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Abstract

Whiteflies (Bemisia tabaci) serve as a vector for transmitting phytopathogens
that inhibit the normal development of plants, affecting crop performance.
This study assessed the seasonal dynamics of whitefly developmental stages in
relation to plant height, cassava mosaic disease (CMD) severity and incidence
in cassava; and the influence of whitefly prevalence and developmental stages
on cassava plant height and infection by CMD under field conditions. The trial
was conducted under natural cassava production conditions during 2020/2021
cropping season at the upland experimental site of the School of Agriculture
and Food Sciences, Njala University. A total of 270 cassava genotypes com-
prising 268 local varieties and 2 improved checks (SLICASS 4 and SLICASS 6)
was laid out in an augmented randomized design with four blocks. Results
revealed that whitefly eggs dominated early colonization at 3 months after
planting (MAP) but had little epidemiological influence, whereas adults and
nymphs strongly predicted severity and incidence of CMD from 6 - 9 MAP.
Findings on correlation circles revealed seasonal associations, with adults clus-
tering closely with CMD variables at epidemic peak (9 MAP), but decoupling
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occurring at 12 MAP due to symptom persistence. The CMD trend analysis
showed a characteristic sigmoidal pattern, while data on mode-of-infection
confirmed dual pathways: early cutting-borne infections and mid-to-late
seasonal whitefly-borne CMD infections. These findings suggest that CMD
epidemiology is probably governed by shifting whitefly population structure
and environmental heterogeneity. Future studies will explore better under-
standing of these dynamic relationships that provide a framework for timely
integrated pest management (IPM) interventions for sustainable cassava pro-
duction.
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1. Introduction

Cassava (Manihot esculenta Crantz) is a major food security crop in sub-Saharan
Africa, providing carbohydrates to more than 800 million people globally. Despite
its resilience to drought and poor soils, cassava production is heavily constrained
by biotic factors including whitefly (Bemuisia tabaci Gennadius) and cassava mo-
saic disease (CMD). Whiteflies comprise 1556 species, of which, Bemisia tabaci
[Hemiptera: Aleyrodidae] remains one of the most economically important pests
of vegetable and ornamental crops worldwide [1] [2]. The insect feeds on several
crops, including cassava, potato, brinjal, chili, cotton, okra, tomato, and tobacco
[3] [4]. The economic damage caused by B. fabaciranges between mild and severe
with global annual loss reaching up to billions of USD in many crops [5]-[7]. The
adults of this insect are minute (usually 1 to 3 mm in length) and they feed and
oviposit in large quantities on the underside of leaves [8].

Bemisia tabaci may decrease the rate of photosynthesis in plants through the
excretion of honeydew during feeding, besides being able to transmit a large num-
ber of plant pathogenic viruses such as cassava mosaic begomoviruses (CMBs),
carlaviruses, criniviruses, ipomoviruses, and torradoviruses [9]-[13]. CMD is con-
sidered one of the most economically damaging diseases in the African cassava
belt caused by CMBs, with yield losses ranging from 20% to 95%, depending on
cultivar susceptibility and infection timing [14] [15].

Whitefly population dynamics play a central role in CMD epidemiology. The
adult stage plays key role in viral acquisition and transmittal, while the egg and
nymphal stages account for the reproductive buildup and colonization potential
of the insect. Patterns in the abundance of these life stages influence not only vec-
tor pressure but also the temporal progression of CMD severity and incidence in
the field [16] [17]. Seasonal population shifts are well-documented in whitefly sys-
tems but have not been thoroughly integrated with CMD expression across cas-

sava growth stages. Recent epidemiological evaluations indicate variability in the
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occurrence and severity of CMD across different agroecologies, influenced by the
susceptibility of cultivars, the quality of planting materials, and the pressure from
vectors; combining laboratory diagnostics with field monitoring has revealed short-
comings in traditional monitoring methods for early detection and effective man-
agement [18]. In Sierra Leone, recent research integrating CMD detection with
the evaluation of agronomic traits emphasizes the interaction between variety per-
formance and local seed systems in relation to disease impact, providing strategies
to synchronize breeding, the distribution of disease-free seeds, and vector control
in order to minimize yield reductions [19].

