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Abstract

BACKGROUND: Replacing conventional plastics with biodegradable solutions that control moisture loss in fresh-cut produce is
a strategic need. This study developed hydroxypropylmethylcellulose (HPMC) and chitosan (CS) films plasticised with glycerol
(Gly) and evaluated their use as sealing lids for fresh-cut mango.

RESULTS: The selected monolayer formulation showed high optical clarity with limited transmittance at 560 nm, reduced water sol-
ubility and water-vapour permeability suited to moisture management. Attenuated total reflection Fourier transform infrared anal-
ysis indicated HPMC-CS compatibility and scanning electron microscopy imaging showed a continuous surface. Applied at 9 °C for
nine days, the HPMC/CS+Gly film reduced weight loss by about fivefold relative to unpackaged fruit and approached the perfor-
mance of commercial poly(vinyl chloride) in limiting dehydration, while maintaining fruit colour (Lab*) and firmness during storage.
Package headspace measurements were consistent with a performance profile focused on moisture control.

CONCLUSION: The HPMC/CS+Gly film is a promising biodegradable option for mitigating dehydration and preserving quality in
fresh-cut mango, and it provides a robust platform for future optimisation of gas-barrier properties and, where appropriate,
incorporation of active functionalities.

© 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.

Keywords: biodegradable packaging; climacteric fruit; food preservation; minimally processed; polysaccharide-based films
_____________________________________________________________________________________________|]

the retention of key attributes such as firmness, colour, juiciness
and flavour is often compromised.>¢®

Among preservation strategies, approaches that modulate the
package atmosphere have been widely investigated to slow respi-

INTRODUCTION

As consumer demand for convenient, safe and high-quality foods
continues to rise, food packaging has become a strategic compo-
nent in modern food systems, contributing to containment, pro-

tection, communication and product integrity." Beyond these
essential functions, packaging plays a pivotal role in maintaining
the microbiological and physicochemical quality of foods, directly
influencing shelf life and minimising postharvest losses.'? These
aspects are particularly critical for fresh-cut fruits and vegetables,
which have gained increasing popularity due to their practicality
and nutritional value**

Nevertheless, maintaining the quality of fresh-cut products
remains a complex challenge due to their high metabolic activity,
structural fragility and susceptibility to microbial spoilage.**
These characteristics accelerate moisture loss, oxidative browning
and microbial growth, ultimately leading to a shortened shelf life
and increased risk of consumer rejection. Even under refrigeration
and combined with physical or chemical preservation techniques,

ration and metabolic processes and, in some cases, to delay tissue
senescence and preserve quality.”'® Such approaches have
shown success across a range of fresh-cut produce,'”'® while
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polymeric films remain central because they govern gas perme-
ability, moisture transfer and light exposure, and provide mechan-
ical protection.'”?' At the same time, environmental concerns
regarding conventional synthetic plastics have spurred efforts to
develop biodegradable alternatives from renewable sources.?>%
In this context, biobased polymers have emerged as sustainable
options that can offer suitable barrier properties and reduce the
environmental footprint of packaging materials.2>242%

Among these alternatives, hydroxypropylmethylcellulose (HPMC)
and chitosan (CS) stand out due to their excellent film-forming capa-
bilities, biodegradability and safety for food applications.’2¢ HPMC
films exhibit high transparency, flexibility, low oxygen permeability
and resistance to fats,?® although their hydrophilic nature and rela-
tively high production costs may limit effectiveness in high-moisture
systems3%3! CS, the second most abundant natural polysaccharide
after cellulose and derived from chitin,*>** may display inherent anti-
microbial activity associated with its cationic nature and also shows
good biocompatibility and gas-barrier potential,>*** though its low
mechanical strength can restrict standalone application.>® Blending
HPMC and CS has therefore proven effective, enabling composite
films with enhanced mechanical strength, cohesive structure and
improved functional performance* Incorporating glycerol (Gly) as
a plasticiser reduces intermolecular forces, increasing flexibility, pre-
venting shrinkage and facilitating handling and storage.3”°

Given the high perishability and economic relevance of mango
in tropical supply chains, improving moisture management for
fresh-cut mango is particularly pertinent. Therefore, the study
reported here aimed to develop and characterise a biodegradable
HPMC-CS film plasticised with Gly and to evaluate its perfor-
mance in limiting moisture loss and preserving product quality
(weight loss, colour and firmness) in fresh-cut mango under refrig-
erated storage, using commercial poly(vinyl chloride) (PVC) film
and an unpackaged control as benchmarks.

MATERIALS AND METHODS

Materials

Commercial CS (from shrimp shells, minimum deacetylation degree
75%, Sigma-Aldrich®), HPMC (viscosity 40-60 cP in 2% aqueous solu-
tion at 20 °C, Sigma-Aldrich®), Gly (purity > 99.5%, Sigma-Aldrich®)
and glacial acetic acid (analytical grade) were used in this study.

