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Dear Editor,

Plants as sessile organisms are exposed to diverse stresses which
can act singly, sequentially or in a multifactorial manner, and
their combination can have dramatic consequences for plant sur-
vival even when the effect of each stress applied individually is
negligible (Pandey et al. 2015, 2017; Peyraud et al. 2017;
Zandalinas et al. 2021; Dutt et al. 2022; Zandalinas and Mittler
2022). The flourishing of omics techniques has led to the possibil-
ity of studying complex biological systems, through systematic
analysis of its content at the molecular level (Grofskinsky et al.
2018). However, because of the experimental complexity of study-
ing the response of one organism to multiple stressors simultane-
ously, usually experiments are conducted considering one stress
factor at a time. An alternative consists of performing in silico in-
tegration of data on single-stress response. Currently used meth-
ods tointegrate unpaired experiments are based on meta-analysis
or condition-specific differential expression analysis followed by
selection of commonly regulated genes. Multiple challenges
need to be addressed (Subramanian et al. 2020; Mohammadi-
Shemirani et al. 2023); on top of all, the notorious batch effects
may hinder a joint analysis (Leek et al. 2010; Goh et al. 2017).
Although these approaches yield valuable results, they mainly
identify specific signatures in response to one stress and lack
those modulated differently in each condition.

To address these challenges, we developed HIVE (Horizontal
Integration analysis using Variational AutoEncoders), a method
to jointly analyze multiple transcriptomics data from different ex-
periments (i.e. unpaired). The current implementation is based on
the use of a VAE, a generative model that learns low-dimensional
representations of the observed data, using a variational Bayes
methodology in an unsupervised framework. By coupling a ran-
dom forest regression model and the SHAP explainer, HIVE selects
relevant genes for the studied phenotype. The application of a
nested stratified cross-validation technique allowed us not only
to treat datasets with unbalanced classes but also to overcome

the small sample size challenges (Fig. 1, Supplementary Note S1,
Supplementary Figs. S1to S5, and Supplementary Tables S1to S3).

To illustrate the functionalities of HIVE, by re-using publicly
available transcriptomics data from Expression Atlas or PlaD,
we constituted 7 multi-stress datasets of transcriptomic data
from either RNA-sequencing or microarray for 5 different plants,
namely maize (Zea mays), rice (Oryza sativa), wheat (Triticum aesti-
vum), grapevine (Vitis vinifera), and Arabidopsis (Arabidopsis thali-
ana) (Supplementary Note S2, Supplementary Table S4). We
focus on the results obtained from the grapevine dataset as a
showcase to show the suitability of HIVE to handle non-model
plants. The results on the other datasets are reported in
Supplementary Notes S3 to S6 to show the generality of findings
and the robustness of our method.

To evaluate the batch effect reduction, we performed a logistic
regression approach on features extracted with either PCA, t-SNE,
UMAP, or the HIVE VAE. By considering each latent feature sepa-
rately, HIVE achieved better results in batch effect reduction com-
pared to the other 2 methods for all datasets (Supplementary Note
S3, Supplementary Figs. S6 to S9, and Supplementary Tables S5 to
S7). To evaluate the global batch effect reduction, we imple-
mented a k-means clustering analysis of samples by considering
their transcriptomics profiles in the raw data and upon applica-
tion of either PCA, t-SNE, UMAP or the HIVE VAE, and the “reduced
latent space” obtained by removing the 10% of the latent features
with higher association to the batch effect. We evaluated the dis-
tribution of batches in the clusters obtained from the 5 setups by
using common metrics, including the Silhouette index, Jaccard
score, and the Shannon entropy. We expect that if the batch effect
is reduced, the samples do not cluster according to the batch.
Strikingly, as we can observe in Fig. 1A both the Silhouette score
and the Jaccard index on the HIVE original and “reduced” latent
space show the lowest values and the highest entropy, independ-
ent of the number of clusters in the chosen range, compared to the
correspondent scores obtained on raw data, PCA, UMAP, or t-SNE.
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Figure 1. Benchmark on batch effect reduction and HIVE, DESeq2 and MINT comparison for gene selection, GO term enrichment, and gene association
to condition for grapevine RNA-seq dataset. A) Radar plots summarizing the agreement between K-means clustering with increased number of clusters
(k) and batch belongings with 3 metrics, Silhouette score, Jaccard index and entropy. The inset in the plot related to the entropy highlights the results
obtained on the raw data, since they are not visible in the main plot because of superposition with the other tracks. The number of original batches is
highlighted in bolded font on the plots. Colors accordingly to the legend at the bottom of the radar plots. See Supplementary Note S3 for further details
on the calculation of “reduced” latent space. B) Number (N.) of selected genes per benchmarked method. Because of the different scale, the inset shows
the number of genes found by MINT. C) Pair-wise agreement in gene selection of the benchmarked methods. D) Distribution of specialization index for
all categories in MERCATOR4 from annotations of either HIVE or DESeq2. E) Specialization index of the 3 key categories for plant response to stress
found by genes only in HIVE list and only in DESeq?2 list. The shape of points corresponds to the categories as indicated in the legend at the bottom right
of the figure. F) The % of selected genes associated to them by each method for each number of associated conditions. G) Relationship between the
Sharedness Index and the Specificness Index of each method. H) Number (N.) of core genes, namely genes found deregulated in all conditions, belonging
to the 3 categories with pivotal roles in plant defense mechanisms. (See Supplementary Note S4 for more details on the indices calculation). Colors for
panels from B to H are indicated at the bottom right. For each boxplot the solid line represents the median while the dashed line, the mean of the
distribution; box limits are the first (lower limit, Q1) and third (upper limit, Q3) quartiles; whiskers represent upper and lower fences; dots symbolize
outliers.

