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ABSTRACT - The INTERGEN package has been under constant development for the 
last two decades using the Fortran 90/95 programming language. The latest version 
of INTERGEN includes three different binaries: intergen, intergeniod, and intergenacc. 
Intergen has been consistently expanded to include the Best Linear Unbiased Prediction 
(BLUP) genomic module in recent years. The intergeniod and intergenacc binaries are 
new and aim to estimate genetic merit using iteration on data (IOD) and approximate 
accuracy. The present study aimed to provide a high-level overview of INTERGEN 
functionalities and to assess the reliability of the IOD genomic new module included 
in the intergeniod. Single-step GBLUP (ssGBLUP) models using beef cattle growth 
and conformation traits were used to estimate breeding values using intergeniod 
and compared with benchmarking software (intergen). The rank correlation for the 
breeding values between intergeniod and intergen was equal to the unit. The INTERGEN 
package can be applied to the genetic analysis of large-scale datasets using intergen, 
intergeniod, or intergenacc.
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1. Introduction

Genome selection (GS) is the standard genetic evaluation approach in many animal and plant species, 
thanks to the availability and affordability of genotyping technologies (Misztal et al., 2020). Since the 
publication of the landmark paper (Meuwissen et al., 2001), countless studies have been conducted to 
apply various SNP-based models. As the number of genotyped individuals with varied molecular marker 
densities continues to grow, it has become imperative to develop new algorithms and computational 
solutions to manage the vast amounts of pedigree, genotypes, and phenotypes. In cattle breeding, the 
number of animals with SNP markers has increased significantly over the past decade, from just a 
few thousand in the mid to late 2000s to over seven million in 2024 U.S. Holsteins (https://queries.
uscdcb.com/Genotype/cur_freq.html) (Weller et al., 2017; Wiggans et al., 2017). The swine and poultry 
industries are also realizing the benefits of GS (Ibáñez-Escriche et al., 2014; Samorè and Fontanesi, 
2016). In the plant breeding industry, crops like maize were among the first to adopt GS, and now, 
virtually all crops worldwide are using these models (Chan et al., 2012; Nannas and Dawe, 2015; 
Zystro et al., 2021).
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Over the years, several software packages have been developed to estimate breeding values and 
variance components using either frequentist or Bayesian methodologies (Misztal, 1990; Van 
Vleck and Cassady, 2004; Meyer, 2007). These packages aim to estimate the population (co)variance 
components and genetic parameters, which are needed for designing breeding strategies and assessing 
the genetic merit of animal and plant populations (Henderson, 1975). The mixed model equations 
(MME) method is commonly employed for this purpose, assuming that (co)variance components 
are known a priori for all random effects. In recent years, new methods have emerged to estimate 
breeding values with greater accuracy, and algorithms are being implemented to enhance efficiency in 
computing time and memory usage for large-scale genetic evaluations. Some of these methods involve 
constructing relationship matrices more efficiently (Henderson, 1976; VanRaden, 2008; Aguilar et al., 
2010; Misztal, 2016).

INTERGEN is a software package utilized for genetic analysis, specifically aimed at estimating the 
genetic merit of animal and plant populations. The software is written in Fortran 90/95 and is free for 
research use. Although it is widely recognized in animal breeding, particularly for its Bayesian features, 
this is the first comprehensive scientific publication detailing the functionalities of INTERGEN for both 
animal and plant populations. This paper offers an overview of the INTERGEN computational package, 
primarily focusing on highlighting new features advantageous for large-scale genomic evaluations of 
these populations.

2. Material and methods

2.1. Details on the computational package

The INTERGEN package consists of a collection of routines written in Fortran 90/95 that are useful 
for animal and plant breeding genetic analysis. It includes different modules for managing sparse 
and dense matrix allocation and operations, MME solvers such as FSPAK and preconditioned 
conjugate gradient (PCG), Gibbs and Metropolis-Hastings sampling algorithms for variance 
component estimation, and Hash and IJA storage computational strategies (Misztal, 1999). Initially, 
it was developed to conduct Bayesian research involving complex structures, such as genotype-by-
environment interactions utilizing reaction norm models with unknown covariates in multibreed 
populations with uncertain paternity. This encompasses considerations for heterogeneity of residual 
variances, robustness analysis, and reduced animal models (Cardoso and Tempelman, 2003; Cardoso 
and Tempelman, 2004). INTERGEN has since been updated to include genetic merit estimation, 
incorporating (or not) genomic information using BLUP, and normal priors for fixed effects (Sorensen 
and Gianola, 2007). More recently, various algorithms have been implemented to enhance the statistical 
modeling capabilities of the package, allowing it to handle diverse management situations commonly 
encountered in livestock, genomic information, iterative algorithms for solving MME without memory 
allocation, and approximate accuracy estimation. The package comprises three binary programs 
written in Fortran 90/95: intergen, intergeniod, and intergenacc. In this section, we will briefly describe 
the differences among the binaries. The following sections will provide additional details about the 
functionalities currently available in the package.