Plant height and canopy architecture also influence whitefly colonization through
effects on microclimate, visibility, and suitability of feeding sites [20] [21]. How-
ever, there is lack of dynamic, season-long analyses that link specific whitefly de-
velopmental stages to CMD epidemiology. The direct relationships among plant
height, whitefly developmental stages with CMD severity and incidence are not
fully understood. Meanwhile, CMD expression arises through two primary path-
ways: (1) Cutting-borne infection from contaminated planting materials and (2)
Whitefly-borne infection occurring during the growing season. Disentangling the
contributions of these pathways is essential to improving disease forecasting and
integrated pest management (IPM). Establishing a connection between whitefly
developmental variations and CMD epidemiology necessitates a focus on the syn-
chronization among vector life stages, cassava growth patterns, and the windows
for virus acquisition and transmission. Elevated temperatures and arid-season cir-
cumstances can speed up the development of B. tabaci and reduce their genera-
tional span, thereby increasing the number of effective adult vectors during the
period when cassava is most physiologically susceptible. Meanwhile [22] observed
changes in natural predator dynamics or crop patterns can influence nymph sur-
vival rates and adult emergence, ultimately altering inoculum pressure and the
trajectories of epidemics [23].

Modern multivariate statistical tools, including principal component analysis
(PCA), offer robust frameworks for visualizing ecological and epidemiological re-
lationships among variables [24]. Correlation-circle (PCA plots), in particular, re-
veal variable clustering patterns that reflect seasonal interactions among whitefly
developmental stages, plant height, and CMD. Thus, the objectives of this study
were to 1) assess the seasonal dynamics of whitefly developmental stages in rela-
tion to plant height, CMD severity and incidence in cassava; and 2) determine the
influence of whitefly prevalence and developmental stages on cassava plant height

and infection by CMD under field conditions.

2. Materials and Methods
2.1. Description of the Study Area
The field trial was conducted under natural cassava production conditions during

the 2020/2021 cropping season at the upland experimental site of the School of

Agriculture and Food Sciences, Njala University. The site is located at an elevation
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of approximately 50 masl, at latitude 8°6'N and longitude 12°6'W. The experi-
mental site is predominantly covered by secondary bush vegetation. The area ex-
periences a rainy season from April to November and a dry season extending from
October to May. The soil type, temperature range, and prevailing humidity during
the experimental season were typical of cassava-producing regions in sub-Saharan
Africa and comparable to environmental conditions noted in previous whitefly-
CMD epidemiological studies [15] [25]. During the rainy season, monthly air tem-
peratures typically range from 21°C to 23°C throughout both day and night.

2.2. Plant Material, Experimental Design and Layout

The experimental materials included stem cuttings of 268 cassava genotypes, col-
lected from all districts of Sierra Leone and 2 improved released varieties (SLICASS
4 and SLICASS 6) utilized as checks. The experiment was laid out in an augmented
randomized design with four blocks, each measuring 28 m x 10 m with 1 m dis-
tance between the blocks. This enabled robust assessment of block effects (micro-
environment) and treatment effects (genotype), consistent with modern entomo-
logical field methods [24]. The total experimental area utilized was 43 m x 28 m.
About 10 stem cuttings per genotype, each measuring 30 cm in length, were
planted on a standard plot size of 10 m long ridges while uniform plant-to-plant
and row spacing was used 1 m x 1 m spatial arrangement. No irrigation, fertilizer
and pesticide application were done, whereas manual weeding schedule was em-
ployed monthly to avoid interference with the natural whitefly vectors and the

resultant disease dynamics.

2.3. Data Collection

2.3.1. Whitefly and Cassava Mosaic Disease Assessments

Assessment of whitefly populations necessitates a systematic and standardized ap-
proach to guarantee precision, consistency, and relevance across various agricul-
tural systems. The subsequent procedures merge established entomological sam-
pling techniques with field-based monitoring practices. Following standardized
IITA and FAO whitefly monitoring protocols, the initial step in population as-
sessment involved identifying representative sampling locations within the crop
field [26]. A stratified random sampling approach was used to capture spatial var-
iability, including edge effects and variations in canopy structure. Sampling typi-
cally occurred on a weekly basis, corresponding with the developmental cycle of
B. tabaciunder field conditions [27]. Following the procedures of Abdullahi et al
[26], 10 plants were randomly selected per plot, of which, 10 leaves were examined
for the presence of B. tabaciin the upper, middle and lower canopies of each plant.
9Adult populations were evaluated on the undersides of the youngest fully devel-
oped leaves (preferred sites for egg-laying and feeding). Direct counts were con-
ducted by gently tilting leaves to reduce disturbance while recording the number
of adults observed. Counting was done using a hand lens of 20 - 30x magnification

per unit leaf.
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The immature life stages, such as eggs, nymphs, and pupae, were assessed using
a hand lens with a magnification of 10 - 20x. To maintain uniformity, standard-
ized leaf ranks were chosen, usually from mid-canopy leaves. The counts of egg,
nymph, and adult on the plants for 3, 6, 9 and 12 months (Naranjo & Ellsworth,
2017) were done [28].