We performed extensive benchmark against other state-of-the
art tools, namely DESeq2 (Love et al. 2014) and MINT, from the
MixOmics R package (Rohart et al. 20173, 2017b) to test the ability
of HIVE to extract biologically relevant genes. In Fig. 1B, we ob-
serve that DESeq? finds by far the largest number of genes deregu-
lated, while MINT the lowest. Pair-wise comparison of genes
selected by the 3 methods shows very low agreement (Fig. 1C).
With a similar aim, we performed Mercator annotation to study
the biological processes in which selected genes by each method
are involved. To quantify the gene expression variation across
conditions in those processes, we calculated the specialization in-
dex from information theory (Martinez and Reyes-Valdés 2008). In

Fig. 1D, we observe that pathways from DESeq2 have higher spe-
cialization values compared with HIVE selection, meaning that
genes are expressed specifically in one or very few conditions.
Similar results were obtained by considering only the lists of genes
involved in important processes to regulate plant defenses against
stresses, namely phytohormone related, transcription factors,
and resistance genes only found by HIVE or by DESeq? (Fig. 1E).
An important aspect of integrative analysis is the association of
genes to conditions. To quantitatively measure the difference
among methods, we defined 2 novel indexes: the sharedness
and the specificness, which quantify the ratio of common or spe-
cific signature compared to the total number of selected
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Figure 2. Comparison of HIVE and DESeq2 for multi-stress associated genes and Voronoi maps for sharedness gene expression in grapevine RNA-seq
dataset. A) Venn diagrams representing overlaps between single-stress genes and the respective combination of stresses for grapevine dataset.

B) Number (N.) of genes from the intersection among the 3 experiments obtained by the analysis with HIVE or DESeq2 annotated as belonging to key
categories for plant response to stresses. C) Voronoi maps of gene expression associated to the single stresses (first 2 maps) and associated to the
combined stress (last map). Genes were mapped accordingly to their level of sharedness-gene expression value on a x-y plot, each gene were then
enclosed in a Voronoi cell, the volume of each cell is represented by a color scale, accordingly to each plot.

signatures, respectively. HIVE identifies a balanced ratio of com-
mon and specific signatures, compared to the other methods ob-
taining the highest sharedness for all datasets; therefore, the
highest number of genes deregulated in all conditions (Fig. 1, F
and G). To inspect whether HIVE can identify novel signatures
not found by the other 2 tools, we defined the “core genes” as
the genes found deregulated in all conditions. Then we inspected
the core genes identified by the different methods and quanti-
fied the number of genes involved in important functions to bet-
ter understand plant response to multiple stresses. As reported
in Fig. 1H, not only did DESeq2 and MINT not identify any core genes,
but HIVE core genes are composed of genes in the 3 categories: re-
sistance genes, genes related to phytohormones, and transcription
factors. Finally, we investigated the level of gene regulation found
by each method as specifically deregulated in one condition or
shared by all (Supplementary Note S4, Supplementary Fig. S10,
and Supplementary Tables S8 to S11). From the cumulative distribu-
tions, we can observe that the genes selected by HIVE as specific to
each condition show the most extreme values of modulation
when compared to the background, either up or down regulation,
with the most significant P-value compared to the other methods
versus background. This result highlights that the genes found by
HIVE as responsive specifically to one condition have an overall level
of regulation that is stronger than the genes selected by other

methods for the same category (Supplementary Note S4,
Supplementary Fig. S11, and Supplementary Table S12).

To test the ability of HIVE to identify signatures common to
multiple stresses responses when only single-stress experiments
are available, we dispose, of an experiment in which the grapevine
is subjected to 2 stresses contemporaneously (Trichoderma harzia-
num and/or Plasmopara viticola) and also to only one of the two ata
time. By comparing the number of genes found in the 3 conditions,
we showed that HIVE found only a few genes associated only with
the combined stress while a high number of genes in common be-
tween the combined stress and both the single stresses were re-
trieved, compared to the selection by DESeq?2 in which a higher
percentage of genes were found deregulated only in the combined
stress and not in the 2 single-stress experiments (Fig. 2A). To show
the validity of those genes in common between the 2 single stress-
es and validated by the combined stress experiment, we quanti-
fied the number of genes involved in key processes for plant
defense against stresses. In Fig. 2B, we show that, especially re-
garding resistance genes, HIVE identifies more of those key genes
than DESeq?2 in the common selection. Similar findings were re-
ported for the other 2 datasets as shown in Supplementary Note
S5 (Supplementary Fig. S12 and Supplementary Tables S13 to
S15). This represents a proof-of-concept that HIVE can be used
to reliably extract multi-stress signatures from experiments
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performed on single stresses. To further inspect the relationship
between the number of conditions in which genes were found de-
regulated (sharedness) and their level of expression, we used the
Voronoi maps. We observe that the overall effect of T. harzianum
on plant response is very mild, opposed to the effect of P. viticola,
and the combined stress shows a very similar pattern as the P. vit-
icola alone (Fig. 2C). Overall, we found that the patterns of
sharedness-expression from HIVE Voronoi on the single stresses
are comparable to the combined, therefore strengthening the abil-
ity of HIVE to perform in silico multi-stress integration from experi-
ments conducted on single stresses (Supplementary Note S6,
Supplementary Fig. S13 and S14, and Supplementary Table S16).

In conclusion, we showed that integrative analysis with HIVE
can highlight novel signatures and biological insights that cannot
be found by other analysis methods. HIVE is a valuable tool that
can be applied to any phytopathosystem and will provide im-
provements in our understanding of the mechanisms set up by
the plant to respond to multiple stresses.
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