2.2. Intergen

The software intergen is the most comprehensive among the three options available for analyzing 
genetic data using Bayesian and frequentist methods. It employs computational techniques to manage 
sparse operations and solve the MME for single-trait, multi-trait, and random regression models, which 
are commonly used in genetic analysis. The software can estimate variance components (Bayesian 
only) and derive solutions. INTERGEN enables users to define complex models with unlimited random 
and fixed effects. The MME are constructed and allocated in memory for Bayesian and BLUP analysis.
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The software shares most components (i.e., modules, subroutines, and functions) for building equations 
between the Bayesian and BLUP methods. The most computationally demanding step in the analysis 
involves executing matrix operations, including ordering, symbolic and numerical factorization, and 
inversion. Among these, factorization and sparse inversion operations are the most resource-intensive 
(Junqueira et al., 2022b). In BLUP analysis, the MME solutions can be derived by exact inversion of the 
coefficient matrix or by using iterative techniques like PCG. All operations in the software are executed 
by allocating the equations in memory. Therefore, the computational capacity of the software depends 
on the RAM available in the user’s computer. Computational limitations arise in large-scale analyses 
when all equations cannot be allocated in memory, particularly in multi-trait genomic analyses, and 
when prediction error variance (PEV) is required from the coefficient matrix inverse. For example, 
when analyzing over 25,000 genotyped individuals in multi-trait models, the software intergeniod is 
necessary for solving mixed-model equations using iteration on data (IOD), as RAM would reach its 
limits on most servers.

2.3. Intergeniod

The intergeniod software utilizes the IOD technique with PCG to solve the MME and obtain solutions 
for all the fixed and random effects specified in the model. This software is recommended whenever 
BLUE and BLUP solutions for large datasets are required and allocating memory for all equations is not 
feasible due to memory constraints. Schaeffer and Kennedy (1986) were responsible for the first IOD 
implementation in animal breeding. These authors implemented IOD with successive overrelaxation 
(SOR), which requires sorting the equations in a predefined order to solve them efficiently when 
allocated in memory. However, it is not flexible enough to handle different models without modifying 
the algorithm (Lidauer et al., 1999; Strandén and Lidauer, 1999). On the other hand, PCG is generic 
enough to handle any model with unlimited covariates and cross-classified effects. Below is a generic 
version of the PCG solver algorithm. Assume an MME denoted as Ax = b in which A is the left-hand 
side matrix, x is the vector of unknown solutions, and b is the right-hand side matrix. In the PCG, some 
vectors need to be initialized before starting the loop process, which is supposed to stop when reaching 
the convergence criteria defined by the user (default is 10−12). The initial values of the scalars and 
vectors are n = 0, w = 0, x = 0, r0 = b − Ax0, d0 = M−1r0, f0 = r'0d0.

Figure 1 - Description of a generic preconditioned conjugate gradient (PCG) algorithm implemented in the 
intergeniod software.

1: while not converge do 

2:

Algorithm 1 Generic Preconditioned Conjugate Gradient Algorithm
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Note that only a few vectors must be allocated in memory in this solver. In each iteration, the algorithm 
updates the solution vector xn, the residual vector rn, and the search direction dn. The matrix-vector 
product qn = Adn-1 is used to compute the step size (αn). The fn is a scalar representing the inner product 
of the residual and its preconditioned form. The direction vector is then updated using βn, ensuring 
the conjugacy of successive directions. The most complex computation is related to derivation q = Ad 
as it requires estimating all elements of the coefficient matrix without allocating them in memory 
and multiplying them by the vector d. Tsuruta et al. (2001) stated that the preconditioner matrix 
(M) influences the convergence rate of PCG. The more straightforward construction—and more 
computationally efficient in terms of memory savings—of this square and symmetric matrix can 
become a vector if only diagonals of the coefficient matrix are utilized. Other possibilities rely on block 
diagonal structure, resulting in faster convergence rates at the expense of using more memory.

2.4. Intergenacc

The intergenacc package is the third binary designed to estimate the approximate accuracies of 
estimated breeding values using the MME method. This software analyzes large-scale datasets in which 
accuracies are required, and dimensionality and memory limitations prevent inverting the coefficient 
matrix of MME. It estimates the accuracies of random effects, such as animal or maternal effects, 
adjusted for one fixed effect and one additional random effect. This correction method is consistent 
across algorithms. The method implemented has been detailed in several papers (Misztal and Wiggans, 
1988; Misztal et al., 1991; Misztal et al., 1993; Misztal et al., 2013). The current version of intergenacc 
supports single-trait models, with or without genomic information, and can estimate additive and 
maternal accuracies in separate runs.

