

Article

Tritrophic Interactions Among Fruit Flies (Diptera: Tephritidae), Its Parasitoids and Cultivated and Wild Hosts in the Pampa Biome, Rio Grande do Sul, Brazil

Emily S. Araujo ^{1,*}, Alexandra P. Krüger ¹, Maria V. Calvo ², Marcos H. F. Telles ^{1,3}, Alexandre M. Neumann ¹, Iris B. Scatoni ², Valmir A. Costa ⁴, Dori E. Nava ⁵, José M. Mirás-Avalos ^{6,*} and Flávio R. M. Garcia ¹

- Departamento de Ecologia, Zoologia e Genética, Instituto Biológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil; flavio.garcia@ufpel.edu.br (F.R.M.G.)
- Departamento de Protección Vegetal, Facultad de Agronomía, Universidad de la República de Uruguay, Montevideo 12900, Uruguay
- ³ Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria 97205-900, RS, Brazil
- ⁴ Centro Avançado de Pesquisa e Desenvolvimento em Sanidade Agropecuária, Instituto Biológico, Campinas 13086-900, SP, Brazil
- Embrapa Clima Temperado, Pelotas 70770-901, RS, Brazil
- Misión Biológica de Galicia del Consejo Superior de Investigaciones Científicas (MBG-CSIC), Sede Santiago de Compostela, Avda. de Vigo s/n, 15705 Santiago de Compostela, Spain
- * Correspondence: araujosemily@gmail.com (E.S.A.); jmmiras@mbg.csic.es (J.M.M.-A.)

Abstract

Fruit fly (Diptera: Tephritidae) species are a serious threat for fruit-growers worldwide. The parasitoids (Hymenoptera) are natural enemies of these flies. In this context, the aim of this work was to assess fruit infestation by tephritid flies, both in native and exotic fruit trees, in the Southern region of Rio Grande do Sul (Brazil). Moreover, the incidence of native parasitoids on fly larvae was estimated. Fruits with signals of attack by fruit flies were collected randomly both in the trees and on the ground. From 2013 to 2015, a total of 5729 fruits (194.48 kg) were collected, corresponding to 34 tree species from 16 botanical families. Fruits were taken to the laboratory, individualized, weighted and kept in vermiculite for pupae emergence. Pupae were counted and emerged adults were counted and identified. The association between fruit flies, hosts and parasitoids was determined when only a given species of tephritid emerged. Half of the sampled fruit tree species presented infestation by flies. The main species of tephritid fly was Anastrepha fraterculus. This study showed that natural parasitism rates of fruit flies were low; however, several parasitoid species from the Figitidae and Braconidae families were detected, including Aganaspis pelleranoi, Doryctobracon areolatus, Doryctobracon brasiliensis, Opius bellus, Utetes anastrephae, and Cerchysiella insularis.

Keywords: Anastrepha fraterculus; ecosystem services; Hymenoptera; natural parasitism

check for **updates**

Academic Editor: Wanxue Liu

Received: 18 July 2025 Revised: 19 September 2025 Accepted: 21 September 2025 Published: 23 September 2025

Citation: Araujo, E.S.; Krüger, A.P.; Calvo, M.V.; Telles, M.H.F.; Neumann, A.M.; Scatoni, I.B.; Costa, V.A.; Nava, D.E.; Mirás-Avalos, J.M.; Garcia, F.R.M. Tritrophic Interactions Among Fruit Flies (Diptera: Tephritidae), Its Parasitoids and Cultivated and Wild Hosts in the Pampa Biome, Rio Grande do Sul, Brazil. *Agriculture* 2025, 15, 1993. https://doi.org/10.3390/agriculture15191993

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Fruit flies (Tephritidae) are one of the main pests attacking temperate fruit trees worldwide, remaining an important challenge to plant health as they limit fruit production [1]. In the Neotropical region, from the south of the United States to the north of Argentina, the genus *Anastrepha* Schiner is the most abundant among the family Tephritidae [2]. Brazil has more than 120 species of *Anastrepha*, 10 of which cause economic losses [1,3].

The state of Rio Grande do Sul (RS) is the main producer of temperate fruits in Brazil, as in 2023 it accounted for 65.2%, 47.5% and 46.8% of total peach, pear and apple production in the country [4]. Most of the fruit tree orchards in this state are located within the Pampa Biome, an ecosystem that extends over an area of approximately 700,000 km² of mainly plain lowlands, shared between Argentina, Brazil and Uruguay [5,6]. In Brazil, it covers the southernmost end of the country, representing about 176,000 km² in RS, approximately 63% of the area of the state [6–8].

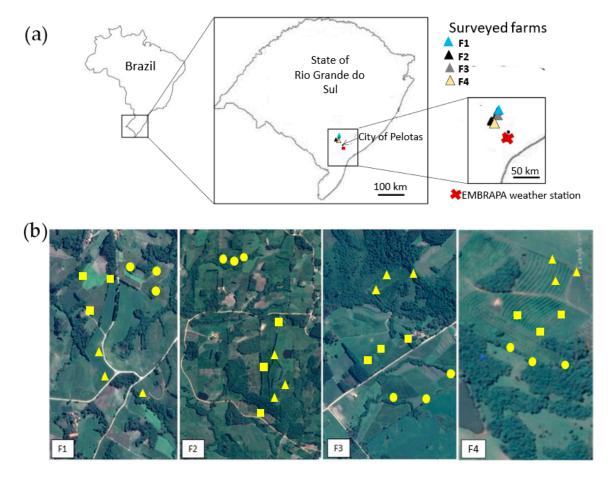
In RS, there are 17 registered species of the genus *Anastrepha* and the species *Ceratitis capitata* [9–15]. The South American fruit fly *Anastrepha fraterculus* (Wiedemann, 1830) is the most frequent and abundant pest in the orchards of the south of Brazil, especially in the southern half of RS [16,17]. Hymenoptera are the most important natural enemies in the control of larvae of frugivorous dipterans, especially the parasitoids of the subfamilies Eucoilinae (Figitidae) and Opiinae (Braconidae) [13,18,19]. There are seven species of parasitoid hymenoptera associated with fruit flies in RS [20–22]. However, the populations of flies and their associated natural enemies are affected by habitat structure [23,24]. The distribution and abundance of plant hosts, landscape around the orchards and essential resources strongly influence the behavior, population dynamics and abundance of these insects [25].

In Brazil, several studies of Tephritidae fruit flies, hosts and parasitoids have been carried out in different locations under diverse habitat and climate conditions [26–30], showing that specimens of Braconidae and Figitidae have potential for being used as biological control agents of fruit flies [13,19,31–33]. Therefore, understanding the abundance and parasitism level of these species is essential to design efficient biocontrol programs.

Considering that all the main temperate fruits are susceptible to the damages caused by these frugivorous tephritids [34] and that changes in the exploitation of ecological niches may occur, the objective of the current study was to assess the degree of infestation and natural parasitism in wild and cultivated fruits commonly attacked by fruit flies, as well as to provide more detailed information on the diversity and abundance of parasitoids in peach-growing areas in the Rio Grande do Sul State (Brazil). In this work, we documented (i) tritrophic interactions among hosts, fruit flies and their parasitoids and (ii) infestation rates by systematically collecting fruits over three growing seasons (2013–2015) in peach orchards adjacent to patches of native vegetation.

2. Materials and Methods

2.1. Study Sites


This survey was conducted in the South of the Rio Grande do Sul State (Brazil), specifically in the localities of Pelotas, Capão do Leão and Morro Redondo (Figure 1). These areas are located within the Pampa Biome [5,6].

According to the Köppen classification system [35], the study area is within the 'Cfa' (without dry season and hot summer) climate region, where average temperatures in the coldest months, July and August, are approximately 11.4 °C. During the warmest months, December and January, the average temperature is around 22.6 °C [36].