For Cassava Mosaic Disease (CMD), sampling was conducted at 3, 6, 9, and 12
months after planting (MAP), representing early vegetative stage, canopy estab-
lishment stage, peak growth and peak whitefly abundance stage, and mature cas-
sava nearing harvest, respectively. These time points align with known seasonal
shifts in CMD expression and whitefly population dynamics [29].

Evaluating the severity and incidence of CMD requires a uniform methodology
for field surveys, thus guaranteeing comparability between various sites and sea-
sons. Stratified random sampling of fields was done, with each field chosen at reg-
ular intervals along sets of transects. In each plot, 10 plants were assessed along
two diagonals to capture variability in disease prevalence. Following the methods
described by Sseruwagi et al [30], incidence of CMD was calculated as the ratio
of plants exhibiting CMD symptoms to the total number evaluated, represented
as a percentage. This metric provided an estimate of CMD’s propagation within a
specific population. In contrast, severity was rated using a standardized visual
scale from 1 to 5, where 1 signified no observable symptoms and 5 represented
severe leaf distortion and stunting [30]. In order to minimize bias, data on CMD
symptoms, such as chlorotic mosaic patterns, leaf distortion, and reduced leaf size
were conducted through scoring. An average severity index was determined by
calculating the mean severity across all affected plants within a plot using the for-
mula of Sseruwagi et al. [30].

Equation (1) is the CMD incidence:

Number of symptoms per plant 100. (1)

CMD Incidence (%) =
( 0) total number of plants observed

Number of symptomatic plants

Mean CMD Severity = 2)

Total number of infected plants

Assessments were conducted at all MAP periods on all sampled plants. For ep-
idemiological studies, data collection included quantification of B. tabaci popula-
tions, the primary vector of CMB. Whitefly developmental stages were counted
on the top ten leaves of each plant, providing data that can be correlated with
CMD incidence and severity. This integration of vector population data strength-

ened the interpretation of disease pressure and transmission dynamics [30].

2.3.2. Plant Height and Leaf Measurements

Plant height serves as a crucial agronomic indicator that reveals growth perfor-
mance, differences among genotypes, and reactions to management techniques.
The measurement procedures started with the careful identification of representa-
tive plants within each experimental plot or treatment. Plants along the border

were excluded to reduce edge effects, and a consistent number of plants usually
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10 per plot were selected to ensure treatment comparability and statistical validity
[31]. Measurement was done at established growth stages, such as three, six, nine
and twelve months after planting, with the timing standardized across treatments
for valid comparisons [32].

Plant height was measured as the distance from the soil surface at the base of
the stem to the highest point of the main stem apex. In instances of branching, the
tallest primary stem was utilized as the reference point to maintain uniformity. A
graduated measuring stick or tape rule was used, held vertically next to the plant,
with the base positioned at ground level adjacent to the stem. The height was rec-
orded to the nearest centimeter to ensure precision [20].

A total of 30 farmers were randomly selected for the participatory identification
and selection of their five best preferred, five moderately preferred, and five least
preferred cassava accessions based on leaf and petiole aboveground traits for mar-
ketability and consumption of foliage leaves. These qualitative traits were evalu-
ated based on the agro-morphological descriptor of cassava by Fukuda et al [33].

2.3.3. Classification of Mode of Infection

Infected plants from cutting-borne infections appearing before or at 2-MAP gen-
erally display symptoms uniformly throughout the field, particularly in young
crops, because the virus spreads systemically through the infected stem cuttings.
On the other hand, whitefly-borne infections were identified by their irregular
distribution, often starting at the edges of fields or in specific patches, and tend to
increase in prevalence as the crops mature [17] [34]. This pattern of distribution
served as a crucial diagnostic factor for distinguishing between the different
modes of infection.

To enhance classification accuracy, the timing of symptom emergence was doc-
umented following the methodology of Saffa et al [19]. Symptoms of cutting-
borne CMD typically manifest at an early stage (3 - 6-MAP), whereas symptoms
from whitefly-transmitted infections develop later, frequently emerging after 6-
MAP, aligning with peak activity of the whitefly vector. The severity of the disease
was assessed using a standard 1 - 5 CMD rating scale, and affected plants were
marked for tracking the progression of the disease. At the same time, whitefly
populations were measured by counting the adult insects on the upper 10 leaves
of every plant. Elevated whitefly counts related to emerging infections provided
crucial epidemiological support for vector transmission.

Data analysis combined rates of occurrence, severity levels, and vector popula-
tion counts to classify the modes of infection. Plots exhibiting a high and uniform
rate of occurrence along with early symptom development were classified as cut-
ting-borne, whereas those showing irregular incidence, a delay in symptom ap-
pearance, and a connection to elevated whitefly populations were designated as
whitefly-borne. Mixed infections were recognized when both infection patterns
were present in the same plot. This classification system is essential for under-
standing CMD epidemiology, as it guides management approaches: cutting-borne

infections necessitate the implementation of clean seed systems, while whitefly-
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borne infections stress the importance of controlling the vector and deploying re-

sistant genotypes.