2.5. Definition of the model effects

As previously mentioned, the INTERGEN package offers various useful features for conducting genetic 
evaluations of animals and plants. This section presents a brief overview of these functionalities. For 
more detailed guidance on using the software, please refer to the manual or contact the research group 
directly. 

The software allows five different types of effects to be used to build the MME matrices. These effects 
include cross (cross-classified), cov (covariate), unknowncov (cross-classified covariate for reaction 
norms via random regression), rnorm (reaction norms via random regression), and ram (reduced 
animal model). In the EFFECT section of the parameter file, these effects are listed along with the 
number of levels and any indication of a nested effect for random regression modeling. Additionally, 
in this section, users can indicate if they wish to save samples of each MCMC cycle in an external file 
during Bayesian analysis. The software can handle an unlimited number of effects.

2.6. Residual (co)variances

The intergen software accommodates six types of residual (co)variance structures. It can fit both 
single- and multi-trait models within Bayesian framework, and allows Gaussian and heavier-tailed 
alternatives like Student’s t or Slash densities for estimating variance components. Users can specify 
three residual densities, allowing for either homoscedastic (i.e., homogeneous) or heteroskedastic 
error specifications. Below are further details on each of the allowed specifications:

Gaussian homoscedastic: normal distribution with homogeneous variance e~N(0, σ2
e), with e as the 

vector of residual effects and σ2
e  the residual variance common to all elements of MME. Currently, this is 

the only option allowed in the intergeniod.

Gaussian heteroskedastic: normal distribution with heterogeneous variance e~N(0, σ2
e(i)), with e as the 

vector of residual effects and σ2
e(i)  the residual variance defined for subclass i.
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Student’s t homoscedastic: the Student’s t distribution (or simply t distribution) is a continuous 
probability distribution that generalizes the normal distribution with heavier tails with controlled 
parameters determined by v as the degree of freedom. This distribution was presented as an alternative 
for mitigating the effects of preferential treatment and deviant observations (Strandén and Gianola, 
1998). Under the assumption of homogeneous residual variance distribution, it can be defined as 
e~p(e|σ2

e , wi) = N(0, 
wi

____σ
2
e ), in which p(wi|ve) represents the lack of fit of the marginal density of e to the 

Gaussian distribution. Thus, the distribution of the phenotypes becomes y~t(0, ve).

Student’s t heteroskedastic: this distribution is similar to the Student’s t homoscedastic, and the 
difference relies on the assumptions around the presence of heterogenous residual variance among 

the subclasses. Thus, we fit σ2
ei

 in e~p(ei|σ2
ei 

, wi) = N(0, 
wi

____
σ2

ei ).

Slash homoscedastic: extending the derivation of Student’s t distribution, Slash arises when 
p(wi|ve) = vew

ve − 1, in which i = 1,2, …, n, ve > 0, 0 < wi < 1 such that ve − 1
_______σ2

E =
ve σ2

e .

Slash heteroskedastic: in situations in which it is assumed heterogeneity of residual variances,  

e~p(ei|σ2
ei 

, wi) = N(0, 
wi

____
σ2

ei ) with wi fitted as Slash homoscedastic.

In the case of Student’s t and Slash distributions, the Metropolis-Hastings algorithm is applied on 
every cycle of MCMC. Previous publications provide more details on the derivation of the heavy-
tailed alternatives and their implications for prior, posterior, and marginal probabilities (Cardoso and 
Tempelman, 2003; Rosa et al., 2003; Cardoso and Tempelman, 2004; Cardoso et al., 2005; Cardoso 
et al., 2007).

2.7. Random effects

Intergen currently accepts ten different (co)variance matrices for the random effects. These matrices 
can be calculated internally or imported into the software. The (co)variance structures defined at this 
stage are then added to the (off-)diagonal elements of the coefficient matrix. BLUP and MCMC models 
currently accept the following random types: diagonal, add_sire, add_animal, add_an_upg, add_an_
upginb, add_an_ms, add_an_mb, diag_mb, user_file, user_file_i, and norm_prior.