Specifically, we conducted the surveys in four commercial farms (Figure 1 and Table 1). Two of these orchards were located in Pelotas (Orchard F1: 31°25.931′ S and 52°32.870′ W; Orchard F2: 31°29.807′ S and 52°32.573′ W) and two in Morro Redondo (Orchard F3: 31°36.636′ S and 52°40.383′ W; Orchard F4: 31°33′57″ S and 52°38′41.93″ W). Each farm had early-, average- and late-maturing peach cultivars (Figure 1). F1 comprised 28.2 ha devoted to peach production, consisting of early- (Precocinho), average- (Maciel) and late-maturing (Eldorado) cultivars (Table 1). F2 comprised 15.92 ha allocated to peach production, with cultivars Bonão (early), Esmeralda (average) and Jubileu (late-maturing). The third area (F3)

Agriculture **2025**, 15, 1993 3 of 17

was 12.73 ha in surface and included early- (cv. Precocinho), average- (cv. Granada) and late-maturing (cv. Maciel) cultivars. Finally, F4, with 6 ha, had early- (cv. Libra), average- (cv. Sensação) and late-maturing (cv. Santa Aurea) cultivars. In these farms, phytosanitary management was carried out using a conventional protection strategy to control tephritid fruit flies, and the trees were subjected to 4–5 broad-spectrum insecticide treatments against fruit flies per growing season. In addition, protection was complemented by toxic baits containing hydrolyzed protein (3%) and an organophosphate insecticide (Malathion 1000 CE, Sifatec, Tlalnepantla, Mexico, 200 mL in 100 L) set on the orchard edges.

Figure 1. Location of the four study farms (F1 to F4) and the closest EMBRAPA weather station within the Rio Grande do Sul State in Brazil (a). Aerial views of the study farms: yellow squares, triangles and circles indicate the location of the traps for the early-, medium- and late-maturing peach cultivars, respectively (b).

Table 1. Distance (mean \pm standard error) between traps (m) and area (ha) of orchards in Pelotas (F1 and F2) and Morro Redondo (F3 and F4) as a function of the duration of the peach-growing cycle.

Farm	Distan	ice Between Tr	Area of Orchard Devoted to Peach Production (ha)			
	Early	Average	Late	Early	Average	Late
F1	331 ± 58.1	661 ± 124	143 ± 28.0	14.18	12.68	1.34
F2	236 ± 43.2	188 ± 5.3	160 ± 19.5	6.24	4.48	5.20
F3	204 ± 1.1	187 ± 36.2	174 ± 29.6	3.25	3.72	5.76
F4	70 ± 1.3	100 ± 2.0	50 ± 5.7	1.7	2.5	1.8

Agriculture **2025**, 15, 1993 4 of 17

2.2. Sampling of Tephritid Fruit Flies Using Traps

In total, 36 McPhail traps were installed (9 per orchard), each with 400 mL of food bait, containing 5% hydrolyzed corn protein (Bionastrepha[®]). The traps were located at the edges of the peach orchards in each municipality. The distance between traps depended on both the surface of the orchard and the location of the different cultivars within each orchard (Table 1).

Monitoring of the traps was conducted weekly, from August 2011 to August 2014, yielding a total of 157 sampling dates in 3 peach orchards (F1, F2 and F3) and from October 2013 to March 2016 in the fourth peach orchard (F4), for a total of 120 sampling dates. At each inspection, the contents of the traps were poured onto a sieve and subsequently stored in plastic containers. The traps were then washed and the food bait replaced. The traps were subsequently reattached to the trees.

The captured insects were stored in labeled (place and data of collection) containers with 70% ethanol and were transported to the Laboratory of Ecology of Insects (LABEI), located at the Institute of Biology, Zoology and Genetics of the Federal University of Pelotas, RS (Brazil). The fruit fly specimens of the genus *Anastrepha* Schiner were sexed and identified using the keys of Zucchi [3]. Characteristics of the females, primarily of the aculeus, body and wing markings, were considered. For males, just the genus was confirmed because they do not present morphological characteristics for their specific recognition [3].

2.3. Fruit Sampling

Fresh fruits (either peaches or non-cultivated fruits) were collected fortnightly from September 2013 to December 2015, according to the fruiting season of each plant species (Table 2). Peach trees were the only cultivated species in the study area; the remainder of the species surveyed were wild trees. Fruits from each species were collected according to their availability in each area.

Table 2. Fruiting season of primary and secondary vegetal hosts of fruit flies in the Pelotas region in Rio Grande do Sul (Brazil). Samplings were conducted between 2013 and 2015. Primary and secondary hosts were defined according to Aluja et al. [37].

Family/Species	Fruiting Season ¹											
ranniy/Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Moraceae												
Ficus carica					S	S	S	S	S	S	S	S
Myrtaceae												
Acca sellowiana				P								
Campomanesia xanthocarpa											P	P
Eugenia uniflora		P	P							P	P	
Psidium cattleianum		P	P	P								
Psidium guajava			P	P	P							
Psidium longipetiolatum		P	P	P								
Passifloraceae												
Passiflora cincinnata												S
Rosaceae												
Eriobotrya japonica							P	P	P			
Fragraria $ imes$ ananassa	S	S	S	S	S		S	S	S	S	S	S
Prunus persicae	P									P	P	P
Rubus sp.	S										S	S

Agriculture **2025**, 15, 1993 5 of 17

Table	2.	Cont.

Family/Species	Fruiting Season ¹											
ranniy/Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Rutaceae												
Citrus aurantium subsp. Bergamia				S	S	S	S	S	S	S	S	S
Citrus sinensis				S	S	S	S	S	S	S	S	S
Solanaceae Ciphomandra betacea Vassobia breviflora					S							S

¹ Primary vegetal host (P) and secondary host (S).

At each sampling date, ripe fruits were randomly collected directly from the trees (canopy samples). Moreover, recently fallen fruits that were in good condition (whole fruits, with no signs of rotting) were collected directly from the soil (ground samples) [38]. Canopy and ground samples were handled separately to determine if they differed in parasitoid species [39]. Peach fruits were collected within orchards while those fruits from non-cultivated hosts were collected in non-cropped areas.

The fruits were labeled, packed in plastic bags and sent immediately to the Insect Ecology Laboratory at the Federal University of Pelotas, RS, for observing possible infestation by fruit flies and their consequent species identification. Additionally, leaf and flower samplings of the fruit trees were collected for their botanical identification at the Botany Department of the Federal University of Pelotas.

In the laboratory, fruit samples were counted, weighed individually, and arranged individually on 500 mL plastic pots containing vermiculite, which served as a pupation substrate. After this, the plastic pots were covered with voile fixed with elastic tape and were maintained at 25 °C. Each fruit remained in the pot until the larvae left them (approximately 25 days) to recover pupae, which were kept in plastic containers (8 cm diameter) with vermiculite and a voile cover until the emergence of adults [36]. Every three days, the vermiculite was examined, and the puparia were removed using spatulas. The samples were discarded after 30 days. The flasks containing the puparia were kept in chambers under controlled conditions: temperature (26.5 \pm 0.5 °C), relative humidity (70 \pm 5%) and photophase (12 h). Flasks were checked and moistened daily with distilled water. After the adult insects emerged, they were stored in labeled flasks containing 70% ethanol for subsequent identification [29].

2.4. Identification of Parasitoids

The parasitoids were identified according to Noyes [40] for the determination of the genus, Guimarães et al. [41] for Eucoilinae, and Wharton and Yoder [42] for Braconidae. The associations among fruit fly/host plant/parasitoid were only recorded if the parasitoid emerging from a fruit was only one species of Tephritidae [43]. The parasitoids collected directly from the traps were not considered in this work.

2.5. Infestation and Parasitism Rates, Data Analysis

Fruit infestation indexes were calculated according to Marsaro Júnior et al. [44]: (1) by dividing the total number of puparia obtained by the number of fruits in the sample (puparia/fruit) and (2) by dividing the total number of puparia by the total mass (kg) of fruits in the sample (puparia/kg of fruit).

Agriculture **2025**, 15, 1993 6 of 17

The pupae viability in each host was calculated as the total number of fruit flies plus the total number of parasitoids divided by the number of pupae and was expressed in percentage.

