-
gion, Brazil.

Transition Pair of Compared Variables v U
FF PAS Distance to UC Precipitation * 0.45 0.31
FF PAS Geology * Soils 0.44 0.18
FF AGR Distance to UC Precipitation * 0.45 0.32
FF AGR Geology * Soils 0.44 0.18
FF SIL Distance to UC * Precipitation * 0.45 0.30
FF SIL Geology * Soils 0.44 0.18
FS PAS Distance to UC Precipitation * 0.46 0.33
FS PAS Geology * Soils 0.44 0.18

FS AGR Distance to UC Precipitation 0.47 0.33
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Table 1. Cont.
Transition Pair of Compared Variables A% U

FS AGR Distance to silos Distance to 0.43 0.10
Silviculture *

FS AGR Geology * Soils 0.44 0.18

FS SIL Distance to UC Precipitation * 0.47 0.33

FS SIL Geology * Soils 0.44 0.18

FC PAS Distance to UC Precipitation * 0.47 0.33

FC PAS Distance to silos [.)15.tance to 0.44 0.12
Silviculture *

FC PAS Geology * Soils 0.44 0.18

FC AGR Distance to UC Precipitation * 0.46 0.33

FC AGR Distance to silos * D.15t.ance to 0.50 0.12
Silviculture

FC AGR Geology * Soils 0.44 0.18

FC SIL Distance to UC Precipitation * 0.47 0.33

FC SIL Distance to silos * Distance to 0.44 0.12
Silviculture

FC SIL Geology * Soils 0.44 0.18

* Variables removed from the model for each analyzed transition. FF = Forest Formations; FS = Savanna Formations;
FC = Grassland Formations; PAS = Pasture; AGR = Agriculture; SIL = Silviculture; UC = Conservation Units.
Source: the authors.

2.2.5. Application of the Simulation Model

After the model calibration stage, the simulation is performed. For this, it is necessary
to define the transition probability rates. In “Dindmica EGO”, this process is carried out
using two functions: expander and patcher. The expander function is dedicated solely
to the expansion or contraction of patches of a given class, while the patcher function
is responsible for forming new patches. Both functions contribute to the creation of the
transition probability map and are parameterized according to four properties: the pixel
allocation rate, which defines the percentage of transition between classes; the isometry,
which is a value ranging from 1 to 2 and determines the regularity of distances between the
created patches; the variance; and finally, the average patch size, referring to the transitions
analyzed between the initial and final maps [55]. Table 2 presents the expansion and patch
parameters, defining the average sizes, variance, and isometry of the patches to be formed
or expanded/contracted for the generation of the simulated landscape.

Table 2. Parameters used to generate the simulated landscape for the 2015-2020 simulation in the
Southern Maranhao Mesoregion, Brazil.

Y% Average Size Variance Isometry
PAS AGR SIL PAS AGR SIL PAS AGR SIL PAS AGR SIL
FF 0.90 0.80 0.80 3.24 4.05 1.72 22.34 46.99 13.85 1.50 1.50 1.50
FS 0.90 0.95 0.80 2.47 23.06 4.50 72.35 31,081.58 982.79  1.50 1.80 1.50
FC 0.90 0.85 0.80 6.13 11.29 441 23044 184640 16429 1.50 1.70 1.50

FF = Forest Formations; FS = Savanna Formations; FC = Grassland Formations; PAS = Pasture; AGR = Agriculture;
SIL = Silviculture. Source: the authors.

The mean size and variance of patches were calculated using the average and standard
deviation of converted areas, considering a minimum unit of one hectare (=12 pixels)
according to the segmentation standard. Transition analysis showed that 90% of converted
cells expanded from preexisting areas, without generating new fragments, indicating a
trend of conversion near consolidated agricultural zones. For pastures, 70-80% of con-
versions occurred over forest, savanna, or grassland formations. In the case of forestry,
80-90% of cells also showed expansion rather than fragmentation. These values were not
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empirically defined but derived from the analysis of actual conversions, which shape the
dynamics of class transitions. However, the spatial configuration of simulated areas, that is,
the geometric pattern of converted patches, cannot be controlled.

As for isometry, a value of 1.5 was adopted for both the patcher and expander functions,
resulting in more isometric (compact) rather than linear fragments. Isometry is a parameter
that regulates the influence of spatial distance on transition probabilities and is associated
with the fractal or geometric dimension of the neighborhood space. Its value ranges from
1 to 2. In “Dinamica EGO”, isometry defines how the spatial neighborhood influences
land use dynamics, controlling the intensity of spatial effects on the transition process. The
default value is 1.5, which enables calibration for different spatial patterns, such as more
diffuse or more clustered transitions. In this study, the model was set to the default value
of 1.5, as predefined by the “Dindmica EGO” developers in the open-source configuration.
The size of the new fragments was calculated based on the mapped area. Thus, their
average size and variance were defined as 1 and 10 hectares, respectively, equivalent to
12 and 120 cells. These values were established by verifying the average sizes of transition
areas. As a result, nine transition probability maps were generated for cells transitioning to
pasture, agriculture, and silviculture, in which areas with a higher tendency toward spatial
change can be identified [10,53,54].

2.2.6. Model Validation

In “Dinamica EGO”, model validation is performed using a multi-window analysis
approach aimed at identifying the behavior of the data according to a neighborhood pattern.
According to [6,9,10,13,33,56] the validation process in “Dinamica EGO” is based on the
concept of fuzziness of location. The model validation process aims to verify whether
the model accurately represents the changes observed between the initial and final years.
“Dinamica EGO” uses a fuzzy similarity method for this purpose, calculated from the
differences between the initial and simulated maps and between the initial and observed
maps. This method is applied not pixel by pixel, but through multiple window sizes: 1 x 1,
3x3,5x5,7x7,and 11 x 11 [57,58].