For Bayesian analysis, additional parameters are required to define the hyperparameters of the 
distributions correctly. A pedigree file is needed as input for all types except diagonal types (i.e., 
diagonal, diag_mb, and norm_prior). The random types add_an_ms and add_an_mb handle multiple 
sires and breeds, respectively. Further statistical details on model parameterization can be found in 
Cardoso and Tempelman (2003) and Cardoso and Tempelman (2004). Furthermore, these random 
types can fit genetic groups, assumed as fixed, by including dummy parents in the pedigree file. The 
multi-sire and breed inferences are only available in Bayesian analysis. In such cases, the user should 
define the hyperparameter values for prior distributions (Dirichlet, Inverse Gamma, or Wishart). The 
software will run defined cycles of Metropolis-Hastings for each MCMC iteration and adjust the 
variance of the prior distributions based on the acceptance rates during the burn-in phase of MCMC.

The norm_prior allows the inclusion of prior knowledge (i.e., μ and σ2) on the fixed MME matrices of 
the model (Sorensen and Gianola, 2007). The value μ can be understood as the best estimate a priori, 
and σ2 the variance associated with the uncertainty of that estimate. Thus, with lower values of σ2 
higher is the confidence of μ. In this scenario, the traditional mixed model equation is then adjusted 
as follows:

[C + V−1]b = [y + V−1 m],

in which C is the coefficient matrix of MME, b is the vector of BLUE and BLUP solutions, V−1 is the (co)
variance matrix for the fixed effects, and m is the vector of a priori means for each fixed effect level.

The MCMC and BLUP allow using three types of random effects: add_animal, add_an_upg, and 
add_an_upginb. Amongst these, add_animal is the simplest, and the other are extensions. This type 
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utilizes information from the pedigree file, including the individual, parent 1, and parent 2. Iteratively, 
the inverse of the numerator relationship matrix (A) is built using this information without considering 
the inbreeding coefficients. The method implemented utilizes the concepts described in Henderson 
(1976) to directly create the inverse of A. The A matrix has many nonzero elements for a well-
structured pedigree, but its inverse has only a few nonzero elements, making its construction fast and 
computationally efficient following Henderson (1976) rules. The add_an_upg type is the animal model 
that builds the A matrix with unknown parent groups (Westell et al., 1988), and add_an_upginb is the 
animal model with unknown parent groups and inbreeding. These models also allow the inclusion of 
genomic information from an external file. More details about the genomic module will be presented in 
the next section. The software provides two types of random effects that offer more flexibility: user_file 
and user_file_i. Using these types, the user can create their own (co)variance matrices externally and 
then upload them to the software. This functionality allows users to use INTERGEN even when no 
built-in features are available.

2.8. Genomic module

Our in-house genomic module has been under development for over a decade, and we have continuously 
modified it to enhance its computational efficiency in handling genomic information. While most 
non-genomic analyses are managed efficiently using sparse formats (Misztal, 1990), genomic analysis 
demands more efficient programming. The genomic module includes several parallel operations 
utilizing MKL libraries (Intel, 2024) to optimize computational performance.

Depending on the content of the pedigree, this module can handle single-step GBLUP (Aguilar et al., 
2010) or GBLUP (genomic BLUP) (VanRaden, 2008). Assume, for instance, the following model:

y = Xb + Za + e,

in which y is the vector of phenotypes; X and Z are incidence matrices relating levels to phenotypes of 
the fixed and random effects, respectively; b is the vector of solutions of fixed (or systematic) effects; 
and a is the vector of random effects solutions. The vector a~N(0, G0⨂H−1), H−1 is the inverse of the 
matrix describing the genetic relationships of the size of all individuals included in the pedigree file. 
This relationship matrix can be built assuming only pedigree in which H−1 becomes A−1, only genotypes 
in which H−1 becomes G−1 (i.e., GBLUP), or both information jointly, also known as single-step GBLUP 
(Aguilar et al., 2010). The G0 matrix contains the additive (co)variances and can have a scalar or a 
symmetric multidimensional matrix depending on whether it is a single- or multi-trait model. The 
e~N(0, I⨂R−1), and R contains the residual (co)variances of the model, and the dimension also depends 
on the number of traits under evaluation. Then, based on the above statistical model, the MME that 
intergen and intergeniod handle can be described as follows:

=
X'R−1Z

Z'Z + G0⨂H−1 
b
a

X'R−1y
Z'R−1y

X'R−1X
Z'R−1X

The INTERGEN package has a genomic module shared among its three binaries. The current version of 
the module (version 1.0) can handle GBLUP and ssGBLUP models, depending on the pedigree provided 
by the user. If the pedigree file used in the analysis is empty (i.e., A and A22 are diagonals), the software 
will build a GBLUP model by creating a genomic matrix. However, if the pedigree file is not empty, the 
software builds a ssGBLUP model. The software constructs the genomic and pedigree-based matrices 
as described below:

0
0 

0
τ(αG + βA22)−1 − ωA22

H−1 = A−1 + −1
 ,

in which τ, α, β, and ω are scaling factors used to improve matrices equivalences, with default values as 
1.00, 0.95, 0.05, and 1.00, respectively (Misztal et al., 2010; Lourenco et al., 2014; Aguilar et al., 2020), 
and A22 is the pedigree-based relationship matrix constructed using the ancestral and genotyped 
individuals.
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2.9. User interface

The INTERGEN package includes three binaries that can be executed on UNIX systems (Linux and 
OSX) via a terminal command line. Users must create a parameter file to specify the model parameters 
according to the software guidelines. Once executed, the software generates various intermediate and 
final files, which are saved in the directory the software is executed.