2.4. Statistical Analysis

Data analysis included computing the average incidence and severity for each lo-
cation, then aggregating regions to pinpoint areas with high CMD prevalence.
Statistical comparisons across various locations and seasons were conducted using
either ANOVA or non-parametric tests, based on how the data is distributed. The
spatial mapping of incidence and severity also aided in identifying disease patterns
and possible epidemiological factors [35].

Statistical analyses were conducted in R (version 4.3) using the packages facto-
extra (for PCA and correlation circles), stats (for correlation matrices) and ggplot2
(for CMD trend visualization) [15] [29]. Pearson’s correlation coefficients were
computed to assess linear relationships among whitefly eggs, whitefly nymphs,
whitefly adults, plant height, CMD severity, and CMD incidence. Principal Com-
ponent Analysis was used to explore multivariate associations that visually repre-
sented the contribution of each variable to PC1 and PC2. For seasonal trend anal-
ysis, CMD severity and incidence mean values sampled at 3, 6, 9 and 12 MAP were
plotted to produce a seasonal epidemic curve. This multi-analytic approach par-
allels methodologies used in recent vector-virus epidemiology studies [15] [29] is
believed to clearly underscore the seasonal dynamics of whitefly developmental
stages in relation to plant height, CMD severity and incidence in cassava and the
influence of whitefly prevalence and developmental stages on cassava plant height

and CMD transmission under field conditions.

3. Results and Discussion

3.1. Correlations among Whitefly Life Stages, Cassava Mosaic
Disease and Plant Height across Cassava Growth Stages

Plant height, whitefly infestation parameters, and disease incidence show dynamic
correlations across the four growth phases (3, 6, 9 and 12-MAP) (Table 1). As the
crop ages, these correlations were observed to change, providing insight on pest
pressure and disease development throughout time. At 3 MAP (the early growth
stage), whitefly nymphs and whitefly eggs had a strong positive association (r =
0.672***), suggesting early reproductive buildup or coordinated development be-
tween both life stages, whereas adults exhibited weak correlations with CMD se-
verity and incidence. Additionally, there is a weak positive correlation between
adult whiteflies and nymphs (r = 0.222%**) and eggs (r = 0.127%), indicating that
early infestation is well established throughout all stages. Interestingly, adult
whiteflies had a weak and positive correlation with both disease incidence (r =
0.164**) and severity (r = 0.633***), respectively, suggesting that pest pressure
starts to affect disease outcomes even at this early stage. The relationship between
pest activity and disease manifestation is further supported by the strong correla-

tion (r = 0.633***) between severity and occurrence.
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Table 1. Correlation coefficient among whitefly developmental stages, CMD severity, CMD
incidence, and plant height sampled at 3, 6, 9 and 12 MAP.

Trait PHT NWEFE NWEN NWEFA CMDS CMDI
Correlation coefficient at 3 MAP
PHT 1.000
NWFE -0.025 1.000
NWEN -0.054 0.627*** 1.000
NWFA 0.200%** 0.127* 0.222%%* 1.000
CMDS —0.045 —-0.045 -0.052 0.090 1.000
CMDI 0.053 -0.015 0.050 0.161%* 0.633%** 1.000
Correlation coefficient at 6 MAP
PHT 1.000
NWEFE 0.001 1.000
NWEN -0.024 0.399*** 1.000
NWFA -0.073 0.220%%*  0.489*** 1.000
CMDS -0.107 0.159** 0.357***  0.415%** 1.000
CMDI -0.021 0.154* 0.310%%*  0.365%**  0.736%** 1.000
Correlation coefficient at 9 MAP
PHT 1.000
NWEFE 0.013 1.000
NWEN -0.017 0.237%** 1.000
NWFA -0.004 0.128* 0.592%** 1.000
CMDS -0.061 0.100 0.294%%*  (.323%** 1.000
CMDI -0.025 0.082 0.190%*  0.255%%*  0.710*** 1.000
Correlation coefficient at 12 MAP
PHT 1.000
NWEFE -0.070 1.000
NWEN -0.063 0.033 1.000
NWFA -0.093 -0.001 0.416%** 1.000
CMDS -0.002 0.011 0.078 0.192** 1.000
CMDI -0.018 0.002 0.002 0.069 0.714%** 1.000

*, %, and *** = significant at p < 0.05, 0.01, 0.001, respectively; PHT = plant height; NWFE
= number of whitefly eggs; NWEN = number of whitefly nymphs; NWFA = number of
whitefly adults; CMDS = cassava mosaic disease severity and CMDI = cassava mosaic dis-

ease incidence.