Values are determined based on the distance from the central cell to the cell containing
the class of interest within each comparison window, following a constant decay function.
According to the literature, models with a minimum similarity of 0.40 or higher in windows
of 7 x 7 or larger are considered acceptable [10,13,38,53]. Considering the spatial resolution
of the data (30 m) and the resulting fit, simulations achieving a minimum validation score of
0.40in 5 x 5and 7 x 7 windows—corresponding to areas between 2.25 and 4.41 hectares—
can be considered satisfactory, provided they visually approximate the mapped reality.

3. Results
3.1. Land Use and Land Cover—2015 and 2020

The classification standard proved to be relatively satisfactory, with the resulting maps
presenting overall accuracy values of 71.53% for 2015 and 79.71% for 2020. The kappa
coefficients were 0.663 for 2015 and 0.785 for 2020, classifying them as very good. Visually,
the classifications also showed no significant inconsistencies, presenting a standard spatial
pattern of class distribution in accordance with expectations.

Table 3 presents the results of land use and land cover (LULC) classes for 2015 and
2020 (in hectares), along with the respective differences calculated relative to 2020, both in
absolute (hectares) and relative (%) terms. Positive values indicate an increase in area, while
negative values indicate a reduction. It is noted that savanna (FS) and grassland (FC) forma-
tions together accounted for approximately 69% of the total area in 2015, highlighting their
dominance over other land cover classes. During the period analyzed, these formations
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experienced a combined loss of about 441,352 ha (—9.4%), indicating a significant reduction
in native vegetation. In contrast, pasture and agricultural areas showed substantial growth,
with increases of approximately 88,372 ha (16.2%) and 118,989 ha (14.5%), respectively,
reflecting the conversion of natural landscapes into productive land uses.

Table 3. Land use and land cover for the Southern Maranhao Mesoregion, Brazil (2015-2020).

Classes Analyzed Period Difference
LULC 2015 2020 (ha) %

FF 646,687.98 880,015.80 233,327.80 36.08%
FS 2,343,552.84 2,016,165.00 —327,388.00 —13.97%
FC 2,332,351.26 2,218,387.00 —113,965.00 —4.89%
PAS 545,583.96 633,955.70 88,371.72 16.20%

AGR 820,765.98 939,754.60 118,988.60 14.50%
SIL 26,513.37 30,233.52 3720.15 14.03%
SE 438.57 696.51 257.94 58.81%
CH 42,347.52 36,786.51 —5561.01 —13.13%
AC 5684.13 7308.81 1624.68 28.58%

FF = Forest Formations; FS = Savanna Formations; FC = Grassland Formations; PAS = Pasture; AGR = Agriculture;
SIL = Silviculture. SE = Exposed Soil; CH = Water; AC = Built-up Area. Source: the authors.

As previously mentioned, “Dinadmica EGO” calculates two types of information: the
single-step transition matrix and the multi-step transition matrix. While the former records
the percentage of cells that changed from one state to another over the period in a bi-
temporal analysis (2015-2020), the latter calculates annual transition rates based on a
Markov chain model, indicating the a priori probability of a cell being modified over time.
This information is essential for understanding the dynamics of the cell conversion process
and its behavior over the years. When analyzing the changes between 2015 and 2020, forest
formations stand out with a 36% increase. This class gained area primarily from savanna
formations and, to a lesser extent, from grassland formations.

Regarding conversion rates (Table 4), the transition from grassland formations (FC)
to pasture (PAS) was the most pronounced, with a transition rate of 5.82%, followed by
the conversion of savanna formations (FS) to agriculture (AGR) at 3.90%, and savanna
formations (FS) to pasture (PAS) at 3.81%. During the 2015-2020 period, grassland for-
mations experienced the highest conversion pressure, primarily to pasture, indicating the
strong influence of livestock expansion on native vegetation loss. Savanna formations
also exhibited considerable conversion, mainly to agriculture and pasture, reflecting the
combined impact of cropping and grazing expansion. Forest formations (FF) presented
lower transition rates but still showed notable losses, particularly to pasture (2.70%) and
agriculture (0.66%).

Overall, these transitions demonstrate a consistent pattern of native vegetation re-
placement by pasture as the dominant land-use change, followed by agricultural expansion.
The conversion from forest to pasture accounted for over 17 thousand hectares, while
savanna and grassland formations collectively lost approximately 88 thousand hectares
to pasture, 4 thousand hectares to agriculture, and 390 hectares to silviculture. These
findings highlight the persistent anthropogenic pressure on native ecosystems in the South-
ern Maranhao Mesoregion and emphasize the need for targeted land management and
conservation strategies.

There is a low probability of pasture expansion in the northeastern and central-
southern parts of the region (Figure 4), particularly in the municipalities of Carolina and
Riachao. The probability of conversion to silviculture showed the greatest discrepancies
between observed and estimated data, with low overall expansion tendencies in the area.
The highest probabilities were concentrated in the northwestern and northern portions of
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the mesoregion, especially in the municipalities of Estreito, Carolina, Sao Pedro dos Crentes,
Benedito Leite, Sao Félix de Balsas, and Loreto. After running the simulation routines, the
validation was carried out by comparing the simulated map (2020) with the actual 2020
land cover map. This validation was conducted only for stationary scenarios, using the
fuzzy similarity index according to window sizesof 1 x 1,3 x 3,5 x 5,7 x 7,9 x 9, and
11 x 11, as discussed.

