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Dear Editor,
Plants as sessile organisms are exposed to diverse stresses which 
can act singly, sequentially or in a multifactorial manner, and 
their combination can have dramatic consequences for plant sur
vival even when the effect of each stress applied individually is 
negligible (Pandey et al. 2015, 2017; Peyraud et al. 2017; 
Zandalinas et al. 2021; Dutt et al. 2022; Zandalinas and Mittler 
2022). The flourishing of omics techniques has led to the possibil
ity of studying complex biological systems, through systematic 
analysis of its content at the molecular level (Großkinsky et al. 
2018). However, because of the experimental complexity of study
ing the response of one organism to multiple stressors simultane
ously, usually experiments are conducted considering one stress 
factor at a time. An alternative consists of performing in silico in
tegration of data on single-stress response. Currently used meth
ods to integrate unpaired experiments are based on meta-analysis 
or condition-specific differential expression analysis followed by 
selection of commonly regulated genes. Multiple challenges 
need to be addressed (Subramanian et al. 2020; Mohammadi- 
Shemirani et al. 2023); on top of all, the notorious batch effects 
may hinder a joint analysis (Leek et al. 2010; Goh et al. 2017). 
Although these approaches yield valuable results, they mainly 
identify specific signatures in response to one stress and lack 
those modulated differently in each condition.

To address these challenges, we developed HIVE (Horizontal 
Integration analysis using Variational AutoEncoders), a method 
to jointly analyze multiple transcriptomics data from different ex
periments (i.e. unpaired). The current implementation is based on 
the use of a VAE, a generative model that learns low-dimensional 
representations of the observed data, using a variational Bayes 
methodology in an unsupervised framework. By coupling a ran
dom forest regression model and the SHAP explainer, HIVE selects 
relevant genes for the studied phenotype. The application of a 
nested stratified cross-validation technique allowed us not only 
to treat datasets with unbalanced classes but also to overcome 

the small sample size challenges (Fig. 1, Supplementary Note S1, 
Supplementary Figs. S1 to S5, and Supplementary Tables S1 to S3).

To illustrate the functionalities of HIVE, by re-using publicly 
available transcriptomics data from Expression Atlas or PlaD, 
we constituted 7 multi-stress datasets of transcriptomic data 
from either RNA-sequencing or microarray for 5 different plants, 
namely maize (Zea mays), rice (Oryza sativa), wheat (Triticum aesti
vum), grapevine (Vitis vinifera), and Arabidopsis (Arabidopsis thali
ana) (Supplementary Note S2, Supplementary Table S4). We 
focus on the results obtained from the grapevine dataset as a 
showcase to show the suitability of HIVE to handle non-model 
plants. The results on the other datasets are reported in 
Supplementary Notes S3 to S6 to show the generality of findings 
and the robustness of our method.

To evaluate the batch effect reduction, we performed a logistic 
regression approach on features extracted with either PCA, t-SNE, 
UMAP, or the HIVE VAE. By considering each latent feature sepa
rately, HIVE achieved better results in batch effect reduction com
pared to the other 2 methods for all datasets (Supplementary Note 
S3, Supplementary Figs. S6 to S9, and Supplementary Tables S5 to 
S7). To evaluate the global batch effect reduction, we imple
mented a k-means clustering analysis of samples by considering 
their transcriptomics profiles in the raw data and upon applica
tion of either PCA, t-SNE, UMAP or the HIVE VAE, and the “reduced 
latent space” obtained by removing the 10% of the latent features 
with higher association to the batch effect. We evaluated the dis
tribution of batches in the clusters obtained from the 5 setups by 
using common metrics, including the Silhouette index, Jaccard 
score, and the Shannon entropy. We expect that if the batch effect 
is reduced, the samples do not cluster according to the batch. 
Strikingly, as we can observe in Fig. 1A both the Silhouette score 
and the Jaccard index on the HIVE original and “reduced” latent 
space show the lowest values and the highest entropy, independ
ent of the number of clusters in the chosen range, compared to the 
correspondent scores obtained on raw data, PCA, UMAP, or t-SNE.
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We performed extensive benchmark against other state-of-the 
art tools, namely DESeq2 (Love et al. 2014) and MINT, from the 
MixOmics R package (Rohart et al. 2017a, 2017b) to test the ability 
of HIVE to extract biologically relevant genes. In Fig. 1B, we ob
serve that DESeq2 finds by far the largest number of genes deregu
lated, while MINT the lowest. Pair-wise comparison of genes 
selected by the 3 methods shows very low agreement (Fig. 1C). 
With a similar aim, we performed Mercator annotation to study 
the biological processes in which selected genes by each method 
are involved. To quantify the gene expression variation across 
conditions in those processes, we calculated the specialization in
dex from information theory (Martínez and Reyes-Valdés 2008). In 