Preparation of film-forming solutions and monolayer films
HPMC and CS solutions were prepared separately. HPMC was dis-
persed in distilled water and stirred using a magnetic stirrer in a
water bath at 75 °C for 1 h. After complete dissolution, the solu-
tion was cooled to room temperature (25 °C) and manually stirred
for 20 min, followed by magnetic stirring for an additional 30 min
to ensure homogeneity and transparency. CS was dissolved in
1.0% (v/v) acetic acid and stirred at 50 °C for 1 h. The resulting
solution was vacuum-filtered to remove insoluble residues.

Equal volumes of the HPMC and CS solutions were combined and
magnetically stirred at room temperature for 10 min. The concentra-
tions presented in Table 1 refer to the individual polymer solutions
prior to mixing; therefore, the 1:1 blending step resulted in final con-
centrations equal to half of the initial values, which was intentionally
accounted for in the formulation design. Gly was then added at the
concentrations established by the factorial experimental design
(Table 1), and the mixture was stirred for an additional 20 min.

For film casting, 25 mL of the film-forming solution was dis-
pensed into silicone moulds (surface area: 7.5 cm?) using a glass
pipette. The moulds were maintained at 25 °C for 6 h to allow

trapped air bubbles to dissipate and then transferred to a
forced-air oven at 40 °C for 24 h. The dried films were carefully
detached from the moulds and conditioned in a desiccator (50%
relative humidity, 25 °C) until characterisation. The HPMC, CS
and Gly concentrations were chosen based on the most frequent
recommendations observed in the literature,>” %1924

Factorial experimental design

A factorial design is widely used for efficient optimisation of film for-
mulations because it reduces the number of experiments required
and enables systematic exploration of component-response rela-
tionships.*® Accordingly, a 2° factorial experimental design with four
centre-point replicates was employed to evaluate the effects of three
independent variables, HPMC concentration (X;), CS concentration
(X,) and Gly concentration (X;), on two response variables: tensile
strength and elongation at break. Each factor was tested at three
coded levels: low (—1), centre (0) and high (+1), as detailed in
Table 1. The design allowed assessment of both main effects and
interaction effects among the variables. A total of 12 experimental
runs were conducted in randomised order to minimise systematic
error, and all formulations were prepared and tested under identical
environmental conditions to ensure comparability.

Statistical analysis

Data were analysed by analysis of variance (ANOVA,; Statistica 8.0;
StatSoft, 2008), with a = 0.05. When applicable, means were com-
pared using Tukey's test (5%). In the 23 factorial design, main and
interaction effects were estimated and ranked to build Pareto
charts and guide formulation selection.

Mechanical tests of films
Stress (o), strain (¢) and Young's modulus (E) were determined by
tensile testing. Film thickness was measured using a digital
micrometer (accuracy 0.001 mm), with three measurements taken
at different points and the average value used in calculations.
Rectangular specimens (9 x 30 mm?) were tested at 25 °C
using a universal testing machine (EMIC DL-1000) according to
ASTM D882-02. The crosshead speed was set to 10 mm min~’,
with a gauge length of 15 mm, and a load cell capacity of 0.5 kN.
Three specimens per formulation were tested, and average
values were reported. Formulations exhibiting superior mechani-
cal performance were selected for subsequent characterisation.

Subjective analysis of films

Subjective analysis was performed through visual and tactile inspection,
evaluating gloss, flexibility, tackiness, transparency and surface texture.
Each attribute was scored on a four-point scale, where 1 corresponded
to the most favourable condition (e.g. very bright, very malleable) and
4 to the least favourable condition (e.g. not bright, not malleable). The
criteria for each score are presented in Table 2. Three evaluators con-
ducted the assessments independently, and any discrepancies were
resolved by consensus after analysis by a fourth evaluator.

Transparency test
A film specimen was cut to match the dimensions of a quartz
cuvette and subdivided into strips (30 X 10 mm?). Each strip was
fixed to the exterior of a pre-cleaned, dried cuvette using trans-
parent adhesive tape, ensuring full contact and no air bubbles.
Optical measurements were taken at 560 nm using a UV-visible
spectrophotometer (Even, model IL-592).

For each formulation, three independent strips were measured
(n = 3). A cuvette without any film was used as the control (blank).
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Transmittance at 560 nm was recorded and the mean value was
reported for each sample. The adhesive tape used to secure the
film strip was positioned outside the optical path, ensuring that
it did not influence the transmittance measurements.

Colorimetry

Colour was measured with a portable colourimeter (CR-400,
Konica Minolta, Japan). Four distinct positions along the length
of each film specimen were assessed to capture spatial variation.
Results are reported in the CIE Lab* colour space, where L*
denotes lightness (0 = black, 100 = white), a* ranges from green
(=) to red (+) and b* from blue (-) to yellow (+).

Water solubility and absorption

Square film specimens (2 cm X 2 cm; area = 4 cm?) were pre-
pared. Each specimen was pre-dried in a forced-air oven at
105 °C (+1 °C) for 1 h and cooled to room temperature in a desic-
cator before weighing on an analytical balance (W;; g). Specimens
were placed in pre-tared Petri dishes, covered with 60 mL of dis-
tilled water, and agitated on an orbital shaker (60 rpm) for 24 h.
After immersion, specimens were removed, gently blotted on
absorbent paper for 10 s without rubbing and weighed immedi-
ately (W,; 9). They were then dried again in an oven at 105 °C to
constant mass and re-weighed (W;; g). Three independent speci-
mens were tested per formulation (n = 3).

