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Understanding water quality (WQ) is essential for grasping biogeochemical cycles and assessing human 
impacts such as deforestation, climate change, dam construction, illegal mining, and urbanization. 
However, monitoring WQ across Brazil’s vast aquatic systems requires significant resources. Remote 
sensing improves this process by offering high-resolution and large-scale observations. Nevertheless, 
to produce reliable remote-sensing WQ products based on remote sensing demands comprehensive 
datasets with concurrent aquatic reflectance and in situ measurements (e.g., Chlorophyll-a, Secchi 
Disk Depth, Suspended Sediments). Such data enables advanced semi-analytical and machine learning 
models to capture Brazil’s bio-optical water complexity. Collaborative efforts and open-data sharing 
are essential for building these datasets. Here, we introduce a new curated, high-quality bio-optical 
dataset across different aquatic systems in Brazil, called BRAZA (Bio-optical aquatic database for 
remote sensing of water quality in BRAZil coAstal and inland waters). By leveraging data from 17 
institutions, covering 2,895 stations across + 128 lakes, rivers, reservoirs, and coastal areas of Brazil’s 
five administrative regions our dataset presents an important contribution to support remote sensing 
WQ-based analysis in Brazil.
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Background & Summary
Brazil covers 8.51 million of km2 with approximately 180,000 km2 of open freshwater resources, including rivers, 
reservoirs, and floodplains1, as well as 3.5 million km2 of coastal waters. Although the country is rich in water 
resources, their distribution is uneven. While the Amazon region has abundant water, the northeast region faces 
challenges that lead to a range of environmental impacts2. Current human activities, including illegal gold min-
ing, deforestation, wildfires, and extensive agricultural and industrial development, significantly threaten the 
quality of Brazil’s water resources3–5. Therefore, it is essential to establish a comprehensive system for monitoring 
water quality (WQ) in Brazil to track the impacts of human activities and provide environmental monitoring 
of fresh and coastal aquatic ecosystems. Organizations such as the Brazilian Water Agency (ANA) and the São 
Paulo Environmental Company (CETESB) manage a network of in-situ stations distributed across the country 
and states, respectively6,7. These stations provide periodic observations of the water bodies, typically at intervals 
of one-to-three months with few spatial samples, resulting in insufficient temporal and spatial representative-
ness. In many cases of rivers with high turbidity, most of the sediment load (up to 90% of the annual load) is 
transported in just a fraction of time (sometimes less than 10%)8, therefore, an alternative approach for obtain-
ing WQ variables with better spatiotemporal coverage is by using remote sensing data.

Remote sensing provides a synoptic view of the aquatic ecosystems, by offering high-resolution spatial and 
temporal observations that complement traditional monitoring methods9. By leveraging high spatiotemporal 
data, remote sensing can provide near-real-time WQ maps across different scales (i.g., from global to local), 
which helps to reduce the costs of environmental management for these aquatic ecosystems. Technological and 
scientific advancements between 2013 and 2015 have addressed previous limitations (e.g., low Signal-To-Noise 
ratio, SNR) with the launch of new high-quality Earth-observing sensors, such as the Operational Land Imager 
(OLI) Landsat-8/9 and MultiSpectral Imager (MSI) Sentinel-210,11. With improved spatiotemporal resolution 
and higher SNR, these sensors have become suitable for large-scale monitoring of aquatic resources. In addition, 
recent hyperspectral sensors are also expanding the applications of remote sensing for water quality-based stud-
ies, marking the beginning of a new era in water quality monitoring from space, enabling the development of 
more precise and robust algorithms for mapping optically active constituents (OACs)12–15.