Table 4. Land Cover transition (%) during the period from 2015 to 2020 in Southern Maranhao
Mesoregion, Brazil.

Land Cover Transition 2015—2020 Global Multiple (5 Years)

FF — PAS 2.70% 0.0060032

FF — AGR 0.66% 0.0005566

FS — SIL 0.06% 0.0000895

FS — PAS 3.81% 0.0088222

FS — AGR 3.90% 0.0091612

FS — SIL 0.20% 0.0005122

FC — PAS 5.82% 0.0145696
FC —+ AGR 2.10% 0.0038462

FC — SIL 0.08% 0.0001280

FF = Forest Formations; FS = Savanna Formations; FC = Grassland Formations; PAS = Pasture; AGR = Agriculture;
SIL = Silviculture. Source: the authors.

It should also be emphasized that the terrain morphology influenced the transition
to agricultural crops and planted pasture, with emphasis on flat areas, with slopes of up
to 5% and altitudes up to 350 m, primarily favored by the mechanized farming practices
in the region. Other regional and national studies also indicate that areas with gentler
relief are prioritized for the expansion of pasture and grain cultivation [59,60]. In contrast,
areas with slopes greater than 8% showed a strong tendency toward the expansion of
pastures and silviculture. In general, lower-altitude areas, up to 160 m, correspond to the
main floodplains of river channels that characterize the local drainage system, and are not
directly used for commercial activities, resulting in low transition rates in these zones.

3.2. Validation Land Use and Land Cover

The simulated map showed a minimum similarity index of 0.45 and a maximum of
0.50 for 7 x 7 windows, indicating that the spatial arrangement of the adjusted variables is
satisfactory, particularly considering the 30 m cell size. The minimum and maximum values
were similar across 5 x 5and 9 x 9 windows. According to [39], there is no single “correct”
resolution for determining accuracy; values above 0.40 in 5 x 5 windows are generally
considered acceptable, provided the spatial distribution patterns of the phenomenon in
the reference and simulated maps are similar. Also notes that models adjusted with
minimum values of 0.40 in 5 x 5 windows show significant accuracy, validating their
use [55,56]. Simulations with fuzzy similarity indices between 0.45 and 0.50 for 7 x 7 to
11 x 11 windows demonstrate acceptable adjustments [52,53].

Considering the 30 m data resolution and the resulting fit, simulations with a minimum
validation score of 0.40 in 5 x 5 to 7 x 7 windows (25-49 pixels, or 2.25-4.41 hectares)
can be considered satisfactory, provided they visually approximate the mapped reality.
The simulation of sugarcane expansion using 15 m resampled data obtained maximum
similarity values below 0.45 in 7 x 7 windows [38], and simulating Amazon deforestation
in “Dindmica EGO” showed a minimum similarity of 0.40 between observed and simulated
maps in 10 x 10 windows using 1 km resolution data [4].
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Figure 4. Spatial distribution of the probability of pasture expansion in the Southern Maranhao State
Mesoregion, Brazil. Values range from 0 (low probability) to 1 (high probability). Source: the authors.
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Figure 5 illustrates the comparison between the actual 2020 land use and land cover
map and the simulated 2020 land use and land cover map, obtained through the calibration
of the dynamic model for future scenarios.
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Figure 5. Comparison between the actual and simulated maps for the Southern Maranhao Mesoregion,
Brazil. Red circles highlight the areas that showed the greatest differences when comparing actual
and simulated data. Source: the authors.

The identified areas correspond to sectors that showed discrepancies between the
actual and simulated data; however, a significant visual similarity between the two is
evident—particularly in the agriculture and silviculture classes, which displayed good
visual agreement. Nonetheless, the model overestimated the pasture class, especially
in the northwestern portion of the study area, with emphasis on the municipalities of
Campestre do Maranhao, Porto Franco, and Sao Joao do Paraiso. This class also showed
area inconsistencies in the central portions of the municipalities of Carolina and Riachao.

It is also noted that the model failed to identify the emergence of new agricultural
areas (patcher), and two main factors may explain this: first, during the calibration pro-
cess, the model was not parameterized to analyze land-use modification processes (e.g.,
pasture—agriculture or agriculture— pasture); second, the model was calibrated to favor
expansion (expander function) more heavily (95%) over the formation of new patches
(patcher function at 5%) Despite this, the model was generally effective, as it achieved
significant accuracy—for example, by correctly predicting no loss in protected natural
vegetation remnants, such as those within the Chapada das Mesas National Park, and by
not assigning land occupation to restricted areas. Table 5 compares the land areas between
the actual and simulated datasets.

While in the actual 2020 data approximately 881 thousand hectares of forest formations
were mapped, the 2020 simulated map computed 629 thousand hectares—representing a
difference of 251 thousand hectares less compared to the actual data. Savanna formations
showed a difference of 143 thousand hectares between the actual and simulated data: in
2020, this class totaled 2.0 million hectares (Mha) in the actual map, whereas the simulated
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map identified approximately 2.2 Mha. Grassland formations presented a difference of
around 70 thousand hectares between the actual and simulated datasets, with the simulated
2020 data showing the greatest tendency for loss in this class. In the actual 2020 data,
grassland formations covered approximately 2.1 Mha, while in the simulated data, about
2.0 Mha were identified—much of which is associated with the expansion of pasture areas,
as previously mentioned.

