CICLAGEM DE NUTRIENTES PELA SERAPILHEIRA EM LEGUMINOSAS ARBÓREAS DE INTERESSE PARA

RECUPERAÇÃO DE SOLOS DEGRADADOS. Aluísio Granato de Andrade(1), Gilmar Santos Costa(2), Sérgio Miana de Faria(2). (1) EMBRAPA Solos, Rua Jardim Botânico, 1024, Jardim Botânico, Rio de Janeiro-RJ. CEP: 22460-000, aluisio@cnps.embrapa.br. (2) EMBRAPA Agrobiologia, Antiga Rodovia Rio/São Paulo, CEP 23851-970 Seropédica-RJ.

INTRODUÇÃO

Algumas espécies de leguminosas arbóreas, inoculadas com microrganismos, têm apresentado um bom desenvolvimento em solos degradados e/ou de baixa fertilidade natural (Franco & Faria, 1997). Através da associação com rizóbio, estas plantas se tornam auto suficientes em nitrogênio e com a formação de micorrizas aumentam sua capacidade de absorção de nutrientes, principalmente de fósforo. Esses mecanismos auxiliam o estabelecimento inicial e a produção de fitomassa dessas plantas. Após a formação da cobertura arbórea, a ciclagem de nutrientes, através da queda de resíduos senescentes da parte aérea das plantas, que constituem a camada de serapilheira e sua gradativa decomposição, assume papel de destaque para a manutenção da sustentabilidade desses ecossistemas e para a recuperação de solos degradados. O entendimento da dinâmica desse processo pode trazer grande contribuição ao manejo dessas espécies para os mais variados fins. Nesse contexto, o presente trabalho, objetivou conhecer a quantidade, a qualidade e a velocidade de decomposição da serapilheira de três espécies de leguminosas arbóreas de múltiplos usos, que vêm se destacando em projetos de recuperação de áreas degradadas.

MATERIAL E MÉTODOS

Este estudo foi realizado no Campo experimental da Embrapa/Centro Nacional de Pesquisa de Agrobiologia, Seropédica-RJ. A área apresenta relevo plano a suave ondulado com predomínio do Planossolo série Ecologia. O clima da região, segundo a classificação de Köppen, é do tipo Aw. Foram estudadas as seguintes espécies de leguminosas arbóreas: *Mimosa caesalpiniifolia* (sabiá), *Acacia mangium* e *Acacia holosericea*. O plantio foi realizado de dezembro de 1990 a janeiro de 1991, em forma de círculos concêntricos, através de mudas inoculadas com bactérias fixadoras de N2 e fungos micorrízicos, em covas de 20 cm x 20 cm adubadas com 100 g de rocha fosfatada e 10 g de FTE BR12 por cova. Estudou-se o espaçamento cujas plantas ocupavam cerca de 4 m2, estas apresentavam o dossel fechado.

A deposição de material formador da serapilheira foi avaliada durante o ano de 1995 através de caixas coletoras, com abertura de 42 cm x 42 cm, profundidade de 15 cm e fundo de tela com malha de 1 mm, para permitir a livre passagem das águas das chuvas e reter o material que cai da parte aérea das plantas e irá formar a serapilheira. As caixas se encontravam a uma altura de 0,5 m da superfície do solo, totalizando 20 repetições para cada espécie. A cada 15 dias todo material depositado nas caixas era recolhido e depois separado de acordo com as seguintes frações: folhas, estruturas reprodutivas (flores, sementes e frutos), galhos \leq a 2 cm de diâmetro e refugo, fragmentos \leq a 2 mm de diâmetro. Este material foi seco em estufa a 650 C, até peso constante, pesado e moído (<40 mesh). A serapilheira acumulada na superfície do solo foi coletada ao acaso, dentro de um quadrado de 0,25 m2 no período do verão e do inverno de 1995 e 1996. Foram coletadas

amostras compostas de 3 subamostras com 6 repetições para cada espécie para cada uma das quatro épocas avaliadas. Esse material foi seco em estufa à 650 C, pesado e moído (<40 mesh). Analisou-se os teores de N, P, K, Ca e Mg nestes materiais. A análise estatística dos dados foi realizada com o auxílio do programa MSTAT-C (Michigan State University, MI, USA), sendo utilizado para a separação das médias o teste de Tukey, com nível de significância de 5%.

RESULTADOS E DISCUSSÃO

O material formador da serapilheira (*litterfall*) das três espécies avaliadas era constituído, principalmente, por folhas, sem diferenças significativas entre elas no total de folhedo aportado anualmente, representando 64, 70 e 64% do *litterfall* produzido pela *Mimosa caesalpiniifolia*, *Acacia mangium* e *Acacia holosericea* respectivamente (Quadro 1).

Quadro 1: Acúmulo anual de matéria seca nos diferentes componentes do material formador da serapilheira (folhas, estruturas reprodutivas, galhos e refugo) de *Mimosa caesalpiniifolia*, *Acacia mangium e Acacia holosericea*. Valores médios de vinte repetições. Letras iguais na mesma coluna não diferem estatisticamente entre si pelo teste de Tukey a 5%.