Before using the software, the user must ensure that the Math Kernel Library (MKL) is installed on 
their computer or server. The Intel compilers have been free since 2020 and can be downloaded from 
the Intel website (https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-
compiler-download.html).

Although all functionalities presented in this paper are operational in the INTERGEN package, we will 
not provide a comprehensive list of results since they have already been reported in several other 
publications (Santana et al., 2013; Ribeiro et al., 2015; Ribeiro et al., 2018; Junqueira et al., 2018; 
Junqueira et al., 2022a). Instead, in this publication, we will present the intergeniod results as the new 
INTERGEN package software.

The phenotypic, genotypic, and pedigree Angus data used in the analysis were kindly provided by the 
Programa de Melhoramento de Bovinos de Carne (PROMEBO) of the Associação Nacional de Criadores 
(ANC) “Herd-Book Collares”. In the following sections, we will describe the data and the procedures 
used to prepare them for the analysis.

2.10. Phenotypes

The Angus animals used in this analysis were born between 1979 and 2022 and were primarily raised 
on pasture in the southern region of Brazil. Various traits were measured, such as weaning weight gain 
(WWG), weaning conformation (WC), weaning hair coat (WHC), post-weaning gain (PWG), yearling 
conformation (YC), yearling hair coat (YHC), scrotal circumference (SC), rib-eye area (REA) at yearling 
age, backfat thickness (BFT) at yearling, rump fat thickness (RFT) at yearling, and intramuscular fat 
(IMF) at yearling. For more information on each trait, please refer to Table 1.

Scores of WC and YC are visual measures of the volume of the carcass, considering body length and rib 
depth. Each animal was assigned a score between 1 and 5, with 5 being the highest expression of the 
trait and 1 being the lowest relative to its contemporary group (CG). The CG consisted of animals of the 
same sex, born in the same year and season, and raised on the same farm under the same management 

Table 1 - Number of records (Phenotypes), number of genotyped animals with records (Geno_Pheno), number 
of contemporary groups (CG), and descriptive statistics (mean, minimum, maximum, and standard 
deviation [SD]) for each trait used in the analysis

Trait Phenotypes Geno_Pheno CG Mean Minimum Maximum SD
WWG 291,538 9,602 16,938 140.98 20.50 410.00 40.06
WC 268,559 9,732 18,381 3.18 1.00 5.00 1.09
WHC 113,390 8,033 8,093 2.01 1.00 3.00 0.71
PWG 193,849 7,872 14,512 154.74 0.74 693.83 77.69
REA 33,626 5,943 4,326 59.51 15.06 129.70 18.03
BFT 34,421 5,948 4,250 2.97 0.10 23.60 1.63
RFT 30,140 5,940 3,963 3.49 0.10 24.60 2.24
IMF 26,344 5,847 3,430 3.05 0.30 10.28 1.15
YC 186,584 8,215 18,433 3.27 1.00 5.00 1.07
SC 49,937 4,466 4,352 34.53 18.00 50.00 3.71
YHC 91,797 7,647 9,252 1.81 1.00 3.00 0.69

WWG - weaning weight gain; WC - weaning conformation; WHC - weaning hair coat; PWG - post-weaning gain; REA - rib-eye area; BFT - backfat 
thickness at yearling; RFT - rump fat thickness at yearling; IMF - intramuscular fat at yearling; YC - yearling conformation; SC - scrotal circumference 
at yearling; YHC - yearling hair coat.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler-download.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler-download.html
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conditions. The phenotypes were collected on the same date, and CG with fewer than two observations 
were excluded from the analysis. Additionally, any observations that exceeded 3.5 standard deviations 
from their corresponding CG were removed.

Scores of WHC and YHC range from 1 to 3, with 1 indicating a short hair coat, 2 indicating a medium 
hair coat, and 3 indicating a long hair coat (Reimann et al., 2018). Traits REA (cm2), BFT (mm), and 
IMF (%) were measured using an ultrasound device on the region between the 12th and 13th ribs, 
transversely over the longissimus muscle. The ultrasound measured RFT (mm) between the gluteus 
medius and biceps femoris muscles on the animal’s rump.