Table 5. Comparison between the mapped areas in the actual and simulated maps for the Southern
Maranhao Mesoregion, Brazil in 2020.

Class/Year 2015 2020 2020 Simulate

FF 648,956.16 881,195.49 629,537.22
FS 2,417,991.48 2,073,583.89 2,216,923.3
FC 2,253,455.28 2,146,511.88 2,075,932.9
PAS 543,325.05 629,712.45 783,643.86

AGR 824,283.54 954,986.85 974,510.37
SIL 28,284.57 33,288.21 360,66.96
SE 407.25 680.67 407.25

CH 41,439.78 36,401.22 41,443.83
AC 5801.49 7583.94 5801.49

FF = Forest Formations; FS = Savanna Formations; FC = Grassland Formations; PAS = Pasture; AGR = Agriculture;
SIL = Silviculture; SE = Exposed Soil; CH = Water; AC = Built-up Area. Source: the authors.

Pasture is among the land cover classes with the greatest differences in area between
the actual and simulated data. In the actual 2020 map, approximately 629 thousand hectares
of pasture were mapped, whereas the 2020 simulated map showed 783 thousand hectares—
indicating an overestimation of this class in the simulated model.

Agriculture and silviculture, on the other hand, showed relative stability between the
actual and simulated data when analyzing the spatial distribution of these classes in the
study area. Agriculture presented a difference of just over 19 thousand hectares between
the actual and simulated maps. In the actual 2020 map, agriculture occupied around
954 thousand hectares, while in the simulated map it covered approximately 974 thousand
hectares. Silviculture showed a difference of nearly 2.7 thousand hectares, with the actual
map recording an area close to 33 thousand hectares, and the simulated map indicating
more than 36 thousand hectares of land covered by silviculture (Table 6).

Table 6. Cross-tabulation between actual and simulated data for the year 2020 in Southern Maranhao
Mesoregion, Brazil.

2020 Simulated

FF FS FC PAS AGR SIL SE CH AC
FF 54.15%  33.38%  510%  *4.86% *1.95% *0.13%  0.00%  0.43%  0.00%
FS 526%  67.36%  16.63% *6.16% *4.07% *029%  0.00%  0.23%  0.00%
FC 1.01%  1720%  7258%  *696% *2.00% *0.12%  0.01%  0.11%  0.02%
PAS 245%  11.14%  1453%  7025%  1.36%  0.16%  0.01%  0.07%  0.03%
2020 AGR  043%  836%  345%  177%  8590%  0.07%  0.00%  0.01%  0.00%
Actual SIL 1.00%  12.24%  5.02%  5.44%  2.46%  7381%  0.00%  0.02%  0.00%
SE 0.63%  12.05% 24.78%  20.64%  037%  694%  22.70%  10.82%  1.07%
CH 457%  620%  3.03% = 294%  0.70%  0.08%  0.01%  82.44%  0.02%
AC 0.60%  533%  8.66%  18.05%  021%  0.00%  0.00%  0.19%  66.97%

* Transition classes considered in the model. FF = Forest Formations; FS = Savanna Formations; FC = Grassland
Formations; PAS = Pasture; AGR = Agriculture; SIL = Silviculture; SE = Exposed Soil; CH = Water; AC = Built-up
Area. Source: the authors.
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As observed, the comparison between the actual and simulated maps for the year 2020
showed a significant rate of class persistence. The greatest inconsistencies were found in
forest formations, which had a permanence rate of 54%—the lowest among the analyzed
land cover classes. The other classes showed compatibility rates above 60%, with the best
results for pasture and agriculture, with permanence rates of 70% and 85%, respectively. A
relative area gain was noted in the comparison between the actual and simulated maps, with
error rates ranging from 4% to 7%, generally involving notable confusion between savanna
formations and pasture, as well as between grassland formations and pasture. These
showed confusion rates between 2% and 7% when comparing the actual and simulated
maps for the year 2020.

3.3. Simulation of Land Use and Land Cover—2020/2030

The accuracy assessment indicated satisfactory classification performance, with an
overall accuracy of 70.3% and a Kappa coefficient of 0.61, representing a good agreement
between the land use and land cover map classified and the simulated land use and
land. In terms of area, the simulated model showed that between 2020 and 2030, natural
Cerrado vegetation is projected to lose over 842 thousand hectares, a figure close to that
observed between 1990 and 2020, when approximately 1.2 million hectares (Mha) of native
biome vegetation were converted into anthropic land use classes in the region. The greatest
tendency for conversion is associated with the expansion of pasture, followed by agriculture,
with a lower tendency for conversion into silviculture.

Figure 6 illustrates the spatial distribution of land use and land cover classes be-
tween the years 1990 and 2030-S. It is important to note that the information from 1990
to 2020 refers to actual land cover values obtained through digital image classification,
whereas the data beyond 2020 correspond to land use and land cover scenarios generated
by the static simulation model.

The model indicates that areas classified as grassland formations show a significant
tendency for conversion, with an estimated reduction of approximately 310 thousand
hectares between 2020 and 2030—that is, decreasing from an area of 2.21 million hectares
(Mha) in 2020 to a projected area of 1.83 Mha in the 2030 simulated model. The main
losses in this class are projected to pasture, with over 289 thousand hectares converted,
followed by agriculture, with a projected conversion of approximately 72 thousand hectares.
Silviculture showed a projected increase of 2.6 thousand hectares over grassland formations.