The total parasitism index was expressed as follows: total parasitoid number \times 100/number of flies + total parasitoid number [45]. The specific parasitism index in each vegetal host was calculated as follows: number of parasitoids of a given species \times 100/total number of parasitoids [46].

Data on the number of pupae per host was checked for normality using the Shapiro–Wilk test and q-q plots. The homoscedasticity assumption was checked using the Bartlett test. Data did not meet the normality and homoscedasticity assumptions. Therefore, non-transformed data were analyzed using Kruskal–Wallis, a non-parametric test, followed by Dunn's post hoc test (p < 0.05) with Benjamini–Hochberg adjustment [47] (dunn.test package) to discern differences among plant hosts.

3. Results

3.1. Fruit Flies Captured in the Traps

Between August 2011 and March 2016, 1071 males of *Anastrepha* sp., 2091 females of *A. fraterculus*, 10 males and 20 females of *C. capitata*, 2 males and 2 females of *Anastrepha daciformis* Bezzi, and 1909 males and 6 females of *Anastrepha luederwaldti* Lima were recovered from the traps.

3.2. Infestation Indices of Fruits Flies

A total of 5729 fruits were collected during the sampling campaigns (September 2013 to December 2015), amounting to 194.48 kg, most of them from *P. persica*, followed by *C. sinensis* and *P. guajava* (Table 3).

Table 3. Units and weight (kg) of vegetal host species collected from soil and from tree canopy in the Pampa Biome, Rio Grande do Sul (Brazil), between 2013 and 2015.

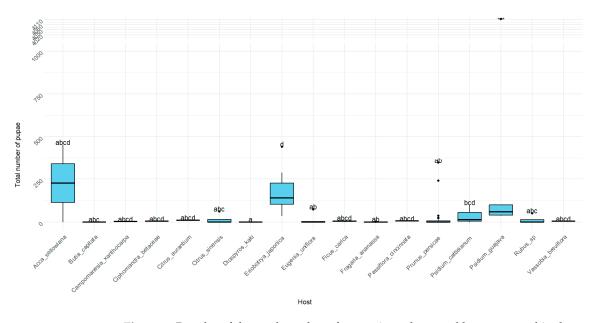
Fruit Tree Species	Fruits Collected from the Soil			ected from the Canopy	Total	Total Units	
•	Units	Weight (kg)	ght (kg) Units Weight (l		Weight (kg)		
Anarcadiaceae							
Lithraea brasiliensis	0	0	450	0.45	0.45	450	
Arecaceae							
Butia capitata	99	1.19	0	0	1.19	99	
Ebenaceae							
Diospyros kaki	0	0	36	4.3	4.3	36	
Erythroxylaceae							
Erythroxylum argentinum	0	0	0	0	0	0	
Euphorbiaceae							
Ricinus communis	0	0	108	0.22	0.22	108	
Fabaceae							
Sesbania punicea	0	0	8	0.32	0.32	8	
Melatomataceae							
Leandra sp.	0	0	200	0.2	0.2	200	

Agriculture **2025**, 15, 1993 7 of 17

Table 3. Cont.

Fruit Tree Species		ected from the Soil		ected from the Canopy	Total	Total Units
1	Units	Weight (kg)	Units	Weight (kg)	Weight (kg)	10001 01110
Moraceae						
Ficus carica	0	0	32	0.37	0.37	32
Myrtaceae						
Acca sellowiana	72	2.48	110	3.1	5.58	182
Campomanesia xanthocarpa	0	0	51	0.16	0.16	51
Eugenia uniflora	42	0.1	35	0.72	0.82	77
Psidium cattleianum	231	0.61	83	1.96	2.57	314
Psidium guajava	0	0	135	17.66	17.66	135
Psidium longipetiolatum	200	1.19	152	1.74	2.93	352
Syzygium jambolanum Passifloraceae	10	0.003	185	0.26	0.263	195
	0	0	114	1.39	1.39	114
Passiflora cincinnata Phytolaccaceae	0	0	114	1.39	1.39	114
Rivina humilis	0	0	150	0.15	0.15	150
Rosaceae	U	U	130	0.13	0.13	130
	0	0	8	0.17	0.17	8
Cydonia oblonga	0	_			1.40	o 132
Fragaria × ananassa	0 52	0	132	1.40 10.37	1.40	949
Eriobotrya japonica		0.41	897	72.83	10.78	1086
Prunus persica	453	41.67	633			
Rubus sp.	0	0	192	0.81	0.81	192
Rubiaceae	0	0	107	0.17	0.17	107
Coffea arabica	0	0	137	0.17	0.17	137
Rutaceae						
Citrus arantium subsp. bergamia	0	0	24	2.45	2.45	24
Citrus sinensis	77	9.36	118	15.12	24.48	195
Sapindaceae						
Alophylus edulis	0	0	3	0.003	0.003	3
Cupania vernalis	0	0	340	0.66	0.66	340
Matayba sp.	0	0	0	0	0	0
Solanaceae						
Cyphomandra betacea	0	0	12	0.29	0.29	12
Solanum americanum	6	0.012	0	0	0.012	6
Solanum sp.	0	0	5	0.01	0.01	5
Physalis sp.	0	0	52	0.12	0.12	52
Vassobia breviflora	0	0	85	0.05	0.05	85
Total	1242	57.03	4487	137.45	194.48	5729

From the total of 7397 puparia recovered from these samples, 4270 specimens of Tephritidae flies were obtained (Table 4). Infestation was recorded in 37.5% of the 32 plant species sampled (Table 4). In Myrtaceae, the number of pupae per fruit varied from 0.03 in *C. xanthocarpa* to 11.2 in *P. guajava*, while in the Rosaceae family it was lowest in $Fragaria \times ananasa$ with 0.004 and highest in *E. japonica* with 1.40 (Table 4). The percentage


Agriculture **2025**, 15, 1993 8 of 17

of pupae emergence varied among plant species, from 0% in *P. cincinatta*, *C. arantium*, and *V. breviflora*, to more than 90% in *E. uniflora* and *Fragaria* \times *ananassa* (Table 4).

Table 4. Number of pupae, percentage of pupae emergence and ratios of pupae per fruit and per kg of fruit, as well as total number of flies and sex ratio in different plant host species in the Region of Pelotas, Rio Grande do Sul (Brazil), between 2013 and 2015.

Fruit Tree Species	Pupae	% Pupae Emergence	Pupae/Fruit	Pupae/kg of Fruit	Total Number of Flies	Sex Ratio
Moraceae						
Ficus carica	8	62.50	0.15	19.6	5	0.29
Myrtaceae						
Acca sellowiana	495	86.06	1.43	42.2	426	0.36
Campomonesia xanthocarpa	2	50.00	0.05	12.3	1	0.50
Eugenia uniflora	74	93.24	0.39	112.0	69	0.30
Psidium cattleianum	221	76.02	0.73	86.5	168	0.32
Psidium guajaba	4341	57.80	11.20	115.0	2509	0.33
Psidium longipetiolatum	135	83.70	0.80	46.1	113	0.52
Passifloraceae						
Passiflora cincinnata	6	0	0.05	4.3	0	0
Rosaceae						
Fragaria $ imes$ ananassa	1	100	0.004	0.5	1	0
Eriobotrya japonica	1201	52.54	1.40	139.0	631	0.44
Prunus persica	740	37.30	0.69	9.2	276	0.32
Rubus sp.	50	10	0.31	35.0	5	0.29
Rutaceae						
Citrus arantium subsp. bergamia	10	0	0.42	4.1	0	0
Citrus sinensis	105	61.90	0.34	3.2	65	0.34
Solanaceae						
Cyphomandra betacea	4	25	0	13.8	1	0
Vassobia breviflora	4	0	0.04	61.6	0	0

Although the average number of pupae per fruit was not significantly different among vegetal hosts (p-value > 0.05), the total number of pupae per fruit did significantly differ (p-value < 0.001) due to the large numbers found in P. guajava (Figure 2).