At 6-MAP, correlation patterns changed considerably. Adult whiteflies and

nymphs had a positively intermediate correlation (r = 0.489***), and their corre-

lation with disease severity was relatively strong (r = 0.435***), highlighting the

transition to vector-mediated CMD spread. The correlation between severity and
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incidence became considerably stronger (r = 0.739***), indicating an increase in
the visibility and prevalence of disease symptoms. Whitefly eggs were still corre-
lated with nymphs and adults, but the intensity of these correlations started to
decline, maybe due to shifting environmental factors, population dynamics or a
shift from reproductive expansion to adult-driven transmission.

Correlations between disease indicators and whitefly stages started to declining
at 9-MAP, the mid-reproductive stage. The total strength of the correlations be-
tween adult whiteflies and nymphs (r = 0.592***) and illness severity (r = 0.170**)
decreases. Additionally, a modest decrease in the correlation between severity and
incidence (r = 0.170**) was observed suggesting a possible change in host re-
sistance or disease progression. Pest pressure may be less indicative of disease out-
comes at the period, which could be a transitional phase. The correlation between
disease severity and occurrence (r = 0.714***) at 12-MAP, the late growth stage,
is similar to the higher correlation detected between severity and incidence at 6
MAP (r = 0.739***), highlighting the cumulative effect of previous insect attacks.
The correlation between adult whiteflies and disease severity remained robust (r
= 0.714***), but it becomes minimal when compared to other stages of whiteflies
and disease incidence. This implies that while adult whiteflies still have an impact
on the severity of the disease, additional factors might be involved in its persis-
tence and transmission at this point. Findings also indicate that CMD expression
at this stage was primarily driven by cumulative infections rather than current
vector pressure.

Plant height does not significantly correlate with any other characteristic at any
stage, suggesting that it is not a good indicator of disease pressure or pest infesta-
tion. Adult whiteflies are important drivers of illness dynamics, as evidenced by
the persistent and strong correlation between them and disease measures, partic-
ularly severity and incidence. These results imply that, especially during the early
and late phases of crop development, tracking whitefly numbers may be a useful

early warning system for disease outbreaks.

3.2. Multivariate Structure from Correlation-Circle Principal
Component Analysis

Correlation-circle PCA plots (Figure 1 and Figure 2) provided deeper insight into
ecological clustering patterns across MAP periods. Figure 1(a) shows strong in-
teraction between eggs and nymphs of whitefly in PC1, thus forming a cluster of
early reproductive buildup while adults displayed low influence and did not clus-
ter with CMD variables. Represents early whitefly colonization. CMD severity and
incidence loaded independently on PC2. Disease variables operate on a different
axis showing independent causation. Adults displayed low influence and did not
cluster with CMD variables. Transmission stage is not yet active. This confirms
minimal vector-mediated CMD spread at early growth stages.

At 6 MAP, close clustering of adults and nymphs with CMD severity and inci-
dence on PC, was detected, while eggs did not form CMD cluster (Figure 1(b)).
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Findings indicate that reproduction is not a strong indicator of transmission.
Adults and nymphs cluster with CMD variables whitefly life stages now influence
disease expression. Weak separation of plant height early influence but no strong
CMD predictiveness. CMD spread is adult-driven, with partial influence from

nymphs reflecting onset of whitefly-driven epidemic spread.
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A strong co-alignment of adults, nymphs, CMD severity, and CMD incidence
was observed which represent peak CMD transmission and vector pressure. At 9
MAP, strongest relationship observed in the alignment of adults and nymphs with
CMD metrics (Figure 2(a)) Plant height was still peripheral indicating that height
alone does not protect from infection. Eggs are fully detached as they no longer
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inform CMD patterns. Moreover, findings indicate a peak biological synchrony
between vector and virus.

At 12 MAP, whitefly developmental stages did not cluster with CMD metrics
(Figure 2(b)). The CMD parameters shift onto PC2 indicating that the persistence
of the disease in host is disconnected from the vectors. Whitefly stages were not
aligned with the vector population wanes; thus, the disease becomes systemic. The
CMD symptoms persist independent of late-stage symptom expression suggesting
no ongoing spread of the disease. The late-stage CMD expression reflects earlier
infection rather than new transmission. These multivariate shifts clearly demon-
strate the temporal decoupling of vector presence and disease symptoms in late-
seasonal infection of cassava.

The accumulation of eggs and nymphs indicated colonization rather than epi-
demiological significance, indicating that contaminated planting materials are the
primary source of CMD infection. This finding is in line with recent studies that
highlight how important planting material health is to the epidemiology of CMD
[17] [34].