Although not explicitly incorporated into the model, grassland formations experienced
a minor gain of 52 thousand hectares from savanna formations. Savanna formations showed
the highest loss rates between the actual period and the simulated scenario for 2030, with a
decrease of 437 thousand hectares—from 2.0 Mha in 2020 to 1.6 Mha in the 2030 simulated
map. This class demonstrated a significant tendency for conversion to agriculture, with
projections indicating a loss of around 190 thousand hectares. In the simulated scenario,
a high tendency for pasture expansion over savanna formations was evident, with an
estimated 185 thousand hectares of savannas converted into pasture. Additionally, just over
8.6 thousand hectares of savanna formations showed a projected conversion to silviculture.

Although less intense, forest formations showed a relative probability of area loss.
Between 2020 and the 2030 simulated data, there is a projected loss of over 85 thousand
hectares of forest formations in the area. Most of this conversion is linked to pasture
expansion: according to the simulated model, approximately 75 thousand hectares of forest
formations were converted into pasture, just over 8.7 thousand hectares were converted
into agriculture, and 519 hectares into silviculture.
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Figure 6. Land use and land cover in the Southern Maranhao Mesoregion, Brazil (2015-2030). Source:
the authors.

4. Discussion
4.1. Dynamics of Land Use and Land Cover—2015 and 2020
The land use and land cover classification process was also refined, generally elimi-

nating confusion between classes. The greatest inconsistencies occurred between pastures,
agricultural areas, and grassland formations. This is due to the significant spatial proximity
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of these classes, especially during the dry season [10-13]. The resulting data presented
global accuracy and kappa with values greater than 85%, with the 2015 classification pre-
senting values of 0.822 and 86% for kappa and global accuracy and the 2020 classification
presenting values of 0.899 and 92% for kappa and global accuracy, respectively.

This result may be associated with the natural regeneration process of areas in the
Cerrado, which has been observed by different authors in other recent studies of this
biome [40,61,62]. Notably, the classification process was refined, generally eliminating
confusion between classes. For the forest formation class, an accuracy of approximately 95%
was observed in both analyzed years (1995 and 2000). Additionally, possible phenological
issues related to the period/year of the analyzed images may also influence the results at a
small scale.

The savanna formations showed a trend of loss, with a reduction of approximately
13%, converted mainly into agricultural land and, to a lesser degree, into pasture. A similar
pattern was observed for grassland formations, which lost about 5% of their area. The most
significant area gain was observed in pasturelands, which expanded by more than 16%,
followed by the agriculture and silviculture classes, which increased their area by 14% over
five years.

The weights of evidence analysis indicated that the variables “distance to pasture”
(Table 4), “distance to agriculture,” and “distance to silviculture” showed positive weights
up to 3 km—meaning that areas near already consolidated land have a greater tendency for
conversion to both pasture and agriculture, with this influence decreasing as the distance
from these variables increases. Although positive, the variables “distance to roads,” “dis-
tance to silos,” and “precipitation” did not prove to be significant drivers for the conversion
of natural areas into anthropogenic uses. Their influence was greater within the first 500 m
but became negligible beyond that distance. Moreover, these variables had weights close to
zero, indicating little influence on the conversion process in the area. On the other hand,
the variables “distance to drainage” and “distance to protected areas” act as inhibitors to
agricultural expansion; however, their values were also close to zero, suggesting that, even
though legally protected, these areas do not constitute an entirely effective barrier against
deforestation in the region.

Similar results were found by [38,54] when analyzing sugarcane expansion, observing
positive weights of evidence at distances between 2 and 8 km from agricultural areas. In
turn, when modeling deforestation scenarios for the Cerrado, identified the strong influence
of already consolidated soybean cultivation regions as the main driver of deforestation
expansion throughout the area, particularly within a 3 km range. According to [54], in
the Cerrado biome, proximity to already consolidated areas—whether for urbanization or
agricultural purposes—tends to attract new areas as occupation advances. Thus, based on
the evaluation of weights of evidence values, it was necessary to define some adjustment
parameters, such as transition rates, which determine the amount of area involved in each
trend of change evaluated, and the quantity of land cover change. These were defined based
on patcher and expander values, which determine location accuracy and the percentage of
transitions assigned to the expansion of existing areas or the creation of new land cover
patches. The patcher and expander values were defined according to average size, variance,
and isometry [10,57].

The expansion of agriculture shows a stronger tendency to occur in the central-
southern portion of the mesoregion, extending toward the northeast, particularly over
flat topography generally covered by Latosols—one of the main characteristics of areas
susceptible to agricultural conversion. Notable examples include the chapadas and cha-
padoes that make up the Serra do Penitente. These areas exhibited a high probability of
conversion to agriculture, especially in the municipalities of Balsas, Tasso Fragoso, Alto
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Parnaiba, and Sao Raimundo das Mangabeiras, as well as the southern portion of Car-
olina and the northern portion of Riachao. Pasturelands showed a higher probability of
conversion in the northwestern portion of the region, mainly over grassland formations,
predominantly in the municipalities of Campestre do Maranhao, Porto Franco, Sao Joao do
Paraiso, Feira Nova, Carolina, and Estreito, as well as the northern area of Balsas. These
areas correspond to zones with lower potential for mechanized agriculture and a higher
occurrence of Plinthosols.