Figure 2. Boxplot of the total number of pupae in each vegetal host surveyed in the current study. Different letters on the boxes indicate significant differences among hosts according to Dunn's test (p < 0.05).

Agriculture **2025**, 15, 1993 9 of 17

In this study, the fruit fly species recovered from fruits were *A. fraterculus* (in 99.6% of the infested fruits) and *C. capitata*, whose individuals were recovered in fig (*Ficus carica* L.) and orange (*Citrus sinensis* (L.) Osbeck). The highest number of adult fruit flies was recovered from fruits of *P. guajava* (2509 individuals), while no adults were recovered from fruits of *P. cincinatta*, *V. breviflora* and *C. aurantium* (Table 4). Sex ratio differed among fruit species (Table 4).

3.3. Parasitoids

Nine species of parasitoids were recovered from the samples (some of them depicted in Figure 3) and they were distributed in the following families: Figitidae—*Aganaspis pelleranoi* (Brèthes, 1924) and *Odontosema albinerve* (Kieffer, 1909); Braconidae—*Doryctobracon areolatus* (Szépligeti, 1911), *Opius bellus* (Gahan, 1930), *Utetes anastrephae* (Viereck, 1913), and *Doryctobracon brasiliensis* (Szépligeti, 1911); Encyrtidae—*Cerchysiella insularis* (Howard, 1897); and Pteromalidae—*Theocolax elegans* (Westwood, 1874) and *Anisopteromalus calandrae* (Howard, 1881). These parasitoids were recovered from the fruit fly pupae that emerged from the collected fruits.

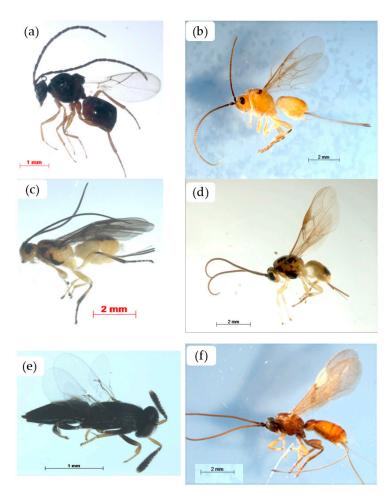
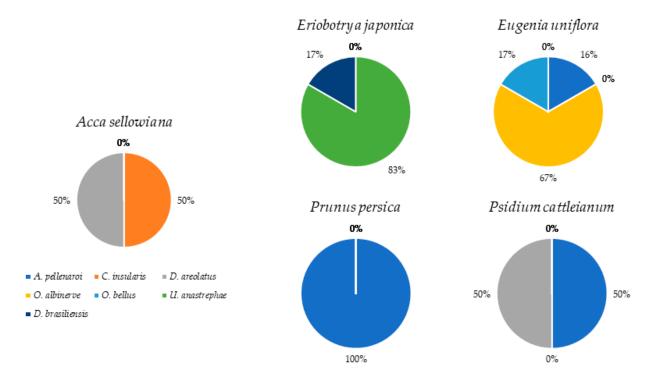


Figure 3. Parasitoid species identified in the South region of Rio Grande do Sul, RS, Brazil: (a) *Aganaspis pelleranoi* (Brèthes 1924), (b) *Doryctobracon areolatus* (Szépligeti, 1911), (c) *Opius* (*Bellopius*) bellus (Gahan, 1930), (d) *Utetes anastrephae* (Viereck, 1913), (e) *Cerchysiella insularis* (Howard, 1897), and (f) *Doryctobracon brasiliensis* (Szépligeti, 1911).


Despite the wide range of plant hosts surveyed in the current study, parasitoids were recovered only from five species of plants: *A. sellowiana*, *E. japonica*, *E. uniflora*, *P. cattleianum*, and *P. persica* (Table 5). The number of parasitoids recovered was low. An association between *A. fraterculus* and all the parasitoid species recovered in the current study was

confirmed (Table 5), except for the two Pteromalidae. The latter were only recovered from fruits of *E. uniflora*. In this study, we detected the association between *A. fraterculus* (fruit fly) and *C. insularis* (parasitoid) in *A. sellowiana* (vegetal host) for the first time. Moreover, *T. elegans* was detected for the first time outside the São Paulo state, with this being its first record in RS.

Table 5. Plant host species, site and parasitoid species associated with *Anastrepha fraterculus* recovered from fallen fruits and from fruits still on the tree in the Region of Pelotas, Rio Grande do Sul (Brazil), between 2013 and 2015.

Fruit Tree Species	Site	Parasitoid Species		Recovered len Fruits	Parasitoids Recovered from Fruits Still on the Tree		
			Total No.	kg Fruit	Total No.	kg Fruit	
A 11 '	Pelotas	Doryctobracon areolatus	2	2.4775	3	2.8718	
Acca sellowiana	Pelotas	Cerchysiella insularis	5				
	Morro Redondo	Aganaspis pelleranoi		0.0471	1	0.3615	
Eugenia uniflora	Pelotas	Opius (Bellopius) bellus			1	0.11634	
	Pelotas	Odontosema albinerve	4	0.01075	0	0.07462	
D '1' (11 '	D 1 (Aganaspis pelleranoi	2	1.50363	0	1.62486	
Psidium cattleianum	Pelotas	Doryctobracon areolatus	2	0.35932	0	0.54765	
Twishelmer issuesies	Pelotas	Utetes anastrephae	0	0.4507	5	9.5729	
Eriobotrya japonica	Pelotas	Doryctobracon brasiliensis			1	1.1083	
Prunus persica	Pelotas	Aganaspis pelleranoi	1	6.2314	0	0.3795	

The total parasitism was 29.6% for *E. uniflora*, 2.38% for *P. persica*, 2.32% for *A. sellowiana*, 0.68% for *P. cattleianum*, and 0.31% for *E. japonica*. The specific parasitism differed among plant hosts (Figure 4). At least two parasitoid species were recovered from the plant hosts, except for *P. persica* in which only one parasitoid species was found.

Figure 4. Specific parasitism in vegetal hosts of fruit flies in the Pampa Biome in Rio Grande do Sul, Brazil, between 2013 and 2015.

4. Discussion

4.1. Sampling of Fruit Flies with Traps

Anastrepha fraterculus was the main species of fruit fly detected in the current study, which is consistent with previous observations in this region that showed that *A. fraterculus* was responsible for 90.5% of all fruit fly infestations [13]. In the current survey, the fruit fly *C. capitata* was found in exotic hosts such as *Ficus carica* and *Citrus sinensis*. The infestation of *C. capitata* has been observed in the southern part of the RS State in exotic and native fruits [13,14]. Infestations of *C. capitata* in *Ficus carica* in this region were observed for the first time, although to a lower extent than infestations by *A. fraterculus*. Although *A. fraterculus* and *C. capitata* were frequently collected in monitoring traps, other flies were recovered rarely as *A. luederwaldti* and *A. deciformis*. These last two species have been previously reported in the southern part of RS [15,22]. However, the presence of the latter two species is residual, and they have no economic importance, as they do not constitute a pest due to their low population densities. The placement of the traps in the current study allowed us to verify the presence of these less abundant species, which make up part of the local biodiversity. However, it must be borne in mind that the intention of the traps was not for controlling pest populations.

4.2. Infestation Indices of Fruit Flies

The South American fruit fly and Mediterranean fly are polyphagous species, so they exploit a wide range of plant species [24,37]. Despite the diversity of hosts in which the fruit fly can develop, there is a proven preference among the infested fruits, with it being possible to classify them as primary and secondary [37]. In the current study, the highest infestation rates were observed in Myrtaceae and Rosaceae fruits, as previously reported for this region [13,48,49]. Among the species of the Rosaceae family, *Eriobotrya japonica* and *Prunus persica* presented the highest rates of infestation, similarly to those reported by Nunes et al. [13]. In addition, some infestation was observed in fruits of *Diospyros kaki* in the current study, contrasting with previous reports [13].