3.3. Whitefly Infestation and Cassava Mosaic Disease Infection
Trends

Genotype effects are weak or non-significant across most MAP periods. Varieties
did not differ greatly regarding whitefly attractions. Environmental effects domi-
nant site-specific conditions overpowered genetic differences. CMD management
must prioritize environmental strategy (planting pattern, spacing, IPM) over va-
rietal resistance alone suggesting that cassava genotypes utilized in this experi-
ment did not differ substantially in whitefly attractiveness or suitability. Strong

environmental effects overshadowed genotype differences.
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Figure 3. Whitefly infestation trends showing (a) Number of whitefly eggs; (b) Number of nymphs; and (c) Number of adult white-
flies across four sampling regimes.

Figure 3 shows CMD temporal trajectory that clearly followed a sigmoidal pro-
gression typical of systemic viral diseases at 3-MAP, 6 to 9-MAP and 12-MAP,
respectively, representing initial phase, rapid escalation and plateau phase. These

three phases showed low severity and incidence that is dominated by cutting-

DOI: 10.4236/ae.2026.141005 82 Advances in Entomology


https://doi.org/10.4236/ae.2026.141005

R. A. B. Johnson et al.

borne infections; conspicuous increase in severity and incidence that seemed to
be driven by adult-mediated whitefly transmission and high but stable CMD se-
verity and incidence. Additionally, it was observed that symptom persistence was

independent of vector dynamics (also see Figure 4).
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Figure 4. Cassava mosaic disease infection trends showing (a) Incidence and (b) Severity across four sampling regimes.
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Figure 5. Mode-of-infection of cassava cuttings across sampling regimes.

3.4. Mode of Disease Infection Profiles

The mode-of-infection analysis revealed a clear partitioning of infection pathways

throughout the cassava cropping season (Figure 5). Cutting-borne infections con-
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stituted most early infections at <3 MAP. Whitefly-borne early infections between
3 - 6 MAP, increasing sharply as adult activity intensified. Whitefly-borne late
infections between 6 - 9 MAP became dominant during peak vector transmission.
This confirms that CMD epidemics involve combined primary (planting material)
and secondary (vector-mediated) infection pathways. Cutting-borne infection
was the main cause of early CMD expression (<3 months after planting, MAP),
and correlation and PCA analyses revealed no significant relationship between
whitefly life stages and CMD variables at this time. Cutting-borne infection dom-
inates the early phase (0 - 3 MAP) of CMD epidemics, but vector-borne infection
drives epidemic development from 3 - 9 MAP, with peak transmission happening
during maximal adult activity, according to mode-of-infection studies. These re-
sults support the combined significance of seasonally timed vector control and
clean planting material in the management of CMD [36] [37]. Limited epidemio-
logical significance was shown by plant height, which had an impact on early col-
onization (3 MAP) but not after 6 MAP. This bolsters the idea that vector ecology
and colonization dynamics are affected by canopy microstructure and leaf ar-

rangement rather than just height [20] [21].

3.5. Analysis of Cassava Varieties along Whitefly Developmental
Stages

The results projects cassava varieties onto the principal component axes, are re-
flective of differential genotypic response to whitefly pressure and CMD expres-
sion across months after planting (MAP). The multivariate patterns (whitefly life
stages vs CMD infection), show different trends across the four sampling regimes
studied. Early season (3 MAP) infection reflects colonization without epidemio-
logical impact. Most cassava varieties cluster centrally, indicating low differentia-
tion in response to whitefly pressure (Figure 6(a)). This suggests that at 3 MAP,
most cassava genotypes responded similarly to early colonization. The lack of di-
vergence implies that genotype-level traits (such as biochemical defenses or leaf
anatomical structures) do not significantly influence whitefly behavior. Whiteflies
are probably selecting plants randomly or based on initial visibility rather than
resistance traits. Varieties with slightly higher scores on PC1 may have early visi-
bility or leaf expansion, attracting more eggs.

Genotypes positioned slightly toward PC1 likely exhibited faster vegetative growth
or larger leaf surface area, making them more attractive to whitefly adults during
the oviposition phase. However, this attraction does not yet influence disease risk,
as eggs do not transmit CMD. Varieties are yet to be epidemiologically differenti-
ated, since CMD is still primarily cutting-borne. Although some varieties may
have higher egg numbers, whitefly-driven transmission has not begun, and CMD
severity/incidence reflects virus already present in the cuttings at planting. Geno-
typic differences are not reflected in CMD status at this stage leading to uniform
response to vector colonization. Thus, the CMD infection reflects only material

purity, rather than genetic resistance or vector dynamics.
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Figure 6. Cassava genotypic response to dynamics in whitefly development stages and
CMD expression across four sampling regimes.
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Strong relationships between adult and nymph populations and CMD severity
and incidence emerged by mid-season (6 MAP), indicating a distinct epidemio-
logical change. The shift from passive infection to active epidemic development
was highlighted by the clustering of adult whiteflies with CMD factors shown by
PCA correlation circles. According to earlier epidemic research [36] [38], this pat-
tern illustrates the epidemiological significance of mobile adult stages in virus
transmission.