Water solubility was calculated as:

(Wi— Wf)

WS (%) = X100 (1)

Table 1. Coded and actual values of the independent variables in
the 23 factorial design for HPMC-CS-Gly film formulations

Standard Coded/ Coded/ Coded/
run® [HPMC] (%) [CS] (%) [Gly] (%)
1 -1 (1.00) —1(0.50) —1(0.50)
2 1 (3.00) —1(0.50) —1(0.50)
3 —1(1.00) 1 (1.00) —1(0.50)
4 1 (3.00) 1 (1.00) —1(0.50)
5 —1(1.00) —1(0.50) 1 (2.00)
6 1 (3.00) —1(0.50) 1 (2.00)
7 —1(1.00) 1 (1.00) 1 (2.00)
8 1(3.00) 1 (1.00) 1 (2.00)
9(Q 0 (2.00) 0 (0.75) 0 (1.00)
10 (Q) 0 (2.00) 0 (0.75) 0 (1.00)
11 (Q) 0 (2.00) 0 (0.75) 0 (1.00)
12 (Q) 0 (2.00) 0(0.75) 0 (1.00)

@ (Q) indicates central-point replicates.

where WS is the percentage of material dissolved in water, W, is
the initial dry weight and W is the final dry weight after immer-
sion and re-drying.

Water absorption (uptake) was calculated as:

(Wu_Wf)
f

A (%)= X100 (2)

where WA is the percentage of water absorbed at the end of
immersion, W, is the wet weight after blotting and W is as
defined above.

Water vapour permeability (WVP)

WVP was determined according to ASTM E96/E96M (water
method, wet-cup).*" Circular film discs (25 mm in diameter) her-
metically sealed the mouths of 50 mL polypropylene tubes
(Falcon) containing 30 mL of distilled water; internal relative
humidity (RH1) was 1.0. The exposed area A was the internal
mouth area, measured with callipers. Assemblies were placed in
a sealed desiccator at 25 + 1 °C; external relative humidity was
monitored with a digital hygrometer and maintained at 50 + 2%
(RH2 = 0.5). Each cup was weighed at t =0 and t = 168 h, the
mass change being AW = mqgg — mo (g). During the WVP analy-
sis, all environmental conditions were maintained constant and
mass loss was periodically monitored to verify and confirm linear
WVP. The 168 h period was chosen to ensure that film WVP had
no changes over long periods of time. Film thickness
E (mm) was measured at multiple positions and averaged. The sat-
uration vapour pressure of water at 25°C was taken as
§$=3.17 kPa, and the time interval as T= 168 h. Results are
reported as mean + standard deviation (SD) for n = 3 cups per
formulation.

AWXE
Wp=—— =€ [gmmkPah™' m~ 3
SXTXA(RH, —Ry) 9 MM KPa AT (3)

ATR-FTIR spectroscopy

Attenuated total reflection Fourier transform infrared (ATR-FTIR)
spectra were collected with an IRTracer-100 (Shimadzu) to exam-
ine functional groups at the film surface. Forty-five scans were
recorded over 600-4000 cm™' at 8 cm™" resolution using a small
solid sample.

Surface morphology

Surface morphology was examined using scanning electron
microscopy (SEM; TM1000, Hitachi) operated at 15 kV. Films were
cut into small pieces and mounted on pre-cleaned circular metal
stubs; each side was examined on separate mounts. A thin gold
layer was deposited under vacuum (Q150R ES, Quorum), and
the gold-coated samples were subsequently imaged.

Table 2. Scoring system used in subjective analysis of monolayer polymeric blend films
Scale Brightness Malleability Tackiness Transparency Smoothness/texture
1 Very bright Very malleable Very tacky Very transparent Smooth/velvety
2 Bright Malleable Tacky Transparent Smooth/soft
3 Slightly bright Slightly malleable Slightly tacky Slightly transparent Smooth/plasticised
4 Not bright Not malleable Not tacky Not transparent Rough
J Sci Food Agric 2025 © 2025 The Author(s). wileyonlinelibrary.com/jsfa
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Evaluation of film antimicrobial activity
Film discs (10 mm in diameter) were die-cut from the films with a
sterile punch and placed at the centre of Mueller-Hinton agar
plates previously inoculated to obtain a uniform bacterial lawn
of each test strain (Gram-positive: Staphylococcus aureus ATCC
29213, Enterococcus faecalis ATCC 29212; Gram-negative: Escheri-
chia coli ATCC 10799, Klebsiella pneumoniae clinical isolate
153HU). Plates were incubated at 37 °C for 24 h. The growth-
inhibition zone diameter (mm) was measured including the
10 mm film disc. Positive controls (1% chlorhexidine solution
and Cinnamomum cassia essential oil) were run in parallel (n = 3).
The selection of bacterial strains was intended to provide an ini-
tial and broad indication of the potential antimicrobial behaviour
of the developed film. Standard Gram-positive and Gram-
negative reference strains commonly used in studies on biobased
antimicrobial films and active packaging were employed because
they allow reproducible and comparative screening across mate-
rials with different compositions.