These results can be partially explained by the stimulating effect of Myrtaceae plants on fruit flies, which are guided to their hosts by chemical stimuli [24,37,50,51], as evidenced in laboratory studies in which volatile compounds from *E. uniflora*, *C. xanthocarpa* and *P. cattleianum* have caused the greatest electroantennographic responses in *A. fraterculus* females and males [52]. Studies in *P. guajava* and *P. cattleianum* extracts revealed the presence of eight bioactive substances in male antennae and seven in female antennae [53,54].

In the current work, high rates of infestation were recorded in *A. selloviana*, as previously reported [13,49]. The fruits of this plant remain green until harvest, but color is not a determinant factor for oviposition [52]. In contrast, a combination of physical and chemical factors, as well as fruit fly density per host, seems to be determinant at the time of oviposition. In a situation of high population density, or in the absence of a preferred host, there is an increase in the acceptance of hosts initially considered as secondary or even inadequate [37,55,56]. In this context, identifying secondary host plants is relevant for controlling fruit fly attacks in an efficient manner. The low rates of *A. fraterculus* infestation in *Rubus* sp. observed in this survey suggest that this plant species is a secondary host, matching results from laboratory studies in which the longest periods of oviposition, fecundity and longevity were observed for *A. fraterculus* fed on fruits of *E. uniflora* and *P. cattleianum* during the larval stage when compared to those fed on *Rubus* sp. [57]. This information suggests that the greater attractiveness of flies to hosts of the Myrtaceae family is related also to their suitability for fly development.

In the region where this survey was conducted, *C. capitata* occupies mainly niches of exotic hosts, such as orange and fig, and co-occurs with *A. fraterculus* to a lesser extent.

However, in other zones of the Rio Grande do Sul state (Brazil), *C. capitata* was found infesting more vegetal hosts than *A. fraterculus* [14]. The competitive interaction between two species can result in ecological displacements, with one or both species changing or reducing their niche until coexistence becomes possible [58]. Therefore, additional studies should be conducted to better understand the reasons that lead to the prevalence of *A. fraterculus* in relation to *C. capitata* or vice versa between geographically close regions.

4.3. Parasitism

Seven species of parasitoids were associated with A. fraterculus in this survey, but only five of them were previously recorded in Rio Grande do Sul [13,59], with C. insularis parasitizing A. fraterculus observed for the first time in this study. This species of parasitoid has been previously associated with Anastrepha suspensa [60]; however, it is mainly associated with Coleoptera (Nitidulidae) [61]. Another parasitoid species detected in the current work was D. areolatus, which was associated with A. fraterculus in P. cattleianum and A. sellowiana, as previously reported in this region [13,59] and other zones of Rio Grande do Sul state [49]. The braconid *D. areolatus* has an ovipositor longer than that of *O. bellus* [62], and has been cited by several authors as the most common parasite of tephritid flies in different plant species in Brazil [13,63–68]. For instance, Leonel Jr. et al. [69] found D. areolatus parasitizing fruit flies in 21 species of fruit trees in ten Brazilian states, including Rio Grande do Sul. Two species, A. pelleranoi and O. bellus, were associated with A. fraterculus in E. uniflora, corroborating previous reports [13,59]. In addition, *U. anastrephae* and *D. brasiliensis* were associated with A. fraterculus in E. japonica, and this association was not observed for the Pelotas region prior to the current study. In part, this association with *E. uniflora* and *E.* japonica may be related to the morphology of *U. anastrepahe* and *O. bellus*, which have a small ovipositor and therefore prefer less thick fruits [46]. In P. persica and P. cattleianum, A. pelleranoi was the parasitoid species found, as previously observed by Nunes et al. [13]. No parasitoids were recovered from *P. guajava*, in contrast with previous reports [13,59]. This parasitoid, A. pelleranoi, locates its host by vibrotaxis, being more attracted by volatiles of fruits containing tephritid larvae, showing no preference between A. fraterculus or C. *capitata* [70]. These data are relevant, since both species of flies infest the peach tree [14,64].

Another parasitoid species found in the current survey, although not associated with *A. fraterculus*, was *T. elegans*, which is a Pteromalid ectoparasitoid used to suppress the larval stage of several stored-product insect pests [71], as a biological control agent [72,73]. It has also been reported to attack coleopteran and lepidopteran pests [74]. This species, *T. elegans*, has been previously recorded in São Paulo [75], but this study represents the first record of this species in RS. The other Pteromalidae species, *A. calandrae*, is also a biocontrol agent against stored-product pests [76].

The information presented in this survey reveals a pattern of association between species of parasitoids, flies and plant hosts in the municipalities of Pelotas, Morro Redondo and Capão do Leão (RS, Brazil). A very small number of parasitoids were obtained in this survey, which can be due to the fact that fruits were collected in the surroundings and/or directly in areas of conventional production. Previous studies have shown higher abundance of parasitoids, but they were conducted in non-commercial orchards or under organic management [13,49]. The level of conservation of a given site can have significant influence on both the quantity and diversity of parasitoid species, as in the least disturbed environment the tendency is to find more species [23]. Future studies in the Pelotas region may focus on the investigation of the effect of agricultural practices, landscape and climatic effects on the parasitoid community.

Agriculture 2025, 15, 1993 13 of 17

5. Conclusions

This study assessed fruit infestation by teprhitid flies (*A. fraterculus* and *C. capitata*) in native and exotic fruit trees in the southern region of the state of Rio Grande do Sul (Brazil). Additionally, in this work, seven species of parasitoids were associated with *A. fraterculus*: *D. areolatus*, *D. brasiliensis*, *A. pellenaroi*, *O. bellus*, *U. anastrephae*, *C. insularis*, and *O. albinerve*. However, parasitism rates were low. In addition, a species of parasitoid was recorded for the first time in RS: *T. elegans*. The plant species considered as primary hosts of fruit flies were Myrtaceae (*P. guajaba*, *E. uniflora*, and *A. sellowiana*) and Rosaceae (*P. persica* and *E. japonica*). Secondary hosts include *Fragaria* × *ananassa*, *Rubus* sp., *C. aurantium*, *C. sinensis*, *F. carica*, *C. betacea*, and *V. breviflora*. Finally, the main host multipliers of parasitoids were *P. cattleianum*, *E. japonica*, *A. sellowiana*, *E. uniflora*, and *P. persica*.

Author Contributions: Conceptualization, E.S.A., I.B.S., D.E.N. and F.R.M.G.; methodology, E.S.A., D.E.N. and F.R.M.G.; formal analysis, E.S.A. and J.M.M.-A.; investigation, E.S.A., A.P.K., M.V.C., M.H.F.T., A.M.N. and V.A.C.; resources, I.B.S., V.A.C., D.E.N. and F.R.M.G.; data curation, E.S.A., V.A.C. and J.M.M.-A.; writing—original draft preparation, E.S.A. and J.M.M.-A.; writing—review and editing, all authors; visualization, E.S.A., M.H.F.T. and J.M.M.-A.; supervision, I.B.S., V.A.C., D.E.N. and F.R.M.G.; project administration, I.B.S. and F.R.M.G.; funding acquisition, E.S.A. and F.R.M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Coordination for the Improvement of Higher Education (CAPES), grant numbers 14/2013 and 60/2015.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made available by the authors on request.