The highest vector-to-disease connections were found at 9 MAP, which also
happened to be the peak of the epidemic. In line with recent findings that peak
adult whitefly pressure speeds up the progression of CMD, adult populations were
found to be the most significant drivers of CMD spread [15] [29]. Interestingly,
CMD severity rose faster than incidence, indicating that existing illnesses rather
than new infections were the cause of the increased symptom manifestation. Alt-
hough whitefly reproduction was reducing, the severity and incidence of late-sea-
son CMD persistence (12 MAP) remained high, decoupling it from vector activity.
PCA verified that there was no longer a correlation between CMD variables and
vector abundance, suggesting that viral buildup rather than continuous transmis-
sion was the cause of disease persistence. This confirms that CMD epidemics in-
volve combined primary (planting material) and secondary (vector-mediated) in-
fection pathways. This is consistent with new research showing that once CMD is
established, it cannot be reversed and that viral load, not vector dynamics, deter-
mines the severity of symptoms [39] [40].

Mid-Season (6 MAP) infection reflects onset of genotype differentiation due to
whitefly activity. At this stage, genotypes begin separation into 2 - 3 clusters (Fig-
ure 6(b)). Genotypes near adult/nymph vectors indicate high susceptibility/vector
preference. These genotypes likely possess leaf textures, chemical profiles, or can-
opy microclimate that favor whitefly settlement, making them more vulnerable to
early transmission during the vector activation phase. Genotypes farther from
CMD variables indicate their inherent ability of deploying better early defense
traits. It is probable that the tolerant genotypes may have expressed a denser tri-
chomes or tougher leaf cuticles, antifeedant compounds and lower visual detect-
ability contributing to delayed whitefly settlement and reduction of CMD trans-
mission. Since these traits were not assessed in the present study, these aspects are
suggested to be included in future research. Genotypes closer to planting height
may reflect rapid canopy development, indirectly influencing vector establish-
ment. Early height advantage may increase exposure to incoming whiteflies and
alter humidity and light distribution. Thus, contributing to indirect susceptibility
due to structural traits rather than biochemical resistance. These genotypes begin
to differentiate based on their interaction with vector life stages, suggesting early
differences in susceptibility or tolerance before peak CMD pressure.

Peak epidemic (9 MAP) infection reflects maximum genotype differentiation.
Strongest separation observed in PCA individuals with genotypes visually align

according to their epidemiological performance under pressure (Figure 6(c)).
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Highly susceptible varieties are clustered close to adult whiteflies and CMD met-
rics this shows high transmission rate of the CMD. Moderately susceptible varie-
ties are positioned between eggs/nymphs and CMD axes showing possibly delayed
infection. Tolerant/resistant varieties are far from CMD vectors (toward PC2 re-
sidual space) showing a lower infection or symptom suppression. The PCA
demonstrates strong biological stratification under epidemic conditions. This is
the most accurate reflection of true CMD impact resistance, as whitefly pressure
and virus load peak simultaneously. Traits likely displayed by tolerant genotypes
are lower adult whitefly attraction with the leaf surface characteristics or chemical
signals reduce vector settling. More robust physiological stress tolerance, varieties
may better maintain photosynthesis and energy production under infection. Pos-
sibly earlier activation of resistance pathways with early viral replication suppres-
sion limits symptom development and severity. Conclusion (9 MAP): This phase
gives the clearest visual separation between susceptible and tolerant genotypes,
indicating optimal timing for genotype efficacy assessment in CMD resistance
screening trials.