Fig. 1D, we observe that pathways from DESeq2 have higher spe
cialization values compared with HIVE selection, meaning that 
genes are expressed specifically in one or very few conditions. 
Similar results were obtained by considering only the lists of genes 
involved in important processes to regulate plant defenses against 
stresses, namely phytohormone related, transcription factors, 
and resistance genes only found by HIVE or by DESeq2 (Fig. 1E). 
An important aspect of integrative analysis is the association of 
genes to conditions. To quantitatively measure the difference 
among methods, we defined 2 novel indexes: the sharedness 
and the specificness, which quantify the ratio of common or spe
cific signature compared to the total number of selected 
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Figure 1. Benchmark on batch effect reduction and HIVE, DESeq2 and MINT comparison for gene selection, GO term enrichment, and gene association 
to condition for grapevine RNA-seq dataset. A) Radar plots summarizing the agreement between K-means clustering with increased number of clusters 
(k) and batch belongings with 3 metrics, Silhouette score, Jaccard index and entropy. The inset in the plot related to the entropy highlights the results 
obtained on the raw data, since they are not visible in the main plot because of superposition with the other tracks. The number of original batches is 
highlighted in bolded font on the plots. Colors accordingly to the legend at the bottom of the radar plots. See Supplementary Note S3 for further details 
on the calculation of “reduced” latent space. B) Number (N.) of selected genes per benchmarked method. Because of the different scale, the inset shows 
the number of genes found by MINT. C) Pair-wise agreement in gene selection of the benchmarked methods. D) Distribution of specialization index for 
all categories in MERCATOR4 from annotations of either HIVE or DESeq2. E) Specialization index of the 3 key categories for plant response to stress 
found by genes only in HIVE list and only in DESeq2 list. The shape of points corresponds to the categories as indicated in the legend at the bottom right 
of the figure. F) The % of selected genes associated to them by each method for each number of associated conditions. G) Relationship between the 
Sharedness Index and the Specificness Index of each method. H) Number (N.) of core genes, namely genes found deregulated in all conditions, belonging 
to the 3 categories with pivotal roles in plant defense mechanisms. (See Supplementary Note S4 for more details on the indices calculation). Colors for 
panels from B to H are indicated at the bottom right. For each boxplot the solid line represents the median while the dashed line, the mean of the 
distribution; box limits are the first (lower limit, Q1) and third (upper limit, Q3) quartiles; whiskers represent upper and lower fences; dots symbolize 
outliers.
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signatures, respectively. HIVE identifies a balanced ratio of com
mon and specific signatures, compared to the other methods ob
taining the highest sharedness for all datasets; therefore, the 
highest number of genes deregulated in all conditions (Fig. 1, F 
and G). To inspect whether HIVE can identify novel signatures 
not found by the other 2 tools, we defined the “core genes” as 
the genes found deregulated in all conditions. Then we inspected 
the core genes identified by the different methods and quanti
fied the number of genes involved in important functions to bet
ter understand plant response to multiple stresses. As reported 
in Fig. 1H, not only did DESeq2 and MINT not identify any core genes, 
but HIVE core genes are composed of genes in the 3 categories: re
sistance genes, genes related to phytohormones, and transcription 
factors. Finally, we investigated the level of gene regulation found 
by each method as specifically deregulated in one condition or 
shared by all (Supplementary Note S4, Supplementary Fig. S10,
and Supplementary Tables S8 to S11). From the cumulative distribu
tions, we can observe that the genes selected by HIVE as specific to 
each condition show the most extreme values of modulation 
when compared to the background, either up or down regulation, 
with the most significant P-value compared to the other methods 
versus background. This result highlights that the genes found by 
HIVE as responsive specifically to one condition have an overall level 
of regulation that is stronger than the genes selected by other 