Espécie	es	folhas	estrutras reprodutivas			galhos	refugo	total
			Matéria seca (kg ha-1)					
Mimosa	a caesalpi	niifolia	6499	1422 c	1726 a	508 a	10155	
	(64)*	(14)	(17)	(5)				
Acacia	mangium	6392	2100 b	457 b	183 b	9132		
	(70)	(23)	(5)	(2)				
Acacia holosericea		5799	2628 a	544 b	91 c	9062		
	(64)	(29)	(6)	(1)				
CV %	17	19	15	16	17			

^{*}Valores entre parenteses representam o percentual de cada fração em relação ao total.

Estruturas reprodutivas participaram na mesma ordem de espécies citadas anteriormente com cerca de: 14, 23 e 29% do *litterfall* depositado em um ano (Quadro 1). A *Acacia holosericea* foi a que mais produziu esta fração (Quadro 1). Galhos e refugo apresentaram o maior percentual no *litterfall* de *Mimosa caesalpiniifolia*, 17 e 5% contra 5 e 2% para a *Acacia mangium* e 6 e 1% para a *Acacia holosericea*, respectivamente (Quadro 1). Considerando a soma de todas as frações que compõem o material formador da serapilheira, verifica-se que não houve diferenças significativas no total aportado por ano (Quadro 1). Em média, a deposição mensal foi de: 846, 761 e 755 kg ha-1 para a *Mimosa caesalpiniifolia*, *Acacia mangium* e *Acacia holosericea* respectivamente (Figura 1). A sazonalidade de aporte desse material seguiu tendência distinta (Figura 1).

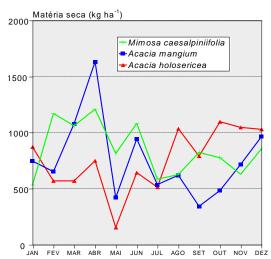


Figura 1: Produção mensal de material formador da serapilheira (litterfall) de Mimosa caesalpiniifolia, Acacia mangium e Acacia holosericea. Valores médios de vinte repetições.

As folhas foram as responsáveis pela deposição da maior parte dos nutrientes, seguidas das estruturas reprodutivas, galhos e refugo. As exceções foram para o P da *Acacia holosericea*, cujo o aporte foi maior pelas estruturas reprodutivas do que pelas folhas, para o K da *Acacia mangium*, que teve a mesma quantidade transferida pelas folhas e pelas estruturas reprodutivas, para o Ca da *Mimosa caesalpiniifolia*, cuja a deposição foi maior pelos galhos do que pelas estruturas reprodutivas e para o Mg da *Mimosa caesalpiniifolia*, que apresentou a mesma quantidade nas estruturas reprodutivas e nos galhos.

Através da relação entre a quantidade de matéria seca e de nutrientes acumulada no *litterfall* pode-se estimar a eficiência da ciclagem dos nutrientes de tecidos senescentes para tecidos jovens (Vitousek,1984). Valores altos desta relação indicam uma eficiente ciclagem bioquímica. Dentre as espécies estudadas a *Acacia mangium* foi a mais eficiente na ciclagem interna de quase todos os nutrientes, com excessão do K, cujo o índice de eficiência ficou um pouco abaixo em relação ao da *Acacia holosericea*.

A maior quantidade de serapilheira foi encontrada sob o povoamento de *Acacia mangium*, com média entre as quatro épocas de coleta superior as outras leguminosas, as quais não apresentaram diferenças significativas entre si (Quadro 2).

Quadro 2: Acúmulo de matéria seca na serapilheira de *Mimosa caesalpiniifolia*, *Acacia mangium* e *Acacia holosericea* coletadas de seis em seis meses, em quatro épocas. Valores médios de seis repetições. Letras minúsculas iguais na mesma coluna e letras maiúsculas iguais na mesma linha não diferem entre si pelo teste de Tukey a 5%.

Espécies vegetais	Épocas de coleta	a				
janeiro de 1995	julho de 1995	janeiro de 1996	julho de 1996	Média		
		Ma	Matéria seca (kg ha-1)			
Mimosa caesalpiniifolia	9711 Ab 7320 A	b 7640 Ab 8524 A	.b 8299 b			
Acacia mangium 15696 A	Aa 11069 I	Ba 11790	Ba 15986 A	Aa 13635 a		
Acacia holosericea	9972 ABb	6545 Bb 10988	Aa 7393 B	b 8725 b		
Média(1) 11793 A 8312 B	10139 AB	10634 A				
CV = 22%						

A *Acacia mangium*, apesar de, em geral, possuir baixo teor de nutrientes na serapilheira, apresentou elevado estoque de nutrientes, superando as outras leguminosas estudadas nos estoques de N e K, o que se deve a grande quantidade de matéria seca acumulada na serapilheira desta espécie (Quadro 2).