2.11. Genotypes

A total of 12,637 animals were genotyped using sixteen different commercial SNP panels. Table S1 
contains details about the number of SNP in each panel and the overlapping markers among them. 
Quality control of the genotypes was carried out using the R/SNPStats package (Clayton, 2023), 
which removed samples with genotyping call rates below 0.90, heterozygosity values three standard 
deviations above or below the observed mean, mismatched sex, and duplicate records. Only SNP 
mapped to autosomes with call rates greater than 0.98, minor allele frequencies greater than 0.03, and 
a probability of deviation from the Hardy-Weinberg equilibrium greater than 10−7 were considered 
for the analyses. Lastly, SNP with the highest minor allele frequencies were retained when observed 
in the same position or when genotypes were highly correlated (r > 0.98). Excluding SNP with high 
correlation from the analysis enhances numerical stability, boosts computational efficiency, and 
avoids overrepresentation of genomic areas.

After quality control, a joint imputation combined the SNP from the fourteen panels. Following the 
editing and joining of the SNP, 74,227 SNP and 12,637 samples were available for imputation. Missing 
genotypes were imputed using Fimpute software version 3 (Sargolzaei et al., 2011).

2.12. Statistical models

Seven multi-trait ssGBLUP models were analyzed, varying the random terms included. The complete 
ssGBLUP model can be described as follows:

y = Xb + Za + Pm + Wc + e,

in which X, Z, P, and W are the incidence matrices associating each level of fixed, additive, and maternal 
effects to observations. The y is the vector of observations, and the vector of BLUP solutions for additive 

and maternal effects are correlated in the form ~N(0, G0⨂H−1)a
m , with H−1 as the relationship matrix 

constructed combining pedigree and genotypes (Aguilar et al., 2010), and the (co)variance matrix for 

this correlated effect defined as 

σ2
a1

sym

G0 =

σa1a2

σ2
a2 

σa1m2

σa2m1

σ2
m1

σa1m2

σa2m2

σm1m2

σ2
m2

,  the σ2
a(m)x  is the additive (maternal) variance 

for each trait x={1,2}, σa(m)1a(m)2
 is the additive (maternal) covariance between traits and effects. The 

vector c~N
σ2

c1

0
0
σ2

c2

0, I⨂  is associated with the maternal permanent environment. The residual term 

is described as e~N
σe1e2

σ2
e2

0, I⨂
σ2

e1

σe2e1

 with σ2
e1(2)

 and σe1e2
 as the residual variance and covariances, 

respectively. 

The effects associated with each trait and the variance components estimated by intergen are 
presented in Table 2. The analyses were carried out on intergen (benchmarking) and intergeniod using 
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PCG for deriving fixed and random solutions. All traits included additive effect as random. A random 
maternal effect was included for BW and WWG, while a random maternal permanent effect was 
included for BW, WWG, WC, and WHC. The fixed effects are CG, age of dam, and linear and quadratic 
covariates for animal age. The number of animals included in each analysis and the number of rounds 
to the convergence of each bivariate ssGBLUP model are presented in Table 3. The convergence criteria 
for analyzing conformation traits were set at 10−20, while those for continuous records were established 
at 10−12.

Table 2 - Description of the variance components and genetic parameters utilized in the single-step GBLUP analysis

Trait
Variance components

σ2
a σ2

m σ2
c σ2

e h2 h2
m

WWG 150.00 30.00 55.00 350.00 0.26 0.06
WC 0.112 - 0.027 0.613 0.15 -
WHC 0.076 - 0.063 0.238 0.20 -
PWG 110.00 - - 726.00 0.13 -
REA 20.000 - - 35.000 0.36 -
BFT 0.160 - - 0.800 0.17 -
RFT 0.400 - - 1.000 0.28 -
IMF 0.400 - - 0.600 0.40 -
YC 0.149 - - 0.631 0.19 -
SC 2.588 - - 3.300 0.44 -
YHC 0.096 - - 0.264 0.27 -

WWG - weaning weight gain; WC - weaning conformation; WHC - weaning hair coat; PWG - post-weaning gain; REA - rib-eye area at yearling; 
BFT - backfat thickness at yearling; RFT - rump fat thickness at yearling; IMF - intramuscular fat at yearling; YC - yearling conformation; SC - scrotal 
circumference at yearling; YHC - yearling hair coat; σ2

a - additive variance; σ2
m - maternal variance; σ2

p - permanent environment variance; σ2
c - maternal 

permanent environment variance; σ2
e  - residual variance; h2 - additive heritability; h2

m - maternal heritability.