methods for the same category (Supplementary Note S4, 
Supplementary Fig. S11, and Supplementary Table S12).

To test the ability of HIVE to identify signatures common to 
multiple stresses responses when only single-stress experiments 
are available, we dispose, of an experiment in which the grapevine 
is subjected to 2 stresses contemporaneously (Trichoderma harzia
num and/or Plasmopara viticola) and also to only one of the two at a 
time. By comparing the number of genes found in the 3 conditions, 
we showed that HIVE found only a few genes associated only with 
the combined stress while a high number of genes in common be
tween the combined stress and both the single stresses were re
trieved, compared to the selection by DESeq2 in which a higher 
percentage of genes were found deregulated only in the combined 
stress and not in the 2 single-stress experiments (Fig. 2A). To show 
the validity of those genes in common between the 2 single stress
es and validated by the combined stress experiment, we quanti
fied the number of genes involved in key processes for plant 
defense against stresses. In Fig. 2B, we show that, especially re
garding resistance genes, HIVE identifies more of those key genes 
than DESeq2 in the common selection. Similar findings were re
ported for the other 2 datasets as shown in Supplementary Note 
S5 (Supplementary Fig. S12 and Supplementary Tables S13 to 
S15). This represents a proof-of-concept that HIVE can be used 
to reliably extract multi-stress signatures from experiments 
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Figure 2. Comparison of HIVE and DESeq2 for multi-stress associated genes and Voronoi maps for sharedness gene expression in grapevine RNA-seq 
dataset. A) Venn diagrams representing overlaps between single-stress genes and the respective combination of stresses for grapevine dataset. 
B) Number (N.) of genes from the intersection among the 3 experiments obtained by the analysis with HIVE or DESeq2 annotated as belonging to key 
categories for plant response to stresses. C) Voronoi maps of gene expression associated to the single stresses (first 2 maps) and associated to the 
combined stress (last map). Genes were mapped accordingly to their level of sharedness-gene expression value on a x-y plot, each gene were then 
enclosed in a Voronoi cell, the volume of each cell is represented by a color scale, accordingly to each plot.
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performed on single stresses. To further inspect the relationship 
between the number of conditions in which genes were found de
regulated (sharedness) and their level of expression, we used the 
Voronoi maps. We observe that the overall effect of T. harzianum 
on plant response is very mild, opposed to the effect of P. viticola, 
and the combined stress shows a very similar pattern as the P. vit
icola alone (Fig. 2C). Overall, we found that the patterns of 
sharedness-expression from HIVE Voronoi on the single stresses 
are comparable to the combined, therefore strengthening the abil
ity of HIVE to perform in silico multi-stress integration from experi
ments conducted on single stresses (Supplementary Note S6, 
Supplementary Fig. S13 and S14, and Supplementary Table S16).

In conclusion, we showed that integrative analysis with HIVE 
can highlight novel signatures and biological insights that cannot 
be found by other analysis methods. HIVE is a valuable tool that 
can be applied to any phytopathosystem and will provide im
provements in our understanding of the mechanisms set up by 
the plant to respond to multiple stresses.
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