Soil carbon stock and wheat yield in central-eastern and southeastern **Brazilians regions**

Introduction

Soil carbon stock (SCstock) plays a key role in maintaining wheat productivity. However, inadequate soil management tends to reduce SCstock over time (Lal, 2005). To preserve SCstock in soils, the input of phytomass is important, especially through crop rotations with diverse species and greater root biomass under no-tillage systems (Ardent et al., 2023). It is also essential to recover and maintain soil structural quality. This study aimed to evaluate the relationship between soil carbon stock (SCstock) and wheat yield in Rhodic Ferralsols of medium to clay texture in the centraleastern and southeastern regions of Paraná, Brazil.

Results and discussion

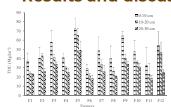


Figure 2. Total organic carbon stocks evaluated at the 0-10 cm, 10–20 cm, and 20–30 cm depths.

Table 2. Wheat yield in the evaluated properties in the Eastern Central and Southeastern mesoregions of Paraná

	111030	ı cgı	0115	0	41 GI 10		
Farmer ¹	Municipality	Year				Mean	SD ²
		2020	2021	2022	2023		
F1	Ipiranga	3720	4200	2940	2460	3330	778
F2	Ipiranga	3960	4560	4140	3780	4110	334
F3	Teixeira Soares	3900	4320	3660	2880	3690	605
F4	Teixeira Soares	2970	3222	2730	2700	2906	243
F5	Irati	4140	4920	4260	3600	4230	542
F6	Ponta Grossa	4080	4440	4200	2550	3818	858
F7	Palmeira	4620	5100	4740	4080	4635	422
F8	Palmeira	3960	4080	4200	3720	3990	205
F9	Piraí do Sul	3660	3570	3924	3786	3735	154
F10	Tibagi	3918	4062	4134	3762	3969	165
F11	Imbituva	3600	4320	3660	3540	3780	363
F12	Prudentópolis	3048	3240	2940	2760	2997	201

¹Farmer: F1-F12; ² Standard Deviation.

Methods

Figure 1. Study area, soil type and soil sample.

Table 1. Management and environmental aspects in the Eastern Central and Southeastern mesoregions of Paraná

Farmer	Municipality /State	¹ Soil Type	³WRB Soil	² Crop rotation	Terrain Slope	Plot altitude	Soil profile depth	4Clay	4,5oil textural class	44CEC	701
					(%)	(m)	(cm)	(g kg ⁻¹)		(cmol _c dm ⁻¹)	(%
	lpiranga/PR	Latossolo Vermelho distrófico típico	Umbric Rhodic Ferralsol (Clayic, Dystric)	S/W; B-C/W; S/W; S/W	6 - 13	854	>250	230	3	11	2
	lpiranga/PR	Latossolo Vermelho distrófico típico	Umbric Rhodic Ferralsol (Clayic, Dystric)	M-B/W; S/Mi; B/W; M-B/W	8 - 10	882	>250	250	3	10	3
F3	Teixeira Soares/PR	Latossolo Vermelho distrófico típico	Rhodic Ferralsol (Clayic, Dystric, Humic)	S/W; S/BO; S/W; M/W	6 - 14	829	>250	287	3	14	4
	Fernandes Pinheiro/PR	Latossolo Vermelho Amarelo distrófico típico	Haplic Ferralsol/ (Loamic, Dystric, Ochric)	S/W; S/BO; S/W; S/W	9 - 15	834	>250	162	4	9	2
FS	Irati/PR	Latossolo Vermelho distrófico típico	Rhodic Ferralsol (Clayic, Dystric, Humic)	S/W; S/By; S/W; M/W	8 - 15	996	>150	260	3	15	4
	Ponta Grossa/PR	Latossolo Vermelho Amarelo distrófico típico	Haplic Ferralsol (Loamic, Dystric)	S/W; B/WO; S/Mi-W; B/W	7 - 13	1078	60 a 150	200	4	10	
	Palmeira/PR	Cambissolo Háplico distrófico típico	Haplic Ferralsol (Clayic, Dystric, Ochric)	S/Mi; S/W; B- S/W; S/W	4 - 10	922	60 a 150	450	2	10	
	Palmeira/PR	Cambissolo Háplico distrófico latossólico	Haplic Ferralsol (Clayic, Dystric, Ochric)	S/BO·W; S/Mi; M/W; B/BO·W	7 - 20	878	60 a 150	260	3	7	,
	Piraí do Sul/PR	Latossolo Vermelho distrófico típico	Rhodic Ferralsol/ (Clayic, Dystric, Humic)	M-B/W; S/Mi; S/W; B/W	4 - 12	672	>150	495	2	21	
F10	Tibagi/PR	Latossolo Vermelho distrófico típico	Umbric Rhodic Ferralsol (Clayic, Dystric)	M-B/W; S/Mi; M/W; S/Mi	7 - 15	854	>250	290	3	15	
F11	Imbituva/PR	Latossolo Vermelho eutrófico típico	Rhodic Ferralsols (Clayic, Oligoeutric, Ochric)	S/BO; B-S/W S/W; B/W	3 - 8	971	60 a 150	260	3	9	
F12	Prudentópolis /PR	Latossolo Vermelho distrófico típico	Umbric Rhodic Ferralsol (Clayic, Dystric)	S/W; S/BO; B- S/W; S/BO	3 - 12	789	>150	290	3	16	

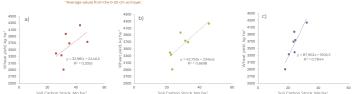


Figure 3. Relationship of Soil Carbon Stock and wheat yield at the 0–10 cm (a), 10–20 cm (b), and 20-30 cm (c) depths on 2020 to 2023 period.

Conclusion

Wheat yield correlated linearly and positively with SCstock, increasing by 33 kg ha-1, 43 kg ha-1, and 88 kg ha⁻¹ for each unit increase in SCstock at the 0-10 cm, 10-20 cm, and 20-30 cm soil layers, respectively. The evaluated farmers possess and employ technologies aimed at increasing productivity and improving soil carbon storage. However, it became evident that enhancing crop rotations with greater root biomass is still necessary, as this would lead to increased soil carbon sequestration in deeper layers, thereby contributing to greater resilience to extreme climate events.

AMARAL, Andre Julio do¹ GIONGO, Vanderlise ¹; SANTI, Anderson¹; DENARDIN, Jose Eloir ¹; MARTINS, Tatiane ²; SILVA, Bruno ²; COELHO, Maurício ³

AFFILIATION OF AUTHOR(S)

¹Embrapa Trigo/Wheat ²Moageira Irati SA/Irati Mill AS ³Embrapa Solos/Soils

ARDENTI, F.; CAPRA, F.; LOMMI, M.; FIORINI, A.; TABAGLIO, V. Long-term C and N sequestration under no-till is governed by biomass production of cover crops rather than differences in grass vs. legume biomass quality. Soil & Tillage Research, v. 228,

105630, 2023. DOI: 10.1016/j.still.2023.105630.
LAL, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation & Development, West Sussex, v. 17, p. 197-206, 2005. DOI: 10.1002/ldr.696.

ACKNOWLEDGEMENTS

The authors thank the farmers and stakeholders who contributed to the research. The Moageira Irati and FAPEG through the SAIC Project: 10200.19/0028-7, SEI code: 21148.002708/2019-19, IDEARE: 20.23.00.048.00.00.

INDICATION OF THE CORRESPONDING AUTHOR

AMARAL, Andre Julio do 1

Email adress: andre.amaral@embrapa.br

ORGANISED BY