Late season (12 MAP) infection reflects symptom stabilization and CMD per-
sistence. Genotypes no longer differentiate based on vector pressure (whitefly de-
clining. At 12 MAP, whitefly populations (especially adults and nymphs) have sig-
nificantly decreased due to natural ecological decline (senescing leaves, climatic
changes, reduced nutritional value) (Figure 6(d)). At this stage, Whiteflies are
crucial during the infection phase; once infection has occurred and symptoms sta-
bilized, vector dynamics have limited further influence on disease expression. Sep-
aration now reflects internal CMD tolerance and symptom suppression capacity.
In the PCA plot at 12 MAP, variation between genotypes is predominantly based
on their ability to withstand CMD after infection, not their resistance to becoming
infected. Varieties far from CMD vectors are genotypes plotted away from CMD
severity/incidence vectors on PCA axes (particularly on PC2, representing unex-
plained/residual variability). At this stage, tolerance matters more than resistance
to new infections since infection has already occurred. This shows that Resistance
(preventing infection) is no longer the key factor and tolerance (coping with in-
fection) has become the dominant trait of agricultural importance. Late-stage dif-
ferentiation is less about avoiding the disease and more about surviving and pro-
ducing under disease pressure. This phase indicates functional CMD tolerance,
not vector resistance. This phase is best used to assess long-term physiological
tolerance markers. Whitefly distribution patterns in this study support previous
reports that whitefly distribution is influenced by the microenvironmental tem-
perature gradients, soil moisture retention, and nearby vegetation [41] [42].

Early CMD is best controlled by cutting-stage therapies, epidemic development
is suppressed by mid-season interventions, and late-season control is not very
beneficial because of the persistence of viral symptoms. This time-specific para-
digm promotes sustainable cassava production across a range of agro-ecological

circumstances. A comprehensive and integrated approach that starts even before
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planting is necessary for the effective management of Cassava Mosaic Disease
(CMD). The first line of defense is prevention, and in order to reduce the possi-
bility of introducing CMD into new fields, farmers should give priority to using
certified planting material free of viruses during the pre-planting stage. Three to
six months after planting, once crops are established, vector monitoring becomes
crucial (MAP). To identify early indicators of whitefly populations, which are the
main carriers of CMD, both visual inspections and trap-based surveillance should
be used. Integrated pest management (IPM) measures must be initiated between
six and nine MAP as the crop develops, especially when epidemic thresholds are
reached. In order to lessen the need for broad-spectrum chemical pesticides, the
focus at this point should be on adult suppression utilizing biological or biora-
tional controls. This selection strategy maintains long-term ecological balance

while simultaneously safeguarding useful creatures.

3.6. Marketable Cassava Leaves Assessment against Whitefly and
CMD

There are five elite varieties selected by farmers based on the desired leaf traits for
selling and consumption included Tangaigboi, Coco cassava, Cookson, Butter cas-
sava, and Ndiamonyamalo, followed by the moderately preferred varieties
Tapiyoka, Yaa kanu, Nikaneh, Mende tangai, and Kendemeh (Table 2). However,
the varieties of SLICASS 4, SLICASS 6, Pink lady, and Munafa are not usually
consumed and sold.

Table 2. List of 15 varieties selected by farmers for marketability and consumption.

Varieties Genotypes Rating Whitefly Rating ~ CMD Rating
Butter cassava Highly preferred High Susceptible
Cook soon Highly preferred High Susceptible
Coco cassada Highly preferred High Susceptible
Ndiamonyamalo Highly preferred High Susceptible
Tangaigboi Highly preferred Low Healthy
Yaa kanu Moderately preferred High Susceptible
Tapiyoka Moderately preferred High Susceptible
Kendemeh Moderately preferred High Susceptible
Mende tangai Moderately preferred High Susceptible
Nikaneh Moderately preferred Moderate Susceptible
Munafa Not preferred Low Healthy
Pink Lady Not preferred Moderate Susceptible
SLICASS 4 Not preferred Moderate Susceptible
SLICASS 6 Not preferred Low Healthy

4. Conclusion

This study established functional relational relationship among whitefly preva-
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lence, developmental stages, cassava mosaic disease (CMD) infection and plant
height under field conditions. Whitefly eggs dominated early colonization at three
months after planting (MAP) but had little epidemiological influence, whereas
adults and nymphs strongly predicted severity and incidence of CMD from 6 - 9
MAP. Correlation circles exhibit close clustering of adult whiteflies with CMD
variables at the 9 MAP epidemic peak, but decoupling occurring at 12 MAP due
to symptom persistence. The CMD trend analysis shows a characteristic sigmoidal
pattern, while data on mode-of-infection confirms dual pathways including early
cutting-borne infections and mid-to-late seasonal whitefly-borne CMD infec-
tions. Findings demonstrate that CMD epidemiology is governed by shifting
whitefly population structure and environmental heterogeneity. Understanding
these dynamic relationships provide a framework for adequate application of in-
tegrated pest management (IPM) interventions for sustainable cassava produc-
tion. Farmers should be encouraged to utilize the established recommended man-
agement strategies such as barrier hedges and diversify their cropping systems as
part of ongoing landscape-based management. These methods improve resistance
to the spread of CMD and lessen vector movement. Using CMD-tolerant or re-
sistant genotypes at planting offers an extra layer of protection, making fields less

susceptible to infection.
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