Packaging setup and storage conditions for fresh-

cut mango

Tommy Atkins’ mangoes were harvested at physiological matu-
rity from a commercial orchard in the Sdo Francisco Valley
(Juazeiro, Bahia, Brazil). This cultivar was selected because it is
the most produced and exported in the region.*? After harvest,
fruit were sanitised with 0.5 mL L™" of a 10% available chlorine
solution, then peeled, cut into cubes of approximately 2 cm edge
length, gently mixed to ensure uniformity and washed again with
05mLL™" of a 10% available chlorine solution. Processed
mangoes were surface-dried at 25 °C.

Three packaging conditions were tested: (i) cubes placed in
100 mL food-grade plastic cups without a sealing film (control);
(ii) cubes in 100 mL plastic cups sealed with the test film (HPMC/
CS+Gly; thickness of 62 + 8 pm); and (iii) cubes in 100 mL plastic
cups sealed with a commercial PVC film (thickness of
16 + 2 pm). The experiment followed a completely randomised
design with three packages (cups) per treatment, each package
containing two fresh-cut cubes. Samples were stored at 9 °C
and evaluated at 0, 3, 6 and 9 days for headspace O,, CO, and eth-
ylene, as well as weight loss, colour, firmness, soluble solids and
titratable acidity.

Headspace gases were measured directly in the package with a
portable gas analyser (F-960, Felix Instruments, USA). Empty cups
and sealing films were individually pre-weighed to determine tare
mass. At each time point the gross mass of the closed package
was recorded and the fruit mass was obtained by subtracting
the corresponding tare; hence, weight loss was calculated on fruit
mass only:

(mo—my)

Weight loss (%) = X100 (4)

mo

where my is the tare-corrected fruit mass at day 0 and m, the tare-
corrected fruit mass at time t.

Pulp colour was measured with a portable colourimeter (CR-
400, Konica Minolta, USA) in the CIE L*a*b* colour space (CIE,
1976). Firmness was determined with a fruit hardness tester
(PTR-300 penetrometer, Instrutherm, Brazil) fitted with a 6 mm
probe; values represent the force (N) required to penetrate the
pulp to a 10 mm depth. Soluble solids were determined with a
digital refractometer (PAL BX|ACID F5, Atago, Brazil) using 1 mL
of strained juice and expressed as percentage (°Brix). Titratable

acidity was measured with the same instrument using 1 mL of
juice diluted 1:50 with distilled water; results were expressed as
percentage. Data were analysed using ANOVA, and means were
compared by Tukey's test (5%) where appropriate.

RESULTS AND DISCUSSION

Mechanical properties of HPMC/CS+Gly monolayer films

To evaluate how polymer and plasticiser levels affect mechanical
behaviour, films were tested for tensile strength (TS) and elonga-
tion at break (EAB), and the formulation was selected by balancing
stiffness (high TS) and extensibility (high EAB) (Table 3). A factorial
analysis with a significance criterion of P < 0.05 was used to rank
effects and to generate Pareto charts (Fig. 1).

Across formulations, higher HPMC was associated with higher
TS: the 3.00% HPMC films reached 19.88 +0.45 and 17.20
+ 0.82 MPa (samples 2 and 4), whereas lower-HPMC counterparts
showed lower TS (Table 3). Increasing Gly generally reduced TS
and, in several cases, increased EAB; for example, 3.00/0.50/2.00
yielded 721 +085MPa and  104.78 + 2.79%,  while
3.00/1.00/2.00 showed 9.70 + 0.44 MPa and 118.47 + 8.31%.
These trends are consistent with reports that Gly, as a plasticiser,
lowers intermolecular resistance in polysaccharide films and
thereby reduces 75.2*%°

The centre-point replicates (2.00/0.75/1.00) supported the over-
all pattern, with TS ranging from 10.93 to 16.31 MPa and EAB from
105% to 111%, indicating high extensibility around the design
centre (Table 3).

Effect ranking from the factorial design is summarised in the
Pareto charts. For TS, Gly and HPMC displayed the largest standar-
dised effects, where Gly was negative and HPMC positive (Fig. 1
(a)). For EAB, HPMC and CS contributed positively, particularly at
higher levels (Fig. 1(b)).

A complementary subjective assessment (brightness, malleabil-
ity, tackiness, transparency and surface texture) was used to aid
screening; attributes were scored from 1 (high intensity/present)
to 4 (low intensity/not present) (Table 4).

