Effect of intensification and integration of pasture-based beef cattle production systems on soil organic matter

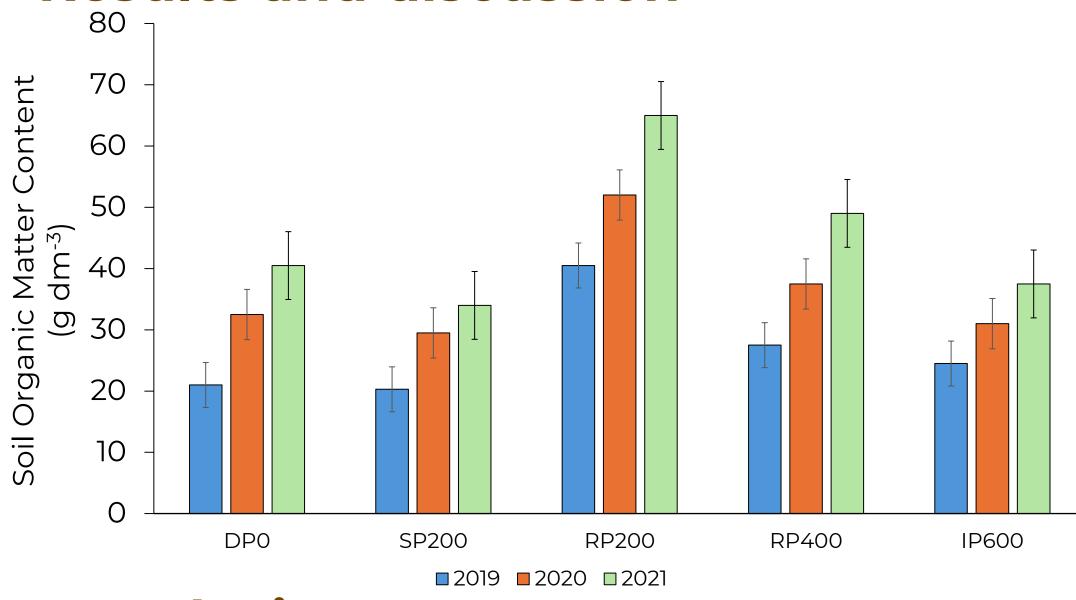
Introduction

- ✓ Problem in beef cattle production systems in Brazil:
- Levels of soil organic matter (SOM), especially in pasture areas
- ✓ Consequences:
 ↓ soil quality,
 ↓ forage productivity, compromising ecosystem services
- ✓ Intensification and integration of different pasture management systems can help with carbon (C) gain, nutrient use efficiency, and increased animal productivity.
- Studies by Damian et al., (2023) and Oliveira et al., (2023)demonstrated that intensification integration of production systems promote in **1** SOM, with carbon sequestration rates ranging from 0.75 to 1.74 Mg C ha¹ year¹ in ICL and ICLF systems, and reaching 2.2 Mg C ha¹ year¹ in fertilized pastures (Bento et al., 2025).
- ✓ Lack of studies on the impacts of management levels on SOM in the long term
- ✓ Objective of the study: to evaluate the effects of different levels of pasture intensification and integration practices on MOS content over three consecutive harvests.

Methods

- ✓ The study was conducted at Embrapa Southeast Livestock (São Carlos-SP, Brazil), across two soil types with different clay textures
- ✓ Five grazing systems were evaluated between 2019 and 2021: degraded pasture (DP0); silvopastoral (SP200); rotational dryland pasture with moderate stocking (RP200); rotational dryland pasture with high stocking (RP400); and rotational dryland and irrigated pasture (IP600)

System	Forage Species	Management Type	N Fertilization (kg/ha/year)	Soil Type
DP0	<i>Urochloa</i> decumbens	Extensive	Ο	Ferralsol (Dystric, Clayic) – 32% clay
SP200	<i>Urochloa</i> decumbens + trees	Intensive (Silvopastoral)	200	Ferralsol (Dystric, Clayic) – 32% clay
RP200	<i>Urochloa</i> brizantha	Intensive (Moderate stocking)	200	Nitisol (Eutric, Clayic) – 47% clay
RP400	Megathyrsus maximus	Intensive (High stocking)	400	Nitisol (Eutric, Clayic) – 47% clay
IP600	Megathyrsus maximus (Irrigated)	Intensive (High stocking + irrigation)	600	Ferralsol (Dystric, Clayic) – 32% clay


- ✓ Soil samples were taken in the 0 to 20 cm depth layer
- ✓ Total of 120 sampled points in 2019, 2020, and 2021, for soil organic matter (SOM) and fertility analyses.