4.2. Analysis of the Simulation of Land Use and Land Cover—2020/2030

The projection phase for agricultural and livestock expansion in the Southern
Maranhao Mesoregion used the 2020 land use and land cover map as a starting point,
applying the same calibration parameters (transition matrix, weights of evidence file, and
statistical variables) from the validated 2015 model. The land use and land cover dynamics
indicated that between 2020 and 2030, the model emphasized trends already observed
between 2015 and 2020, particularly highlighting the expansion of pasture and, to a lesser
extent, the increase in agriculture, with projected expansions of 88% and 29%, respectively.
Silviculture, although showing relative growth with a projected expansion of approximately
45% by 2030, remained stable within the projected scenario.

In contrast, natural Cerrado vegetation showed significant projected losses, with rates
around 19% in the simulation map for 2030. Notably, even though it was not directly
considered in this stage of the analysis, the presence of special areas (strict and sustainable-
use conservation units) demonstrated considerable effectiveness in controlling the loss of
natural Cerrado vegetation. The simulated model indicated that the largest remnants of
natural vegetation projected to remain by 2030 are located within protected areas—such
as Chapada das Mesas National Park (Parna da Chapada das Mesas), Nascentes do Rio
Parnaiba National Park (Parna Nascentes do Rio Parnaiba), and, to a lesser extent, the
Nascentes do Rio Balsas Environmental Protection Area (APA Nascentes do Rio Balsas).

On the other hand, the area still contains a vast amount of land with natural Cerrado
vegetation that is legally available for conversion, placing it at the center of discussions
on environmental conservation, economic development, and natural resource manage-
ment [29]. The presence of these unconverted areas can be a decisive factor for agricultural
expansion, particularly because they retain a significant coverage of native vegetation. Un-
like the Amazon, where legal protection reaches 80%, the Cerrado requires only 35% Legal
Reserve according to the Forest Code (Law No. 12.651/2012), making it more vulnerable
to conversion by increasing the availability of areas legally suitable for agriculture. Addi-
tionally, the emergence of production incentive public programs and policies promoting
agribusiness put further pressure on these remaining regions, reinforcing the perception
of the Cerrado as a strategic agricultural frontier. Thus, the combination of lower legal
protection and the presence of unconverted land favors agricultural expansion, while simul-
taneously jeopardizing the conservation of the biome’s biodiversity and ecosystem services.

This data reveals that (Table 6 and Figure 6), although already established as an agri-
cultural frontier, the area shows a strong tendency for agricultural and livestock expansion.
Between 2020 and 2030, the model projects a potential expansion of over 833 thousand
hectares, of which 564 thousand hectares are destined for pasture, 258 thousand hectares for
agriculture, and just over 10 thousand hectares for silviculture. As previously mentioned,
the pasture class showed the greatest tendency to expand over grassland and savanna
formations. However, even though it was not explicitly included in the predictive model, a
small area of agriculture was observed to have been converted into pasture (~13 thousand
hectares), indicating the model’s potential to project land use changes from one agricultural
class to another.
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Despite being a consolidated agricultural frontier, the Southern Maranhao Mesoregion
continues to show a strong trend toward agro-pastoral expansion, mainly the replacement
of natural vegetation by pasture and, to a lesser extent, by cropland and silviculture,
reinforcing the ongoing pressure on native ecosystems. This pattern is not spatially uniform,
as the municipalities comprising the microregions of Porto Franco and Gerais de Balsas
show significant projected conversion of grassland and savanna formations into pasture
and agriculture.

The conversion of forest formations is primarily concentrated in the northwestern
portion of the area, within the transition zone between the Amazon and Cerrado biomes.
This region showed a strong tendency for the loss of grassland formations to pasture,
with notable changes in the municipalities of Porto Franco, Carolina, Sao Joao do Paraiso,
Estreito, and Feira Nova do Maranhao. Meanwhile, the central portion of the mesorgion
showed a high projected expansion of agriculture, especially in the municipalities of Balsas,
Tasso Fragoso, Sao Raimundo das Mangabeiras, and the southern part of Sambaiba.

This scenario is consistent with the estimates of [10], who, when simulating deforesta-
tion processes in the Cerrado using resampled data from MapBiomas Collection 7 [63],
indicated a high probability of conversion of native vegetation to pasture (=24.7 million
hectares) and to agriculture (~1.4 million hectares), as well as a significant tendency for
agricultural expansion over pasture (/3.2 million hectares), which was not tested in the
present model. The same author also highlights the municipality of Balsas-MA as one of the
three municipalities with the highest estimated conversion of native vegetation and among
the ten municipalities in the Cerrado with the greatest environmental risk associated with
deforestation by 2030.

Modeling deforestation scenarios for the MATOPIBA region through 2050 projected a
reduction of 21% to 24% in the Cerrado’s natural vegetation, along with a marked trend
of expansion in pasturelands and agricultural areas [38]. When developing a simulation
model for the entire Cerrado biome, [57] showed that even under optimistic scenarios—
such as those involving the implementation of conservation policies and restrictions on
deforestation in special areas—there are still high estimates of vegetation cover loss in the
Cerrado. It is noteworthy that the aforementioned authors identified the region bordering
the Amazon biome—which includes the area under study—as showing a significant trend
toward vegetation loss.

Finally, it is important to emphasize that the simulation of agricultural expansion
does not precisely measure spatial variation across the area, as it is influenced by political,
economic, and social factors. However, the model developed and presented here allows
for the analysis of the trend of natural vegetation cover loss, since it identifies areas that
are relatively vulnerable to the deforestation process. As the model was not calibrated to
detect trends in vegetation regeneration or the expansion of agriculture over pasture, it
revealed a strong tendency toward natural vegetation loss.