Acknowledgments: The authors wish to thank the National Research Council—CNPq, FAPERGS and the Instituto Nacional de Ciência e Tecnologia dos Hymenoptera Parasitoides da Região Sudeste Brasileira (INCT-Hympar/Sudeste). The authors thank Raquel Lüdtke of the Botany Department of the Universidade Federal de Pelotas for identifying the plant species surveyed in the current study.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

RS Rio Grande do Sul F1 to F4 Farms 1 to 4

References

- 1. Garcia, F.R.M. (Ed.) Management of Fruit Flies in the Americas; Springer: Cham, Switzerland, 2024. [CrossRef]
- 2. Norrbom, A.L.; Zucchi, R.A.; Hernández-Ortiz, V. Phylogeny of the genera *Anastrepha* and *Toxotrypana* (Trypetinae: Toxotrypanini) based on morphology. In *Fruit Flies* (*Tephritidae*): *Phylogeny and Evolution of Behavior*; Aluja, M., Norrbom, A.L., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 299–342.
- 3. Zucchi, R.A. Taxonomia. In *Moscas-das-Frutas de Importância Econômica No Brasil: Conhecimento Básico e Aplicado;* Malavasi, A., Zucchi, R.A., Eds.; Holos Editora: Ribeirão Preto, SP, Brazil, 2000; pp. 13–24.
- 4. IBGE (Instituto Brasileiro de Geografía e Estatística). IBGE Web: Sistema IBGE de Recuperação Automática (SIDRA). 2025. Available online: https://sidra.ibge.gov.br/tabela/1613#resultado (accessed on 8 July 2025).
- 5. Bilenca, D.N.; Miñarro, F.O. *Identificación de Áreas Valiosas de Pastizal (AVPs) en las Pampas y Campos de Argentina, Uruguay y sur de Brasil*; Fundación Vida Silvestre: Buenos Aires, Argentina, 2004.
- 6. Poppe, J.L.; Valente, V.L.S.; Schmitz, H.J. Structure of Drosophilidae assemblage (Insecta, Diptera) in Pampa Biome (São Luiz Gonzaga, RS). *Pap. Avulsos Zool.* **2012**, *52*, 185–195. [CrossRef]

7. Collares, J.E.R. Mapa de biomas do Brasil. In *Os Avanços da Botânica no Início do Século XXI: Morfologia, Fisiologia, Taxonomia, Ecologia e Genética*; Mariath, J.E.A., Santos, R.P., Eds.; Sociedade Botânica do Brasil: Porto Alegre, RS, Brazil, 2006; pp. 336–339.

- 8. IGBE (Instituto Brasileiro de Geografía e Estatística). Biomas e Sistema Costeiro-Marinho do Brasil: Compatível como a escala 1:250000. 2024. Available online: https://www.ibge.gov.br/apps/biomas/pdf/Lim08_BiomSist.pdf (accessed on 8 July 2025).
- 9. Lutz, A.; Lima, A.M.C. Contribuição para estudos das tripaneiras (mosca-das-frutas) brasileiras. *Mem. Inst. Oswaldo Cruz* **1918**, 10, 5–16. [CrossRef]
- 10. Lima, A.D.F. Moscas de frutas do genero *Anastrepha* Schiner, 1868 (Diptera: Trypetidae). *Mem. Inst. Oswaldo Cruz* **1934**, 28, 487–575. [CrossRef]
- 11. Uramoto, K.; Zucchi, R.A. New species in the genus *Anastrepha* (Diptera: Tephritidae) from Brazil. *An. Soc. Entomol. Bras.* **1999**, 28, 85–89. [CrossRef]
- 12. Garcia, F.R.M.; Corseuil, E. Lista documentada das moscas-das-frutas (Diptera: Tephritidae) do Rio Grande do Sul, Brasil. *Acta Ambient. Catarin.* **2004**, *3*, 23–32.
- 13. Nunes, A.M.; Müller, F.A.; Gonçalves, R.S.; Garcia, M.S.; Costa, V.A.; Nava, D.E. Frugivorous flies and their parasitoids in the cities of Pelotas and Capão do Leão, Rio Grande do Sul, Brazil. *Cienc. Rural* **2012**, *42*, 6–12. [CrossRef]
- 14. Dias, N.P.; da Silva, F.F.; de Abreu, J.A.; Pazine, J.B.; Botta, R.A. Nível de infestação de moscas-das-frutas em faixa de fronteira, no Rio Grande do Sul. *Rev. Ceres* **2013**, *60*, 589–593. [CrossRef]
- 15. Uramoto, K.; Norrbom, A.L.; Zucchi, R.A. Redescription, lectotype designation and new records of *Anastrepha luederwaldti* Lima (Diptera, Tephritidae). *Zootaxa* **2016**, *4168*, 341–346. [CrossRef] [PubMed]
- 16. Garcia, F.R.M.; Corseuil, E. Análise faunística de moscas-das-frutas (Diptera: Tephritidae) em pomares de pessegueiro em Porto Alegre, Rio Grande do Sul. *Rev. Bras. Zool.* **1998**, *15*, 1111–1117. [CrossRef]
- 17. Zart, M.; Fernandes, O.A.; Botton, M. Biology and fertility life table of the South American fruit fly *Anastrepha fraterculus* on grape. *Bull. Insectol.* **2010**, *63*, 237–242.
- 18. Ovruski, S.; Aluja, M.; Sivinski, J.; Wharton, R. Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin America and the Southern United States: Diversity, distribution, taxonomic status and their use in fruit fly biological control. *Integr. Pest Manag. Rev.* **2000**, *5*, 81–107. [CrossRef]
- 19. Garcia, F.R.M.; Ovruski, S.M.; Suárez, L.; Cancino, J.; Liburd, O.E. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. *Insects* **2020**, *11*, 662. [CrossRef] [PubMed]
- 20. Borgmeier, T. Sobre alguns cynipideos parasiticos e cecidógenos do Brasil (Hymenoptera: Cynipidae). *Archos. Inst. Biol. Veg.* **1935**, 2, 97–124.
- 21. Canal, N.A.; Zucci, R.A. Parasitóides-Braconidae. In *Moscas-das-Frutas de Importância Econômica No Brasil: Conhecimento Básico e Aplicado*; Malavasi, A., Zucchi, R.A., Eds.; Holos Editora: Ribeirão Preto, SP, Brazil, 2000; pp. 119–126.
- 22. Zucchi, R.A.; Moraes, R.C.B. Fruit Flies (Diptera: Tephritidae) in Brazil-*Anastrepha* Species Their Host Plants and Parasitoids. Updated on June 2025. Available online: www.lea.esalq.usp.br/anastrepha/ (accessed on 8 July 2025).
- 23. Aluja, M.; Sivinski, J.; Van Driesche, R.; Anzures-Dadda, A.; Guillén, L. Pest management through tropical tree conservation. *Biodivers. Conserv.* **2014**, 23, 831–853. [CrossRef]
- Schliserman, P.; Aluja, M.; Rull, J.; Ovruski, S.M. Habitat degradation and introduction of exotic plants favor persistence of invasive species and population growth of native polyphagous fruit fly pests in a Northwestern Argentinean mosaic. *Biol. Invas.* 2014, 16, 2599–2613. [CrossRef]
- 25. Aluja, M.; Ordano, M.; Guillén, L.; Rull, J. Understanding long-term fruit flies (Diptera: Tephritidae) population dynamics: Implications for area wide management. *J. Econ. Entomol.* **2012**, *105*, 823–836. [CrossRef]
- Silva, J.G.; Dutra, V.S.; Santos, M.S.; Silva, N.M.O.; Vidal, D.B.; Nink, R.A.; Guimarães, J.A.; Araujo, E.L. Diversity of *Anastrepha* spp. (Diptera: Tephritidae) and associated braconid parasitoids from native and exotic hosts in Southeastern Bahia, Brazil. *Environ. Entomol.* 2010, 39, 1457–1465. [CrossRef]
- 27. Souza, A.R.; Lopes-Mielezrski, G.N.; Lopes, E.N.; Querino, R.B.; Corsato, C.D.A.; Giustolin, T.A.; Zucchi, R.A. Hymenopteran parasitoids associated with frugivorous larvae in a Brazilian Caatinga-Cerrado ecotone. *Environ. Entomol.* **2012**, *41*, 233–237. [CrossRef]
- 28. Adaime, R.; Souza, M.S.M.; Santos, J.C.R.; Deus, E.G. Pioneer tree species as fruit flies parasitoids reservoir in the Brazilian Amazon. *Biota Neotrop.* **2018**, *18*, e20170428. [CrossRef]
- 29. Araujo, E.S.; Monteiro, L.B.; Monteiro, R.S.; Nishimura, G.; Franck, P.; Lavigne, C. Impact of native forest remnants and wild host plants on the abundance of the South American fruit fly, *Anastrepha fraterculus* in Brazilian apple orchards. *Agric. Ecosyst. Environ.* **2019**, 275, 93–99. [CrossRef]
- Monteiro, L.B.; Nishimura, G.; Monteiro, R.S. Natural parasitism in fruit fly (Diptera: Tephritidae) and interaction with wild hosts surrounding apple orchards adjacent to Atlantic Forest fragments in Paraná State, Brazil. Braz. J. Biol. 2023, 83, e250505.
 [CrossRef] [PubMed]