RP200 presented the highest MOS levels in all years: 40.5 (2019), 52.0 (2020), and 65.0 g dm³ (2021), resulting from the combination of rotational management and moderate nitrogen fertilization, which favor greater root production and carbon input to the soil.

SP200 showed the lowest accumulation of MOS, possibly due to shading and tree density, which reduce forage productivity and carbon input to the soil.

The 2021 SOM values (g dm³) (RP400: 49.0; DP0: 40.5; IP600: 37.5; and SP200: 34.0) suggest that intensification increases SOM stocks; however, integration (silvopastoral systems) may alter the stabilization dynamics.

Results and discussion

Conclusion


Pasture intensification significantly increased SOM levels over time, with the greatest effects observed under moderate to high fertilization regimes. Silvopastoral integration, although bringing environmental benefits, showed lower SOM accumulation, possibly due to changes in organic matter inputs and turnover. Future studies should explore root biomass and microbial dynamics to better understand the mechanisms of carbon stabilization in integrated systems.

AUTHOR(S)

Thaís Alves de Carvalho, PhD student^{1,2} Rolando Pasquini Neto, PhD student^{1,2} Patrícia Perondi Anchão Oliveira, PhD² Izabella Angelelli Bueno, BSc² Alberto Carlos de Campos Bernardi, PhD² José Ricardo Macedo Pezzopane, PhD² Paulo Henrique Mazza Rodrigues,PhD¹ Ladislau Martin Neto, PhD³

AFFILIATION OF AUTHOR(S)

LATIN AMERICAN & CARIBBEAN

Soil Carbon Research Symposium

Rio de Janeiro, RJ, Brazil June 25-28, 2025

REFERENCES

- Bento, L. R., dos Santos, J. V., Schweizer, S. A., de Morais, C. P., Mitsuyuki, M. C., Oliveira, P. P. A., ... & Martin-Neto, L. (2025). Moderate pasture intensification enhances soil organic carbon stocks in a degraded Brazilian Ferralsol. Soil and Tillage Research, 251, 106534
- Oliveira, D. M. D. S., Tavares, R. L. M., Loss, A., Madari, B. E., Cerri, C. E. P., Alves, B. J. R., ... & Cherubin, M. R. (2023). Climate-smart agriculture and soil C sequestration in Brazilian Cerrado: A systematic review. Revista Brasileira de Ciência do Solo, 47(spe), e0220055.
- Damian, J. M., da Silva Matos, E., e Pedreira, B. C., de Faccio Carvalho, P. C., Premazzi, L. M., & Cerri, C. E. P. (2023). Intensification and diversification of pasturelands in Brazil: Patterns and driving factors in the soil carbon stocks. Catena, 220, 106750.

ACKNOWLEDGEMENTS

The authors thank the São Paulo Research Foundation (FAPESP) for funding support. We are also grateful to Embrapa Southeast Livestock and Embrapa Instrumentation for providing infrastructure and technical assistance throughout the research. Thaís Alves de Carvalho acknowledges the support of the Coordination for the Improvement of Higher Education Personnel (CAPES) through her doctoral scholarship.

INDICATION OF THE CORRESPONDING AUTHOR

Thais Alves de Carvalho

PhD student, University of São Paulo (FZEA/USP), Pirassununga, Brazil

E-mail: thais.alves.carvalho@usp.br

CO-ORGANISED AND PROMOTED BY

ORGANISED BY

UNIÃO E RECONSTRUÇÃO https://proceedings.science/p/203346?lang=er