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Abstract: This paper presents the validation of a methodology that uses the K-means data 
clustering algorithm and vegetation indices (NDVI, RVI, EVI₂, and SAVI) at both the 

proximal and orbital scales to delineate potential management zones in a vineyard. The 
comparison between the two sensing methods revealed distinct findings regarding the 
number of management zones. A more robust division favors two zones, while the 
inclusion of an intermediate zone with moderate acceptance corresponds to three zones. 
In contrast, four zones resulted in excessive fragmentation.     
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DELIMITAÇÃO DE ZONAS DE MANEJO EM VINHEDO UTILIZANDO 

SENSORIAMENTO PROXIMAL E ORBITAL 
 

Resumo: Este trabalho apresenta a validação de uma metodologia que utiliza o algoritmo 
de agrupamento de dados K-means e os índices de vegetação NDVI, RVI, EVI₂ e SAVI, 

nas escalas proximal e orbital, para a delimitação de potenciais zonas de manejo em um 
vinhedo. A comparação entre as duas formas de sensoriamento mostraram constatações 
distintas considerando a quantidade de zonas de manejo: uma divisão mais robusta 
considerando duas zonas; a inclusão de uma zona intermediária com aceitação moderada 
para três zonas; e uma fragmentação excessiva e de difícil interpretação para quatro 
zonas. 
 

Palavras-chave: Vitis vinífera L., clusterização, índices de vegetação. 
 

1. Introduction  
Precision agriculture has established itself as a strategy for optimizing inputs and 
maximizing productivity by addressing intra-field variability and dividing crop areas into 
management zones (Filintas et al., 2023). Clustering methods such as K-means and 
Fuzzy C-Means are widely used for this segmentation, as they enable unsupervised 
grouping of spectral and soil data, which allows for the adjustment of water, fertilizers, and 
pesticides to the specific needs of each zone (Janrao, Mishra, & Bharadi, 2019). These 
techniques have proven effective in capturing patterns of variability across small and large 
farms, thereby reducing waste and environmental impacts. The objective of this work is to 
validate a methodology that utilizes the K-means data clustering algorithm and vegetation 
indices at both proximal and orbital scales to delineate potential management zones in a 
vineyard. 
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2. Materials and Methods 
2.1 Study area 
The study was conducted in a commercial vineyard of the ‘Chardonnay’ cultivar, located in 
soil with a sandy loam texture. The vines were spaced 3 x 1 meters (2,500 plants per 
hectare), trained in espalier, with a drip irrigation system, in Espírito Santo do Pinhal, state 
of São Paulo, Brazil (22° 10′ 49.1″ S; 46° 44′ 28.4″ W; approximately 875 m altitude ± 10 
m). The vineyard, covering 1.1 hectares, was divided into two adjacent plots, referred to as 
area 1 (0.6 ha) and area 2 (0.5 ha), separated by approximately 15 meters. 
 
2.2 Acquisition of proximal and orbital sensing data 
The assessments were conducted during the grape ripening stage, a phase when 
chlorophyll degradation and the accumulation of phenolic compounds cause significant 
changes in the spectral signature of leaves and fruit (Lima Filho et al., 2009). Canopy 
reflectance was measured using the CropCircle ACS-430 active sensor (Holland Scientific, 
USA), which operates in four discrete visible and near-infrared bands (460, 520, 670, and 
730 nm) and provides the active NDVI (Normalized Difference Vegetation Index). 
Measurements were taken by walking through areas 1 and 2, maintaining the sensor 
approximately 0.30 m above the canopy, parallel to the vine rows, ensuring continuous 
sampling at approximately 10 readings per second. Each transect was around 200 meters 
long, resulting in an average of 15,000 readings per area. It is important to note that the 
spectral data series used in this study were extracted from previous works: data from the 
2017 and 2018 growing seasons were obtained by Oldoni (2019), while data from the 
2019 growing season were provided by Silva (2020) (Figure 1). All measurements followed 
the same field protocol and used the sensor’s internal radiometric calibration, ensuring 
temporal comparability and methodological consistency across the different harvests. 
Images PlanetScope (Planet Labs Inc., USA) from the DoveClassic nanosatellite 
constellation, with 3 m spatial resolution and global daily revisits, provided by 
RedeMAIS/MJSP, were used for regional-scale analysis. Scenes were selected on dates 
with less than 5% cloud cover (April 5, 2021, April 13, 2018, and April 21, 2019), 
corresponding to field collections conducted on April 6, 2017, and April 15, 2018 by Oldoni 
(2019), and on April 22, 2019, by Silva (2020). 
The raw images underwent rigorous preprocessing on the Planet Analytics platform, which 
included radiometric calibration, orthorectification, and atmospheric correction, ensuring 
consistent and comparable data for spectral analysis.  
 
2.3 Process for Defining and Evaluating Management Zones 
2.3.1 Geostatistical resampling of Crop Circle data for the 3m grid of PlanetScope 
The resampling of the near-sensing data involved converting an original irregular 
centimeter-resolution grid to a regular 3-meter grid using local ordinary kriging available in 
Vesper 1.62 software (Nasny, McBratney & Whelan, 2005). Instead of simply aggregating 
3m values to a finer resolution, a geostatistical resampling from high to low spatial density 
was applied. This approach, which differs from the inverse spatial refinement method (from 
3m to centimeter resolution), preserves the variability structures observed in situ and 
allows for direct comparison with orbital imagery of the same spatial resolution. 
 