31. Garcia, F.R.M.; Corseuil, E. Native hymenopteran parasitoids associated with fruit flies (Tephritidae) in Santa Catarina State, Brazil. *Flor. Entomol.* **2004**, *87*, 517–521. [CrossRef]

- 32. Gonçalves, R.S.; Andreazza, F.; Lisbôa, H.; Grützmacher, A.D.; Valgas, R.A.; Manica-Berto, R.; Nörhberg, S.D.; Nava, D.E. Basis for the development of a rearing technique of *Aganaspis pelleranoi* (Hymenoptera: Figitidae) in *Anastrepha fraterculus* (Tephritidae: Diptera). *J. Econ. Entomol.* **2016**, *109*, 1094–1101. [CrossRef]
- 33. Buonocore Biancheri, M.J.; Suárez, L.C.; Bezdjian, L.P.; Van Nieuwenhove, G.A.; Rull, J.; Ovruski, S.M. Response of two parasiotid species (Hymenoptera: Braconidae, Figitidae) to tephritid host and host food substrate cues. *J. Appl. Entomol.* **2019**, *143*, 344–356. [CrossRef]
- 34. Zanardi, O.Z. Biologia de *Ceratitis capitata* (Wiedemann, 1824) (Diptera: Tephritidae) em Frutos de Caquizeiro, Macieira e Videira e Efeito de Iscas Tóxicas Para o Seu Controle e Sobre o Parasitoide *Diachasmimorpha longicaudata* (Ashmead, 1905) (Hymenoptera: Braconidae) em Laboratório. Master' Thesis, Universidade Federal de Pelotas, Pelotas, Brazil, 2011.
- 35. Back, A.J.; Souza, G.d.S.; Galatto, S.L.; Mazurana, M. Erosivity index based on climatological norms from 1991 to 2020 for the state of Rio Grande do Sul. *Braz. J. Water Resour.* **2024**, 29, e4. [CrossRef]
- 36. Araujo, E.S.; Paiva, L.R.; Alves, S.G.; Bevacqua, D.; Nava, D.E.; Lavigne, C.; Garcia, F.R.M. Phenological asynchrony between the fruit fly *Anastrepha fraterculus* and early maturing peach cultivars could contribute to pesticide use reduction. *Span. J. Agric. Res.* **2019**, *17*, e1001. [CrossRef]
- 37. Aluja, M.; Mangan, R.L. Fruit fly (Diptera: Tephritidae) host status determination: Critical conceptual, methodological, and regulatory considerations. *Ann. Rev. Entomol.* **2008**, 53, 473–502. [CrossRef] [PubMed]
- 38. Sousa, A.S.; da Silva, J.W.P.; Ronchi-Teles, B. Fruit flies (Diptera: Tephritidae) and their parasitoids associated with acerola, mango, and guava in the municipality of Brasil Novo, Pará. *Rev. Ceres* **2021**, *68*, 579–585. [CrossRef]
- 39. Ovruski, S.M.; Schliserman, P.; Aluja, M. Indigenous parasitoids (Hymenoptera) attacking *Anastrepha fraterculus* and *Ceratitis capitata* (Diptera: Tephritidae) in native and exotic host plants in Northwestern Argentina. *Biol. Control* **2004**, 29, 43–57. [CrossRef]
- 40. Noyes, J.S. A review o the genera of Neotropical Encyrtidae (Hymenoptera: Chalcidoidea). *Bull. Brit. Mus. Nat. Hist. Entomol.* **1981**, 41, 107–253. Available online: https://biostor.org/reference/186 (accessed on 8 July 2025).
- 41. Guimarães, J.A.; Gallardo, F.E.; Diaz, N.B.; Zucchi, R.A. Eucoilinae species (Hymenoptera: Cynipoidea: Figitidae) parasitoids of fruit-infesting dipterous in Brazil: Identity, geographical distribution and host associations. *Zootaxa* **2003**, *278*, 1–23. [CrossRef]
- 42. Wharton, R.A.; Yoder, M.J. Parasiotids of Fruit Infesting Tephritidae. Available online: http://paroffit.org/ (accessed on 7 July 2025).
- 43. Canal Daza, N.A.; Zucchi, R.A.; Silvam, N.M.; Leonel, F.L., Jr. Reconocimiento de las especies de parasitoides (Hym. Braconidae) de moscas de las frutas (Dip.: Tephritidae) en dos municipios del Estado de Amazonas, Brasil. *Bol. Mus. Ent. Univ. Valle* 1994, 2, 1–17. Available online: https://bibliotecadigital.univalle.edu.co/entities/publication/03bf4ece-cf5d-4ff3-8c66-e63be24ecae6 (accessed on 19 June 2025).
- Marsaro Júnior, A.L.; Deus, E.G.; Ronchi-Teles, B.; Adaime, R.; Silva Júnior, R.J. Species of Anastrepha (Diptera: Tephritidae) captured in a guava orchard (Psidium guajava L., Myrtaceae) in Boa Vista, Roraima, Brazil. Braz. J. Biol. 2013, 73, 879–886.
 [CrossRef]
- 45. Paranhos, B.A.J.; Walder, J.M.M.; Alvarenga, C.D. Parasitismo de Larvas de Mosca-do-Mediterrâneo por *Diachasmimorpha longicaudata* (Ashmed) (Hymenoptera: Braconidae) em Diferentes Cultivares de Goiaba. *Neotrop. Entomol.* **2007**, *36*, 243–246. [CrossRef]
- 46. Matrangolo, W.J.R.; Nascimento, A.S.; Carvalho, R.S.; Melo, E.D.; de Jesus, M. Parasitóides de moscas-das-frutas (Diptera: Tephritidae) associados a fruteiras tropicais. *An. Soc. Entomol. Bras.* **1998**, 27, 593–603. [CrossRef]
- 47. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. *J. R. Stat. Soc. Ser. B Method.* **1995**, *57*, 289–300. [CrossRef]
- 48. Raga, A.; Machado, R.A.; de Souza-Filho, M.F.; Sato, M.E.; Siloto, R.C. Tephritoidea (Diptera) species from Myrtaceae fruits in the state of São Paulo, Brazil. *Entomotropica* **2005**, *20*, 11–14.
- 49. Pereira-Rêgo, D.R.G.; Jahnke, S.M.; Redaelli, L.R.; Schaffer, N. Variação na infestação de mosca-das-frutas (Diptera: Tephritidae) e parasitismo em diferentes fases de frutificação em mirtáceas nativas no Rio Grande do Sul. *EntomoBrasilis* **2013**, *6*, 141–145. [CrossRef]
- 50. Silva, M.A.; Bezerra-Silva, G.C.; Mastrangelo, T. The host marking pheromone application on the management of fruit flies—A review. *Braz. Arch. Biol. Technol.* **2012**, *55*, 835–842. [CrossRef]
- 51. Bisotto-de-Oliveira, R.; Redaelli, L.R.; Sant'Ana, J. Morphometry and distribution of sensilla on the antennae of *Anastrepha fraterculus* (Wiedemann) (Diptera: Tephritidae). *Neotrop. Entomol.* **2011**, *40*, 212–216. [CrossRef]
- 52. Gregório, P.L.F.; Sant'Ana, J.; Redaelli, R. Percepção química e visual de *Anastrepha fraterculus* (Diptera, Tephritidae) em laboratório. *Iheringia Sér. Zool.* **2010**, *100*, 128–132. [CrossRef]
- 53. Pino, J.A.; Marbot, R.; Vázquez, C. Characterization of volatiles in strawberry guava (*Psidium cattleianum Sabine*) fruit. *J. Agric. Food Chem.* **2001**, *49*, 5883–5887. [CrossRef]