Table 3. Tensile strength and elongation at break for 12 film formu-

lations combining HPMC, CS and Gly

Film formulation (%HPMC/ Tensile Elongation at

%CS/%Gly) strength (MPa) break (%)

1.00/0.50/0.50 851 +0.19 7237 +4.57

3.00/0.50/0.50 19.88 + 0.45 91.27 + 0.85

1.00/1.00/0.50 10.07 + 0.90 81.20 + 0.28

3.00/1.00/0.50 17.20 + 0.82 74.07 + 2.80

1.00/0.50/2.00 1.87 +0.10 34.17 + 5.80

3.00/0.50/2.00 721 £ 0.85 104.78 + 2.79

1.00/1.00/2.00 224 + 042 59.17 +2.30

3.00/1.00/2.00 9.70 + 0.44 11847 + 831

2.00/0.75/1.00 (centre 16.31 + 0.82 105.29 + 0.96
point)

2.00/0.75/1.00 (centre 10.93 + 0.01 106.00 + 3.96
point)

2.00/0.75/1.00 (centre 16.17 + 2.89 11147 +11.90
point)

2.00/0.75/1.00 (centre 1449 + 048 11033 + 4.16
point)
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Standardized Effect Estimate (Absolute Value)

Figure 1. Pareto chart of TS (a) and EAB (b) of film formulations in response to different concentrations of HPMC, CS and Gly.

From this assessment, brightness varied between ‘very bright’
(score 1) and ‘bright’ (score 2) and was linked to HPMC level: 1%
HPMC films were ‘very bright’, whereas 2-3% HPMC films were
‘bright’ (Table 4). Malleability scores increased from 1 to 2 to
3 as HPMC increased (that is, malleability decreased with higher
HPMCQ). Tackiness rose with Gly and fell with more HPMGC; notably,
only samples 2 and 4 (both 3% HPMC, 0.5% Gly) were scored non-
tacky (4). Transparency scores were uniform (3) across formula-
tions, and surface smoothness/texture was typically 2 to
3 (Table 4). These attributes matter for consumer acceptance
and for optical systems in intelligent packaging.*®>°

Considering the mechanical outcomes together with the sub-
jective evaluation, sample 2 (3% HPMC, 0.5% CS, 0.5% Gly) was
selected for subsequent characterisation because it combined
high TS with high EAB and exhibited favourable handling (non-
tacky, smooth surface).

Physical and chemical characterisation of selected film

Film transparency and colour

The selected film, composed of HPMC at 3%, CS at 0.5% and Gly at
0.5% (hereafter HPMC/CS+Gly), appeared visually transparent
with a faint yellow hue. In the CIE L*a*b* colour space, lightness

was L* = 28.39 + 0.25, indicating low lightness under the mea-
surement conditions; the chromatic coordinates showed a slight
shift towards green (a* = —0.24 + 0.01) and towards yellow
(b* = 0.55 + 0.03).

Literature on chitosan-based films reports an intrinsically yellow
control (b* ~ 10.35) and additive-driven increases in b* and AE with
reductions in [*3* In CS/HPMC blend films containing sage leaf
extract or nettle leaf extract, L* remains high overall but decreases
with extract addition, while a* becomes more negative, b* increases
and AErises.>' Absolute L*a*b* values are method dependent owing
to illuminant, observer, geometry, backing and thickness.

UV radiation promotes free-radical formation and can degrade
food constituents, affecting antioxidants, proteins, nutritional
value, flavour and appearance®> The film transmittance at
560 nm was 30.6 + 1.04%, which indicates limited visible-light
transmission. While higher transparency may benefit consumer
perception, reduced light transmission can help mitigate photo-
oxidative deterioration, as reported by Wu et al. and Wang
et al.>>** Therefore, protecting packaged foods from UV exposure
is important, and controlling visible-light passage can be advanta-
geous in practical applications, including active and intelligent
packaging.>>>®

Table 4. Film brightness, malleability, tackiness, transparency and smoothness in response to different concentrations of HPMC, CS and Gly®
Sample (%HPMC/%CS/%Gly) Brightness Malleability Tackiness Transparency Smoothness/texture
1.00/0.50/0.50 1 1 2 3 2
3.00/0.50/0.50 2 2 4 3 3
1.00/1.00/0.50 1 1 2 3 2
3.00/1.00/0.50 2 2 4 3 3
1.00/0.50/2.00 1 1 1 3 2
3.00/0.50/2.00 2 2 3 3 3
1.00/1.00/2.00 1 1 1 3 2
3.00/1.00/2.00 2 2 3 3 3
2.00/0.75/1.00 (centre point) 2 3 3 3 3
2.00/0.75/1.00 (centre point) 2 3 3 3 3
2.00/0.75/1.00 (centre point) 2 3 3 3 3
2.00/0.75/1.00 (centre point) 2 3 3 3 3

2 Each attribute was evaluated on a scale from 1 (high intensity/present) to 4 (low intensity/not present).
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Water absorption and solubility of HPMC/CS+Gly film

Water absorption and water solubility are relevant attributes for
films intended for fresh-cut fruit applications, which typically
require storage at high relative humidity to avoid dehydration.
The HPMC/CS+Gly film showed water solubility of 38.74
+ 11.29% and water absorption of 420.83 + 4.04% under the test
conditions described in the section on Water solubility and
absorption. These values reflect the hydrophilic character of the
polysaccharide matrix.