Table 3 - Description of the pedigree size (Pedigree) and the number of rounds (Rounds) to reach convergence of 
iteration on data (IOD) via preconditioned conjugate gradient (PCG) for each of the single-step GBLUP 
models in intergeniod software (all analyses utilized 12,637 genotyped animals)

Analysis Pedigree Rounds
WC-YC 465,138 838
WWG-PWG 523,362 332
WWG-SC 521,230 113
WWG-REA 409,275 487
WWG-IMF 409,124 272
WWG-BFT-RFT 420,092 1,885
WHC-YHC 217,522 1,207

WC - weaning conformation; YC - yearling conformation; WWG - weaning weight gain; IMF - intramuscular fat at yearling; PWG - post-weaning gain; 
SC - scrotal circumference at yearling; REA - rib-eye area; WHC - weaning hair coat; YHC - yearling hair coat; BFT - backfat thickness at yearling age; 
RFT - rump fat thickness at yearling age.

2.13. Computing

All Fortran programs were compiled using an Intel Fortran compiler with maximum optimization. The 
analyses were performed on a Linux computer (x86-64) with an Intel® Xeon® Gold 5218R CPU running 
at 2.10GHz. To measure the random-access memory (RAM), the resident set size (RSS) and the virtual 
memory size (VSZ) displayed by the Linux ps command (https://man7.org/linux/man-pages/man1/
ps.1.html) were summed up. The resulting value of ps is shown in kilobytes and then converted into 
gigabytes by dividing it by 1e6.

https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man1/ps.1.html
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3. Results

As mentioned earlier, only the results of the IOD will be presented in this publication, as the other 
functionalities are published elsewhere. Iteration on data is a technique that helps save RAM while 
solving MME in large-scale genetic analysis. If the specifications of the model are accurate and the 
convergence criterion is appropriate, the solutions produced by IOD should be similar to those 
obtained by storing equations in memory. The rank correlations between the solutions of all analyses 
are equivalent for all effects across all ssGBLUP models. Since all analyses had similar results, Figure 2 
presents only the coefficient of determination (R²) for the regression of the WWG additive solutions. 
The results of the additional traits are presented in Figure S1.

Figure 2 - Scatter plot comparing the solutions for additive effect estimated using mixed model equations with 
iteration on data (intergeniod) and allocating equations in memory (intergen) with single-step GBLUP 
for weaning weight gain (WWG). 

The goodness of fit of a linear regression of intergen on intergeniod solutions is presented as R2.

The RAM usage was monitored in all analyses, but only the WWG-BW bivariate ssGBLUP data results 
will be presented as the most extensive dataset. All other analyses showed similar results. As expected, 
intergeniod uses less than 50% of the RAM compared to intergen when the same model is allocated 
in memory (Figure 3). The current implementation of intergeniod allocates the H matrix and only a 
few vectors in memory. Due to genomic information, the H matrix consumes more RAM in IOD than 
any other structure. Therefore, enabling an algorithm in a future version of intergeniod that reads and 
processes the H matrix from a binary file saved in disk and stores it in buffer memory could save even 
more RAM. During the initial minutes of program execution, the genomic module allocates several 
intermediate matrices and vectors while constructing H, increasing RAM usage on both software. After 
the genomic module, the intergeniod enters a stable execution phase regarding RAM usage. On the 
other hand, intergen continues to increase RAM allocation as it executes matrix operations to derive 
the solutions.
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4. Discussion

This paper describes the functionalities of the INTERGEN package, which consists of three binaries for 
genetic studies of animal and plant populations. Our objective is to introduce the new capabilities of 
the package (iteration on data and approximate accuracy of genetic values) as Bayesian and genomic 
capabilities are well documented and published in the literature (Cardoso and Tempelman, 2003; 
Cardoso and Tempelman, 2004; Cardoso et al., 2005; Cardoso et al., 2007; Santana et al., 2013; Junqueira 
et al., 2018; Junqueira et al., 2022a).

Genomic selection has become the standard method for evaluating the genetic merit of various animal 
and plant species. Even when a species-specific marker panel is unavailable, advancements in second-
generation sequencing technologies, such as RADseq (Andrews et al., 2016), allowed the identification 
of thousands of single-nucleotide polymorphisms without the need of a reference genome. This progress 
has expanded access to genomic applications (Fuentes-Utrilla et al., 2017; Marandel et al., 2020).