54. Malo, E.A.; Cruz-López, L.; Toledo, J.; del Mazo, A.; Virgen, A.; Rojas, A.C. Behavioral and electrophysiological responses of the Mexican fruit fly (Diptera: Tephritidae) to guava volatiles. *Fla. Entomol.* **2005**, *88*, 364–371. [CrossRef]

- 55. Birke, A.; Pérez-Staples, D.; Greany, P.; Aluja, M. Interplay between foraging behaviour, adult density and fruit ripeness determines the effectiveness of gibberellic acid and host-marking pheromone in reducing susceptibility of grapefruit to infestation by the Mexican fruit-fly, *Anastrepha ludens*. *Int. J. Pest Manag.* **2011**, *57*, 321–328. [CrossRef]
- 56. Davis, J.M.; Nufio, C.R.; Papaj, D.R. Resource quality or competition: Why increase resource acceptance in the presence of conspecifics? *Behav. Ecol.* **2011**, 22, 730–737. [CrossRef] [PubMed]
- 57. Bisognin, M.; Nava, E.D.; Lisbôa, H.; Bisognin, A.Z.; Garcia, M.S.; Valgas, R.A.; Diez-Rodríguez, G.I.; Botton, M.; Antunes, L.E.C. Biologia da mosca-das-frutas sul-americana em frutos de mirtilo, amoreira-preta, araçazeiro e pitangueira. *Pesq. Agropec. Bras.* **2013**, 48, 141–147. [CrossRef]
- 58. Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 1994, 75, 2–16. [CrossRef]
- 59. Salles, L.A.B. *Bioecologia e Controle da Mosca-das-Frutas Sul-Americana*; Embrapa, CPACT: Pelotas, RS, Brazil, 1995; 58p. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/742993 (accessed on 31 March 2025).
- 60. Coller, R.R.; Williams, R.N.; Berti-Filho, E. A nitidulid parasitoid, *Zeteticontus insularis* (Howard) (Hymenoptera: Encyrtidae) present in São Paulo with clarification of its host. *Rev. Agric. Piracicaba* 1986, 61, 245–249.
- 61. Baena, R.; Bischoff, A.M.; Zimmermann, R.C.; Maleski, L.T.; Benatto, A.; Tavares, M.T.; da Rosa, J.M. First record of *Cerchysiella insularis* (Howard, 1897) (Hymenoptera: Encyrtidae) parasitizing *Lobiopa insularis* (Castelnau, 1840) (Coleoptera: Nitidulidae) on strawberries. *Ciênc. Rur.* 2023, 53, e20220453. [CrossRef]
- 62. Leonel, F.L., Jr. Espécies de Braconidae (Hymenoptera) Parasitóides de Moscas-das-Frutas (Diptera: Tephritidae) no Brasil. Master's Thesis, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo, São Paulo, Brazil, 1991; 110p.
- 63. Canal, N.A.D.; Zucchi, R.A.; Silva, N.M.; Silveira Neto, S. Faunistic analysis of parasitoids (Hymenoptera, Braconidae) of *Anastrepha* spp. (Diptera, Tephritidae) in Manaus and Iranduba, State of Amazonas, Brazil. *Acta Amaz.* 1995, 25, 235–245. [CrossRef]
- 64. Garcia, F.R.M.; Corseuil, E. Flutuação populacional de *Anastrepha fraterculus* (Wiedemann) e *Ceratitis capitata* (Wiedemann) (Diptera: Tephritidae) em pomares de pessegueiro em Porto Alegre, Rio Grande do Sul. *Rev. Bras. Zool.* **1998**, *15*, 153–158. [CrossRef]
- 65. Souza-Filho, M.F.; Raga, A.; Azevedo-Filho, J.A.; Strikis, P.C.; Guimarães, J.A.; Zucchi, R.A. Diversity and seasonality of fruit flies (Diptera: Tephritidae and Lonchaeidae) and their parasitoids (Hymenoptera: Braconidae and Figitidae) in orchards of guava, loquat and peach. *Braz. J. Biol.* 2009, 69, 31–40. [CrossRef] [PubMed]
- 66. Marinho, C.F.; de Souza-Filho, M.F.; Raga, A.; Zucchi, R.A. Parasitóides (Hymenoptera: Braconidae) de moscas-das-frutas (Diptera: Tephritidae) no Estado de São Paulo: Plantas associadas e parasitismo. *Neotrop. Entomol.* **2009**, *38*, 321–326. [CrossRef]
- 67. Marsaro Júnior, A.L.; Adaime, R.; Rochi-Teles, B.; Lima, C.R.; Pereira, P.R.V.S. *Anastrepha* species (Diptera: Tephritidae), their hosts and parasitoids in the extreme north of Brazil. *Biota Neotrop.* **2011**, *11*, 117–124. [CrossRef]
- 68. Taira, T.L.; Abot, A.R.; Nicácio, J.; Uchôa, M.A.; Rodrigues, S.R.; Guimarães, J.A. Fruit flies (Diptera, Tephritidae) and their parasitoids on cultivated and wild hosts in the Cerrado-Pantanal ecotone in Mato Grosso do Sul, Brazil. *Rev. Bras. Entomol.* **2013**, 57, 300–308. [CrossRef]
- 69. Leonel Jr, F.L.; Zucchi, R.A.; Wharton, R.A. Distribution and tephritid hosts (Diptera) of Braconid parasitoids (Hymenoptera) in Brazil. *Int. J. Pest Manag.* 1995, 41, 208–213. [CrossRef]
- 70. Guimarães, J.A.; Zucchi, R.A. Parasitism behavior of three species of Eucoilinae (Hymenoptera: Cynipoidea: Figitidae) fruit fly parasitoids (Diptera) in Brazil. *Neotrop. Entomol.* **2004**, *33*, 217–224. [CrossRef]
- 71. Wen, B.; Brower, J.H. Competition between *Anisopteromalus calandrae* and *Choetospila elegans* (Hymenoptera: Pteromelidae) at different parasitoid densities on immature rice weevils (Coleoptera: Curculionidae) in wheat. *Biol. Control* 1995, 5, 151–157. [CrossRef]
- 72. Gordh, G. Superfamily Chalcidoidea, family Pteromalidae, subfamily Cerocephalinae. In *Catalogue of Hymenoptera in America North of Mexico*; Krombein, V.K., Hurd, D.P., Jr., Smith, R.D., Burks, D.B., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1979; pp. 780–781.
- 73. Germinara, G.S.; De Cristofaro, A.; Rotundo, G. Antennal olfactory responses to individual cereal volatiles in *Theocolax elegans* (Westwood) (Hymenoptera: Pteromalidae). *J. Stor. Prod. Res.* **2009**, 45, 195–2000. [CrossRef]
- 74. Flinn, P.W.; Hagstrum, D.W.; McGaughey, W.H. Suppression of insect in stored wheat by augmentation with parasitoid wasp. In Proceedings of the 6th International Working Conference on Stored-Product Protection, Canberra, Australia, 17–23 April 1994; Highley, E., Wright, E.J., Banks, H.J., Champ, B.R., Eds.; Volume 2, pp. 1103–1105.

- 75. Mendes, L.O. Sobre a ocorrência de alguns inimigos naturais de insetos. An. Acad. Bras. Ciênc. 1959, 31, 577–585.
- 76. Abd El-Gawad, H.A.S.; Abd El-Aziz, E.; Sayed, A.M.M. Effect of releasing the parasitoid *Anisopteromalus calandrae* (Hymenoptera: Pteromalidae) on certain coleopteran stored products beetles in Egypt. *Egypt. Acad. J. Biol. Sci.* **2009**, *2*, 211–219. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.