Consistent with the literature, Liang et al. reported that films
made exclusively from HPMC or CS tend to exhibit higher water
solubility, whereas combining HPMC with CS markedly reduces
solubility.>” This reduction has been attributed to increased inter-
molecular hydrogen bonding between amino groups in CS and
hydroxyl groups in HPMC, which promotes a denser network that
is less prone to dissolution.”®>° In addition, compositional modifi-
cations with selected components, such as essential oils, have
been reported to further decrease water solubility when the aim
is to impart active and/or intelligent functionality to the
material.®

Film WVP
Under wet-cup conditions (25 °C; ARH = 0.5), approximately 4%
of the initial 30 g of water per cup (~1.2 g) permeated through
the film over 7 days (0-168 h). Water barrier properties are crucial,
especially in food packaging, to prevent excessive moisture loss
from foods to the atmosphere.’’ WVP has been widely studied
due to its importance, and lower permeability values are generally
recommended for high-water-content foods.5* >

According to our results, the HPMC/CS+Gly film showed a WVP
of 1.045 + 0.064 g mm kPa~' h™" m™2 (n = 3). This magnitude is
consistent with the known hydrophilicity of polysaccharide films:
the polymer matrix contains abundant hydroxyl and amino
groups that interact with water molecules, facilitating vapour
transport through the film structure.®®

However, films combining HPMC and CS with 7.5% sage leaf
extract or 7.5% nettle have reported to have lower WVP values
(0.266 and 0.408 g mm kPa~' h™' m™, respectively).>* Although
formulations and testing conditions may differ across studies,
these results indicate that incorporating selected natural com-
pounds can reduce WVP and may enhance performance for
fresh-cut fruit packaging.

ATR-FTIR spectroscopy

ATR-FTIR spectra were collected as described in the section on
ATR-FTIR spectroscopy to characterise functional groups in the
films (Fig. 2). Three specimens were analysed: the selected
HPMC/CS+Gly film (3% HPMC, 0.5% CS, 0.5% Gly) and two refer-
ence films prepared for band assignment: HPMC+Gly (1.75%
HPMC, 0.5% Gly) and CS+Gly (1.75% CS, 0.5% Gly).

For the CS film (Fig. 2(a)), distinct bands at 1636 and 1551 cm™"
are assigned to amide | (1(C=0)) and amide Il (§(N—H) + v(C—N)),
respectively. The band at 1381 cm™" can be attributed to 1(C—0)
of primary alcohols (—CH,OH) and to symmetric bending of resid-
ual CH, groups. Features between 1153 and 899 cm™" are consis-
tent with saccharide structures and p-glycosidic linkages of
CS.34'67'68

For the HPMC film (Fig. 2(c)), a strong band at 1045 cm™ corre-
sponds to 1(C—0—C) of the pyranose ring.3**® The signal near
945 cm™' is associated with ether-related vibrations and appears
as a weak feature overlapping the 1045 cm™" band. A broad band
at ca 3395cm™' arises from »(OH) of hydrogen-bonded

chains.?’* Bands in the 3000-2800 cm™' region are attributed
to u(CH,)/v(CH,)/v(CH). The band at 1647 cm™" is commonly asso-
ciated with bound water,**’® and that at 1454 cm™" with §(CH,),
close to 8(CH,).

The HPMC/CS blend spectrum (Fig. 2(b)) differs from those of
the individual films by slight band shifts and intensity changes.
Relative to CS, amide | shifts from 1636 to 1639 cm™' and amide
Il from 1551 to 1555 cm™"; the broad v(OH)/v(NH)/v(NH,) enve-
lope also changes. Relative to HPMC, the strong carbohydrate
band appears at ca 1042-1045 cm™". These shifts and broaden-
ings indicate altered hydrogen-bonding environments consistent
with intermolecular interactions between CS and HPMC, support-
ing miscibility/compatibility in the blend.>*>”

Surface morphology

The surface morphology of the selected HPMC/CS+Gly monolayer
film was examined using SEM (Fig. 3). SEM micrographs are com-
monly used to assess blend compatibility and possible phase sep-
aration in polymeric films, since interfacial discontinuities and
microdomains may appear as surface irregularities that can influ-
ence mechanical behaviour.”'

At X100 (Fig. 3(a)), the surface appears continuous, with fine,
irregular relief distributed across the field. At x1000 (Fig. 3(b)), a
more pronounced roughness is evident, with fragmented, flake-
like features and local micro-irregularities; distinct second-phase
domains are not apparent at these magnifications. Similar surface
features have been reported for CS/HPMC systems.”>”* In con-
trast, films composed solely of CS or solely of HPMC are generally
described as smoother and more homogeneous under compara-
ble imaging conditions.®>”"

Assessment of antimicrobial activity through film contact
Antimicrobial activity was evaluated by the disc diffusion method
(Evaluation of film antimicrobial activity section) using Escherichia
coli (ATCC 10799), Klebsiella pneumoniae (clinical isolate 153HU),
Staphylococcus aureus (ATCC 29213) and Enterococcus faecalis
(ATCC 29212). Positive controls were 1% chlorhexidine and Cinna-
momum cassia essential oil.”*”® Inhibition was assessed from the
diameter of the growth-inhibition zone (mm), measured including
the 10 mm film disc. By our a priori criterion, haloes of <15 mm
were classified as non-inhibitory (Table 5). These strains were cho-
sen to provide an initial indication of broad-spectrum antimicro-
bial behaviour, and to allow comparative assessment using
reference organisms widely employed in studies of biobased anti-
microbial films. Although these organisms do not represent the
full spoilage microbiota of mango, they enable a consistent labo-
ratory screening of the film.