4.3. Geospatial Approaches, Policy Implications and Future Research Directions

Several studies have demonstrated that geomatic approaches play a central role in
advancing the understanding of land use and land cover dynamics in different regions, by
integrating spatial modeling, remote sensing, and geographic information systems (GIS).
For example, [64] used multitemporal Landsat imagery and Random Forest classification to
elucidate long-term land use and land cover changes in South Africa, contributing to more
effective environmental management and sustainable land-use policies. Similarly, [65]
combined Landsat data, GIS frameworks, and Random Forest algorithms to analyze the
spatiotemporal dynamics of degradation in Burkina Faso, highlighting how geospatial
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tools enable robust monitoring systems aligned with the sustainable management of pro-
tected areas.

Gong et al. [66] demonstrated the transferability of high-resolution land cover map-
ping by leveraging a limited 30 m sample set to generate a 10 m global land cover map,
reinforcing the potential of machine learning and remote sensing integration for large-scale
environmental monitoring. However, the effectiveness of the method applied in this study
is directly related to the minimum mapping unit (MMU) and the spatial scale of the input
data. For all image sets analyzed in the Southern Maranhao Mesoregion, a similarity thresh-
old of 0.010 and a minimum area of 12 pixels, corresponding to approximately one hectare,
was selected, considering the 30 m spatial resolution. These settings provided the most
accurate representation of objects in the images, ensuring that the segmentation captured
meaningful landscape features while minimizing over or under-segmentation. Smaller
MMUs could allow detection of finer landscape features but would increase classification
noise, whereas larger MMU s tend to generalize patterns and reduce detail. Therefore, the
method’s performance and comparability across scales depend on balancing spatial resolu-
tion, mapping objectives, and the degree of landscape fragmentation in the study area.

In Brazil, a study used the Landsat archive and the Google Earth Engine platform
to reconstruct three decades of land use and land cover changes across all major biomes,
including the Cerrado [67], providing valuable insights into long-term land use trajectories.
Comparative analyses with other studies conducted in tropical savannas and agricultural
frontiers around the world reveal that the land use dynamics observed in the Southern
Maranhao Mesoregion follow global patterns of agricultural expansion and ecosystem
conversion. Large-scale land use transformations are among the main drivers of global
biogeochemical and hydrological changes, establishing direct links between local land man-
agement and global impacts [1]. It is also noteworthy that socioeconomic and institutional
factors, such as market forces, infrastructure development, and shifts in public policies,
are universal determinants of land use and land cover changes in tropical regions [2].
Similarly, the growing influence of industrial drivers of deforestation in tropical ecosystems
is emphasized, a trend reflected in the mechanized agricultural expansion observed in the
MATOPIBA region of Brazil [3].

At the regional scale, Rau et al. [68] modeled past and future forest cover scenarios in
the Misiones Forest, Argentina, showing that agricultural intensification and land tenure
patterns strongly influence deforestation trajectories, results consistent with those found
in this study. Similar spatiotemporal patterns of conversion from native vegetation to
agricultural land have also been reported in other savanna regions, especially under
demographic pressure and in contexts of limited land governance [64,65]. In East Africa, a
study applied a hybrid ANN-CA-Markov modeling framework in Ethiopia, successfully
predicting land use transitions driven by both natural and anthropogenic factors [33]. These
interregional studies demonstrate that the processes identified in the Brazilian Cerrado are
part of broader global transformations affecting tropical savannas, reinforcing the global
relevance of this research and highlighting the importance of predictive geomatic modeling
to support more sustainable land management.

In this context, recent debates on amendments to the Brazilian Forest Code have
emphasized the relaxation of environmental protection regulations, which may lead to
increased deforestation, especially affecting remnant grassland vegetation. For example,
Bill no. 364/2019 [69], if approved, would allow the use of over 50% of the Pantanal, 32% of
the Pampas, and 7% of the Cerrado. This political context makes the modeling presented in
this study even more relevant, as approximately 2.0 million hectares of grassland formations
with significant conversion probability to agricultural use were identified in the Southern
Maranhao Mesoregion, areas crucial for aquifer recharge and biodiversity maintenance.
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On the other hand, emerging policies such as the National Program for the Conver-
sion of Degraded Pastures into Sustainable Agricultural and Forestry Production Systems
(PNCPD) [70] offer concrete pathways to reduce pressure on natural areas by promoting
productive and ecological recovery of degraded pastures. Considering that the Southern
Maranhao Mesoregion has just over 1% of its pastures in degraded condition [63], incen-
tivizing the adoption of this program could be an effective strategy to reduce deforestation
associated with agricultural expansion.

Based on the results of this research, it is recommended that public policies aimed at
territorial management in the Cerrado and other tropical savannas prioritize: (i) the use of
predictive spatial modeling, such as that developed here, to support ecological-economic
zoning and guide the allocation of new productive activities, ensuring the preservation
of native vegetation remnants; (ii) strengthening regulatory and economic instruments
that encourage the recovery of degraded areas through sustainable production systems,
avoiding the replacement of native areas; (iii) integrating geospatial and socioeconomic
information into management plans and sectorial policies for more effective and territori-
ally targeted decisions; (iv) critically reviewing and restricting legislative proposals that
relax environmental norms, preventing setbacks that compromise biome conservation,
especially in environmentally sensitive areas identified by the model; and (v) promoting
community participation and strengthening local governance for environmental monitoring
and enforcement.