2.3.2 Criteria for Vegetation Indices Selection 
Indices based solely on ρNIR (780 nm) and ρRed (670 nm), common to both CropCircle 
ACS-430 and PlanetScope satellites, were selected to ensure direct comparability. The 
following indices were calculated: NDVI, related to vegetative vigor (biomass); RVI, 
characterized as a simple and robust ratio; EVI2, which reduces saturation at high 
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vegetation coverage; and SAVI, which corrects for soil influences, capturing variations in 
phytosanitary status, stress, and vegetation cover. This concise combination facilitates 
monitoring grape ripening and detecting biochemical changes accurately at both scales. 
 
2.3.3 Vegetation Indices Calculation in QGIS Software 
Vegetation indices were generated in QGIS (version 3.34.9) using the "Raster Calculator" 
tool, applying standardized expressions to the NIR and red bands of both PlanetScope 
imagery and CropCircle’s proximal rasters. Each calculation was performed in batch 
mode, producing raster files referenced to a standard coordinate reference system (UTM 
zone 23S). This process ensured uniformity in spatial data and facilitated rapid integration 
of the two data sources. 
 
2.3.4 Application of the K-means Algorithm for Delimiting Management Zones 
The K-means clustering algorithm (MacQueen, 1967) was chosen for its efficiency in 
partitioning large volumes of standardized data into K groups that minimize intra-cluster 
variance. Data processing was carried out in RStudio using the kmeans() function from the 
base stats package (R Core Team, 2024). The indices were normalized using Z-scores 
before clustering, and the optimal K was determined based on the elbow (WSS) and 
silhouette methods. The analyses for proximal and orbital sensors were performed 
separately, ensuring the robustness and comparability of the resulting management zones. 
 

2.3.5 Assessment of Agreement between Proximal and Orbital Sensors via F₁-Score 
The F₁-Score (Van Rijsbergen, 1979) was used to compare the management zones 
generated for each sensor independently. The F₁-Score was calculated between the 
cluster labels of each sensor (with the proximal sensor as the reference and the orbital 
sensor as prediction, and vice versa), providing a synthetic measure of spatial agreement 
and the sensitivity of the methods in detecting vigor and maturity patterns. 
 

3. Results and Discussion 
The determination of the optimal K was based on the elbow method (WSS) applied to data 
from 2017, 2018, and 2019 (Figure 1) for areas 1 and 2. It was observed that K = 2 
resulted in a significant reduction in the intra-cluster sum of squares, preventing excessive 
fragmentation of the zones. For exploratory purposes, K = 3 and K = 4 were also 
evaluated. Although these options showed only marginal gains in explaining variability, 
evidenced by smaller decreases in WSS, they can reveal finer spatial subdivisions, 
providing support for subsequent refinement of the management zones. 
 

    
 
 
 
 
 
 
 
 

Figure 1. Average silhouette vs number of cluster in area 1 and 2 
 

Between 2017 and 2019, the maps generated for each sensor reveal consistent patterns: 
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for K = 2, a zone of low vigor (cluster 1) and a zone of high vigor (cluster 2) are clearly 
distinguished (Figure 2). In orbital sensing (PlanetScope), both zones appear as 
continuous patches, facilitating the definition of general strategies. In proximal sensing 
(Crop Circle), pockets of high vigor are visible dispersed within the low vigor zone, 
indicating local heterogeneities useful for targeted interventions. At K = 3, an intermediate 
cluster emerges, marking vigor transitions and suggesting a balance between operability 
and phenological detail, with more concentrated in continuous bands in orbital sensing and 
more dispersed in proximal sensing. For K = 4, increased spatial fragmentation, especially 
in proximal sensing, results in fine mosaics that, while informative for detailed 
investigations, can make field management difficult. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Maps of management zones in area 1 for the three growing seasons and K=2. 
 
Macro F₁-scores consistently decline as K increases from 2 to 4. For K = 2, the highest 

scores were observed in both areas (0.679, 0.504, and 0.413 in 2017, 2018, and 2019 for 
area 1; 0.554, 0.357, and 0.259 for the same years in area 2), reflecting high agreement in 
the binary vigor distinction. At K = 3, there was a moderate reduction, indicating that the 
introduction of an intermediate cluster complicates the correspondence between sensors 
but still captures relevant gradients. For K = 4, F₁-scores fell below 0.30, demonstrating 

substantial discordance between the proximal and orbital sensors. 
 

4. Conclusions 
Orbital and proximal sensing, combined with the standardization (Z-score) of NDVI, EVI₂, 
RVI, and SAVI, and the application of K-means, enable the vineyard to be divided into two 
vigor zones (K = 2), with the option of a third level (K = 3). This approach balances 
operational simplicity with phenological detail. 
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For delimiting homogeneous areas, the orbital sensor excels at generating continuous, 
less fragmented patches, whereas proximal sensing, due to its higher level of detail, tends 
to produce more heterogeneous and fragmented maps. 
Validation using the F₁-Score confirmed the consistency of clustering between the two 

sensors, demonstrating robustness even at different spatial resolutions. 
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