The HPMC/CS+Gly film (3% HPMC, 0.5% CS, 0.5% Gly) did not
inhibit E. coli, S. aureus or E. faecalis, and produced an 11 mm
clearing against K. pneumoniae, which is below the 15 mm cut-
off and therefore non-inhibitory. In contrast, the positive controls
yielded clear haloes: C. cassia essential oil of 20-33 mm depend-
ing on the strain, and 1% chlorhexidine of 20-25 mm (Table 5).

These findings align with reports that HPMC lacks intrinsic anti-
bacterial activity,”*’” while CS can be antimicrobial in a manner
dependent on degree of deacetylation, molecular weight and
environmental conditions such as pH, ionic strength and reactive
solutes.®®”®82 Under the present composition (0.5% CS) and test
conditions, measurable inhibition was not observed. To enhance
antibacterial performance in HPMC/CS films, incorporation of
established active agents such as essential oils may be consid-
ered, either alone or in combination with metal oxide
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Figure 2. ATR-FTIR spectra of films based on (a) CS with Gly (CS), (b) HPMC/CS with Gly (HPMC/CS) and (c) HPMC with Gly (HPMC).
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IPCM 2023/06/08 16:09 L D5.6 x100 1 mm

2023/06/08 16:09 L D5.8 x1.0k 100 pm

Figure 3. Surface SEM images of HPMC/CS+Gly film. Images were taken at x100 (a) and x1000 (b).

Table 5. Antibacterial activity of HPMC/CS+Gly film determined according to the disc diffusion method

Diameter of growth inhibition halo (mm)

Sample Escherichia coli Klebsiella pneumoniae Staphylococcus aureus Enterococcus faecalis
HPMC/CS+Gly — 112 — —
Cinnamomum cassia 20 33 26 30
Chlorhexidine (1%) 20 25 21 21

a Halos with a diameter < 15 mm should not be considered as indicating inhibitory activity.
The diameter of the growth-inhibition halo was measured in addition to the 10 mm diameter of the HPMC/CS+Gly film disc. Cinnamomum cassia
essential oil and chlorhexidine were used as positive controls against E. coli, K. pneumoniae, S. aureus and E. faecalis.

nanoparticles; such strategies have been reported to strengthen
antimicrobial effects in polysaccharide-based films.#*#* Targeted
studies will be required to optimise composition and to elucidate
mechanisms when CS is combined with HPMC and Gly in food-
packaging films.23%*

Moisture-management performance in fresh-cut mango
Fresh-cut mango cubes were stored at 9 °C for 9 days under three
conditions: the HPMC/CS+Gly test film (3% HPMC, 0.5% CS, 0.5%
Gly), a commercial PVC film or no film (control). Weight loss
increased over time in all treatments, but packaging markedly
changed the magnitude of loss (Table 6; Fig. 4). At day 3 the values
were 8.34% for no film, 2.07% for the test film and 0.72% for PVC.
On day 6 they were 13.84%, 4.01% and 0.96%, respectively. On
day 9 they were 24.81%, 4.96% and 1.20%, respectively. Thus,
the HPMC/CS+Gly film reduced dehydration by approximately
fivefold relative to the unpackaged control, while PVC gave the
lowest losses throughout. This pattern is consistent with the typi-
cally higher WVP of polysaccharide films compared with PVC5°
Limiting water loss is technologically relevant because mass
losses of 5-10% commonly render produce unmarketable and
accelerate quality deterioration, including browning, textural soft-
ening and flavour loss 2688

Packaging did not affect colour (L*, a*, b*) or firmness within
each storage day, as indicated by the same superscript letters
for treatments in Table 6 (ANOVA and Tukey, 5%). These attributes
are recognised indicators of freshness and strongly influence con-
sumer acceptance in fruit products.®>?° For soluble solids, no dif-
ferences were detected up to day 6. At day 9, values were higher
without film (15.96%) than with the test (13.84%) or PVC (12.43%)
films (P < 0.05). This pattern is consistent with concentration
effects from the greater water loss in the unpackaged fruit. In

mango, the rise in soluble solids reflects starch hydrolysis to
sugars during ripening.”’ Titratable acidity showed a transient dif-
ference at day 3 with that for PVC slightly lower than that for the
test film, with no consistent treatment effect thereafter (Table 6).