The modeling framework developed in this study could be extended to other savanna
regions in Brazil and other countries. Naturally, it would be necessary to adapt the input
datasets and recalibrate the model parameters to local conditions. Future research should
simulate land use and land cover changes under diverse socioeconomic and policy scenarios
to support strategic planning and environmental conservation. Expanding this approach
will enable the identification of vulnerable areas, deforestation hotspots, and priority zones
for sustainable management, thereby broadening the application of geospatial modeling in
agro-environmental monitoring. Furthermore, future studies should examine the pressures
of agricultural expansion on protected areas and adjacent landscapes, addressing social,
economic, and environmental factors such as deforestation, land speculation, infrastructure
development, logistics, and public asset management.

Additionally, refining and testing alternative land use scenarios within various so-
cioeconomic and institutional frameworks, integrating the model proposed here, will be
critical. These efforts should assess the impacts of conservation policies, economic incen-
tives, and regulatory changes, especially in regions facing intense agricultural expansion.
This research will enhance the identification of vulnerable regions, improve public policy
assessments, and guide sustainable land management practices, strengthening the integra-
tion between geospatial modeling and decision-making processes to balance production
and conservation in tropical biomes.

5. Conclusions

The results of this study underscore the critical role of advanced geospatial technolo-
gies and machine learning in providing accurate and reliable insights into land use and land
cover dynamics in the Cerrado biome in Brazil. By integrating remote sensing data, spatial
analysis, and predictive modeling, this research generated georeferenced information that
supports informed decision-making (public and private), effective agro-environmental
monitoring, and sustainable resource management. The thematic maps produced, using the
Random Forest algorithm, revealed clear spatial patterns of vegetation loss and agricultural
expansion, offering valuable guidance for identifying vulnerable areas and prioritizing
conservation and land management efforts.
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The analysis of land use and land cover dynamics in the study area revealed that,
although the natural Cerrado vegetation (forests, grasslands, and savanna formations) still
covers more than 75% of the area, significant losses were observed during the analyzed
period, primarily in savannas converted into agricultural areas and, to a lesser extent,
pastures. Grasslands showed relative stability, while agricultural expansion led among the
anthropogenic classes, followed by pastures and silviculture.

Projections up to 2030, considering pessimistic scenarios without natural regeneration,
indicate that the proximity to already converted areas increases the likelihood of further
conversions, highlighting that factors such as proximity to roads have a lesser influence in
this region due to the consolidation of agriculture near major roads. The model suggests a
continued trend of natural vegetation conversion, with projected loss rates between 10%
and 13%, similar to those observed over the past three decades, with pasture expansion
exerting the greatest pressure on the Cerrado in southern Maranhao state, followed by
agricultural areas, and lesser pressure from silviculture.

Given the discussion presented, future studies should be expanded through new
analyses that incorporate alternative classification methods, class separability criteria, and
parameter adjustments, considering the high diversity of land use in the Cerrado biome.
Additionally, future research should include the analysis of regeneration processes and
optimistic scenario modeling, adopting land cover patterns with lower conversion rates or
incorporating calibration based on conservation units, aiming to mitigate the impacts of
agricultural expansion and conserve biodiversity in rapidly changing landscapes.

Author Contributions: Conceptualization, PR.M.P. and ELB,; methodology, PR.M.P. and E.LB.;
formal analysis, PRM.P,, E.LB., EWD.C., T.CS.R., MSFF and EVB,; investigation, PR.M.P,;
resources, PRM.P. and E.L.B.; data curation, PRM.P, E.L.B., EW.D.C., T.C.S.R,, M.S.EF. and E.V.B,;
writing—original draft preparation, PR.M.P,; writing—review and editing, PR M.P, ELB.,EWD.C,
T.C.S.R., M.SEF. and E.V.B;; visualization, PRM.P, E.L.B., EW.D.C., TC.S.R.,, M.S.EF. and E.V.B,;
supervision, E.LB,; project administration, PR.M.P. and E.LB,; funding acquisition, PR.M.P. and
E.L.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CAPES—Coordination for the Improvement of Higher
Education Personnel /Doctoral Scholarship (P.R.M.P.), National Council for Scientific and Techno-
logical Development (CNPq)/Research Productivity Fellowship (Grant #302963/2025-1) (E.L.B) and
FAPESP—Sao Paulo Research Foundation (Grant #2019/26222-6 and #2022/09319-9) (E.L.B.).

Data Availability Statement: The data presented in this study are available upon request to the
corresponding author.

Conflicts of Interest: Author E.L.B. was employed by the public company Brazilian Agricultural
Research Corporation. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

The following abbreviations are used throughout this manuscript for clarity and consistency:

AC Built-up Area

AGR Agriculture

CH Water

CSR Remote Sensing Center, Federal University of Minas Gerais

Dinamica EGO  Environment for Geoprocessing Objects (software version 8.3.0)
DIS Distance

EVI Enhanced Vegetation Index

FC Grassland Formations

FF Forest Formations
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FS Savanna Formations
GDP Gross Domestic Product
GIS Geographic Information Systems
LULC Land Use and Land Cover
MATOPIBA Region formed by the states of Maranhao, Tocantins, Piaui, and Bahia
Mha Million Hectares
MMU Minimum Mapping Unit
NDVI Normalized Difference Vegetation Index
NDBI Normalized Difference Built-up Index
NDWI Normalized Difference Water Index
PAS Pasture
PCA Principal Component Analysis
PRODECER Japanese-Brazilian Cooperation Program for the Development of the Cerrado
RF Random Forest
SAVI Soil-Adjusted Vegetation Index
SE Exposed Soil
SIL Silviculture
UFMG Federal University of Minas Gerais
USGS United States Geological Survey
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