The advantages and disadvantages of utilizing genomic information are well established (Misztal 
et al., 2020; Misztal et al., 2021; Misztal and Lourenco, 2024). A significant challenge in applying 
genomic data in routine genetic evaluations is related to computational resources, particularly RAM, 
as the volume of data continues to grow (Junqueira et al., 2022b). There may be an ongoing need to 
develop more efficient algorithms for processor and memory utilization to manage this ever-increasing 
genotypic information. Numerous research groups are actively working on new algorithms that are 
beneficial for genetic analysis (Zaabza et al., 2023; Bermann et al., 2024; Ramos et al., 2024).

Iteration on data was initially introduced as an iterative method for constructing, computing, and 
solving mixed model equations (Schaeffer and Kennedy, 1986). It is a matrix-free iterative technique 
used in breeding value estimation. It solves mixed model equations by cycling through raw data records 
rather than explicitly constructing and allocating the full right- and left-hand side matrices in memory. 
In practice, an initial solution is iteratively refined by reading each observation, computing its residual, 

Figure 3 - Description of the random-access memory (RAM) computer usage of intergen and intergeniod of a 
bivariate single-step GBLUP (ssGBLUP) model for a weaning weight gain and birth weight. 

Each dot represents 20 s.
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and updating the relevant random and fixed effect estimates; this process repeats over all the data in 
each round until convergence.

Previously, the IOD technique was only needed for the largest national genetic evaluations before the 
genomic era. Now, it is a standard practice in most genetic evaluations to regularly incorporate genomic 
data to assess the genetic merit of individuals. Although initial implementations utilized successive 
overrelaxation techniques (Schaeffer and Kennedy, 1986), modern implementations often combine 
IOD with preconditioned conjugate gradient solvers to accelerate convergence on high-dimensional 
problems without appropriately sorting the equations. The implementation of IOD with PCG has been 
reported as highly efficient, flexible, and reliable in literature by various publications (Strandén and 
Lidauer, 1999; Tsuruta et al., 2001).

Iteration on data is widely applied—powering multi-trait animal models, random regression 
(longitudinal) analyses, and single-step genomic evaluations—due to its minimal memory requirements 
and ability to handle massive data by avoiding explicit cross-product computations. However, IOD does 
demand multiple passes through the dataset (read/write) and may converge slowly without strategic 
preconditioning. Therefore, recent variations have been focusing on improving efficiency (e.g., better 
preconditioners, parallelization, and hardware acceleration) to further scale genomic prediction in 
modern breeding programs.

As an iterative technique, it is important to ensure proper data structure and model effect specifications 
when solving MME with PCG. When considering the pedigree, it is advisable to remove unrelated 
individuals from genetic evaluations. In-house validations and personal communications with 
researchers worldwide have demonstrated that the convergence rate is significantly impacted, and 
sometimes, non-sense solutions are found if unrelated animals are kept in the pedigree file. It is also 
key to precisely define the effects of each trait when estimating MME solutions on IOD with PCG. 
Inappropriate model specifications can lead to local PCG convergence, especially in complex models 
such as multi-trait that incorporate genomic information (Pocrnic et al., 2017; Vandenplas et al., 2018).

4.1. Future implementations

The INTERGEN package is consistently updated to improve computational efficiency as the volume 
of genotype data increases. In the future, the package will include several new functionalities, such 
as estimating (co)variance components using restricted maximum likelihood (REML) (Harville, 1977) 
and average information REML (AI-REML) (Gilmour et al., 1995), robust modeling (Rosa et al., 2003; 
Cardoso et al., 2007), an algorithm for building a genomic matrix with proven and young (APY) strategy 
(Misztal, 2016), constructing the numerator relationship for selfing populations, and a multi-trait 
model for approximate accuracies (Strabel et al., 2001).

4.2. Research and commercial partnerships

The INTERGEN package has been used since 2016 by the PAMPAPLUS breeding program to estimate 
the genetic merit of beef cattle Hereford and Braford multibreed populations. In 2024, the PROMEBO 
breeding program adopted the intergeniod and intergenacc software to calculate the genetic merit of 
animals for eight different breeds. In these commercial partnerships, genetic evaluations are done 
each week, and the report that contains breeding values (additive and maternal) and BIF reliabilities is 
updated in the database for in-farm decisions.

5. Conclusions

The INTERGEN package is a software program written in the Fortran programming language. It 
consists of three binaries that can be used for the genetic analysis of large-scale datasets using Bayesian 
and BLUP analysis. The software intergen is a highly flexible tool and is free for research applications. 
Additionally, for situations in which the inverse of the coefficient matrix cannot be obtained directly 
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due to dimensionality issues, implementing IOD using intergeniod is a reliable alternative for 
estimating breeding values.

Supplementary material

The supplementary material of this article can be found online at: https://www.rbz.org.br/wp-content/
uploads/articles_xml/1806-9290-rbz-54-e20240186/1806-9290-rbz-54-e20240186-suppl01.pdf 
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