Headspace measurements indicate limited atmosphere modifi-
cation, particularly for the HPMC/CS+Gly film. O, remained close
to ambient, approximately 21%, and CO, was at or below 0.74%
by day 9. The PVC film transiently lowered O, to 14.66% at day
3 and increased CO, to 3.20% at day 3, trending back towards
ambient by day 9. Ethylene accumulated in sealed packages and
was numerically higher under PVC than under the test film at
day 9 (3.56 versus 2.50 ppm), while the open control remained
at 0 ppm (Table 6). The small changes in O, and CO,, particularly
for the HPMC/CS+Gly film, explain the lack of ripening delay, with
colour and firmness unchanged, and are consistent with reports
that films with low resistance to O, and CO, diffusion have limited
impact on respiration and ripening.”>> Low levels of O, and high
levels of CO, in the storage atmosphere are known to inhibit fruit
respiration and ethylene synthesis, which results in slow ripening
changes during storage and shelf life.">**®” These results suggest
that the performance of the HPMC/CS+Gly film in maintaining
fruit quality traits, such as colour and firmness, could be enhanced
by increasing its resistance to O, and CO, diffusion, as well as by
reducing its resistance to ethylene or enabling ethylene absorp-
tion within the package headspace,'®** which will be the focus
of future studies.

Overall, the HPMC/CS+Gly film provided effective water-barrier
performance relative to no film, although it was inferior to PVC,
and it exerted minimal gas-barrier effects. For applications that
aim to curb dehydration and, where relevant, to modulate the
internal atmosphere to slow ripening, future work should tailor
the film composition to increase resistance to O, and CO,
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Table 6. Physicochemical quality of fresh-cut mango during 9 days of storage at 9 °C
Weight Firmness Soluble Acidity Ethylene
Condition loss (%) L a b (N) solids (%) (%) 0, (%) CO, (%) (ppm)
At 0 day
Initial 0.00 78.55 —-5.29 69.62 21.55 11.33 0.49 21.00 0.03 0.00
untreated
After 3 days
No film 834°? 7532° -2.88°% 7170°% 20.40° 13.00? 0.52% 21.00° 0.03° 0.00°
Test film 2.07° 73.19° —-1.10% 75.24°% 18.78 2 14202 0562 20.96° 023" 6.16°
Commercial 072°¢ 7735% 3717 69.78° 14.77° 13.10° 049°  1466° 3.20° 31.95°
film
CV (%) 6.40 3.55 52.68 2.88 24.75 438 4.31 9.68 32.00 154.95
After 6 days
No film 13.84°2 77.26° —-3.72°% 64.07° 20.21° 13.702 0502 21.00° 0.03° 0.00°
Test film 401° 7643% 3267 64.09° 20,142 13342 049° 20432 0.36° 1202
Commercial 0.96 ¢ 77.34° -339% 67037 15.18 2 12442 0.43°? 12702 1.97°2 2.26°
film
CV (%) 8.87 5.57 4422 11.75 58.55 740 21.53 21.15 71.36 50.29
After 9 days
No film 24.81° 69.392 -0.79°% 65.28° 15.26 2 15.96 2 0.54°? 21.00° 0.03° 0.00 €
Test film 496° 78132 2492 5851% 19.95°2 13.84° 052°  19.60° 0.74° 250°
Commercial 120° 7333 0817 59517 20172 1243° 042°  17.30° 1.64° 3.56°
film
CV (%) 14.67 7.16 161.45 9.69 55.98 432 11.74 15.89 118.65 20.65
Means followed by the same superscript letter on each day of storage are statistically equal according to Tukey's test (5%).
Fresh-cut samples were stored in 100 mL food-grade plastic cups without a sealing film (control), sealed with HPMC/CS+Gly (test film) or sealed with
commercial PVC film.

v COMMERCIAL FILM 0O TEST FILM O NO FILM

100

95

90

85

80

% WEIGHT LOSS

75 L 24.81%

70

STORAGE DAYS

Figure 4. Weight loss of fresh-cut mango during 9 days of storage at 9 °C. Fresh-cut samples were stored in 100 mL food-grade plastic cups without a
sealing film (control), sealed with HPMC/CS+Gly (test film) or sealed with commercial PVC film. Values are means + SD (n = 3 packages per treatment).

diffusion, thereby achieving a headspace with lower O, and  monolayer formulation showed polymer-polymer compatibility
higher CO, that more effectively suppresses respiration.”>* by ATR-FTIR, high optical clarity, reduced water solubility and

WVP suited to moisture control. Used as a sealing lid at 9 °C for

9 days, it reduced weight loss by about fivefold compared with
CONCLUSIONS unpackaged fruit and maintained fruit colour and firmness during
This study demonstrates the feasibility of a biodegradable HPMC/  storage, while approaching the dehydration-limiting perfor-
CS film plasticised with Gly for fresh-cut mango. The selected  mance of commercial PVC. Overall, the HPMC/CS+Gly film is a
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credible moisture-management solution for fresh-cut mango and
a solid platform for future optimisation aimed at strengthening
gas-barrier properties and, where appropriate, adding active func-
tionality. Future studies should aim to enhance the resistance of
HPMC/CS+Gly films to O, and CO, diffusion, while reducing the
resistance to ethylene or enabling ethylene absorption within
the package headspace. These improvements are expected to
increase the film's effectiveness in delaying tissue ripening and
quality deterioration, thereby reducing postharvest losses
and extending the time available for storage, transport, marketing
and consumption. Although regulatory compliance for food con-
tact and migration was not assessed, the polymers used (HPMC
and CS) are widely recognised as safe for food applications, and
migration testing may be considered in future work.
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