Através da relação entre a quantidade de matéria seca do *literfall* e da serapilheira obteve-se o coeficiente *k* para os ecossistemas estudados (Quadro 3), que é um indicador da taxa de decomposição da serapilheira ou do tempo de renovação desta camada (Anderson & Swift, 1983). Quanto maior o valor deste coeficiente mais rápida a velocidade de decomposição da camada de serapilheira e, consequentemente, a liberação de nutrientes para o sistema, sendo a eficiência da ciclagem de nutrientes dependente da sincronia entre a disponibilidade de nutrientes advindos da decomposição e a demanda nutricional da planta (Myers et al., 1994).

Quadro 3: Coeficiente de decomposição (k) e tempo médio de residência (TMR) para a serapilheira (t) e seu conteúdo de nutrientes em *Mimosa caesalpiniifolia*, *Acacia mangium* e *Acacia holosericea*.

Espécies A	7(1)	t (2)	N (3)	P (3)	K (3)	Ca (3)	Mg(3)		
(ano-1)		TMR (anos)							
Mimosa caesalpini	ifolia	1,22	0,8	0,88	0,59	0,54	0,96	1,00	
Acacia mangium (),67	1,5	1,71	1,70	1,17	1,58	2,36		
Acacia holosericea	ı	1,04	1,0	1,24	1,03	0,60	1,11	1,35	

- (1) Valor k = mat'eria seca do *litterfall* /mat\'eria seca da serapilheira (Anderson & Swift, 1983).
- (2) TMR = matéria seca da serapilheira/matéria seca do litterfall (Adams & Attiwill, 1986).
- (3) TMR = quantidade de cada nutriente na serapilheira/quantidade do mesmo no *litterfall* (Adams & Attiwill, 1986).

Dentre as espécies avaliadas a *Mimosa caesalpiniifolia* foi a que apresentou o maior valor k e consequentemente o menor t, sugerindo que a decomposição e/ou a renovação de sua camada de serapilheira é mais rápida que a das outras espécies avaliadas (Quadro 3). O maior valor k foi encontrado no reflorestamento com *Acacia mangium*, com tempo de renovação praticamente o dobro do encontrado no povoamento de sabiá (Quadro 3). O que evidencia a baixa taxa de decomposição do material produzido por esta espécie. A *Acacia holosericea* apresentou valor k e t intermediário ao das outras duas leguminosas (Quadro 3).

O nutriente de mais rápida liberação da serapilheira em todos os três ecossistemas florestais estudados foi o K (Quadro 3). Este efeito tem sido observado em outros ecossistemas florestais, confirmando a grande mobilidade do K. Os nutrientes estocados na serapilhera do sabiá apresentaram o menor tempo médio de residência (TMR), sugerindo que este material possui alta taxa de mineralização (Quadro 8). A serapilheira produzida pela *Acacia mangium* mostrou alto TMR para todos os nutrientes, indicando a baixa taxa de mineralização desse material (Quadro 3).

CONCLUSÕES

As três espécies de leguminosas arbóreas apresentaram boa capacidade de produção de matéria orgânica em solo de baixa fertilidade natural, depositando através do *litterfall*, em torno de 9 a 10 t de matéria seca ha-1 ano-1, com predominancia de folhas;

.A *Acacia mangium* foi a espécie de maior capacidade de translocação interna de nutrientes, produzindo a serapilheira mais pobre, o que refletiu em um maior tempo de permanência da matéria orgânica e dos nutrientes estocados nesta camada;

.A serapilheira produzida pela *Mimosa caesalpiniifolia* foi, em relação as outras espécies estudadas, a mais rica em nutrientes com um menor tempo de residência, indicando que esta espécie possui maior capacidade de ativar a ciclagem de nutrientes via decomposição da serapilheira;

.As características distintas de translocação interna dos nutrientes, de qualidade, acumulação e mineralização dos nutrientes da serapilheira das três espécies arbóreas estudadas, podem ser utilizadas de forma a atender as necessidades do sistema de produção e/ou de recuperação de ecossistemas degradados.

LITERATURA CITADA

- ANDERSON, J.M; SWIFT, M.J. Decomposition in tropical forests. In: SUTTON, S.L.; WHITMORE, T.C.; CHADWICK, A.C. **Tropical rain forest: ecology and management**. London: Blackwell Scientific, 1983. p.287-309.
- ADAMS, A.M.; ATTIWILL, P.M. Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia. I. Nutrient cycling and nitrogen turnover. **Plant and Soil**, The Hague, v.92, p.319-339, 1986.
- FRANCO, A.A.; FARIA, S.M. de. The contribution of N₂-fixing tree legumes to land reclamation and sustainability in the tropics. **Soil Biology and Biochemistry**, Oxford, 29 (5/6):897-903, 1997.
- MYERS, R.J.K.; PALM, C.A.; CUEVAS, E.; GUNATILEKE, I.U.N.; BROSSARD, M. The Syncronisation of nutrient mineralisation and plant nutrient demand. In: WOOMER, P.L.; SWIFT, P.L., ed. **The biological management of tropical soil fertility**. New York: John Wiley, 1994. p.81-116.
- VITOUSEK, P. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. **Ecology**, Georgia, 65 (1):285-298, 1984.