The use of remote sensing to monitor aquatic resources are connected to the understanding of the radiative 
transfer theory, which involves comprehending how optically active constituents (OACs) in water interact with 
light, ultimately affecting the water-leaving radiance (Lw). The main goal is to measure Lw, detected by remoted 
sensors16–18. However, Lw does not have stability along time, because it is dependent on the incident irradiance16. 
To overcome this issue, the Apparent Optical Property (AOP) known as Remote Sensing Reflectance (Rrs, sr−1) 
could be calculated as the ratio of the Lw to the downwelling irradiance (Es) just beneath the water’s surface in 
each wavelength (λ). Unlike radiance, Rrs remains stable over time, allowing for temporal studies and remote 
sensing monitoring of aquatic systems. Since the 1970s, this approach has been critical for monitoring both the 
open ocean and coastal waters, particularly after the launch of sensors designed for this purpose, such as the 
Coastal Zone Color Scanner (CZCS)19. Although using remote sensing (RS) to monitor aquatic environments 
offers several benefits, there are challenges in adapting satellite sensors and algorithms originally designed for 
the open ocean to freshwater and coastal ecosystems. One of the main issues is the optical complexity of inland 
and coastal waters, which are characterized by a mixture of various OACs such as phytoplankton pigments 
(e.g., Chlorophyll-a concentration (Chl-a)), coloured dissolved organic matter (CDOM), and inorganic sedi-
ments9. Additionally, there is a lack of sensors with high radiometric, spectral, and spatial resolutions, and high 
Signal-to-Noise Ratio (SNR). These sensor characteristics are essential for detecting the low radiance typically 
found in many continental water bodies. Moreover, low Rrs values of coastal regions, aligned with a low temporal 
resolution could limit the monitoring of highly dynamic events, such as harmful algae blooms. Additionally, 
mapping small rivers and lakes has proven challenging due to the limited spatial resolution of sensors primarily 
designed for open-ocean applications, as well as challenges in atmospheric and adjacency corrections20–22.

Two types of algorithms are used for retrieving the OACs: empirical and semi-analytical models23. Empirical 
models rely on the statistical relationship between Rrs and OACs as well as other water properties, such as trans-
parency (e.g., Secchi Disk Depth). These models can be developed using different methods, including simple 
regressions (i.e., one-term regressions), multi-variable regressions, and machine learning and deep learning 
techniques24,25. All of these models rely on samples for training and validation, demanding a comprehensive 
dataset for effective spatiotemporal monitoring. Semi-analytical models, which simplify radiative transfer the-
ory, have strong spatiotemporal applications26, however, they require precise measurements of water Inherent 
Optical Properties (IOPs), which makes them less commonly used. This is largely due to the uncertainties in 
these measurements and sensors corrections in freshwater ecosystems27. Disregarding the algorithm applied, all 
of them demand large sample size with measurements encompassing a huge variability of optical properties and 
OACs for providing accurate results.

Recently, several initiatives have been conducted to create freely open-access datasets of remote sensing 
data focusing on global inland and coastal waters28–33. One of the recent examples is the GLORIA dataset32, 
which provides more than 7,000 stations with concurrent measurements of AOPs and OACs. Other examples 
include the SeaSWIR dataset31 and the HYPERMAQ dataset28 focusing on moderate to extremely turbid waters. 
There are also other initiatives that provides in-situ water quality data aligned with satellite-derived Rrs, such as 
AQUASAT34. In addition, other studies have been providing synthetic datasets to support large-scale develop-
ment of water quality models33,35,36. Despite the global distribution of these datasets, there is still a lack of the 
knowledge of the variation of the AOPs and OACs in Brazil, which has a wide variability in OACs37.

Even though remote sensing is an essential tool for large scale water quality monitoring, its application to 
Brazilian aquatic ecosystems still has limitations. The vastness of Brazil’s territory leads to a variety of envi-
ronments38, ranging from the Negro River39 dissolved organic-matter-rich rich water in the Amazon to the 
eutrophic reservoirs in São Paulo and Rio de Janeiro40. Additionally, there are the turbid waters from the 
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Amazon River and the clear waters reservoirs, such as Três Marias in Minas Gerais37,41, and the coastal waters of 
the Alcatrazes Archipelago. This high variability creates a mix of OACs, resulting in an optically complex envi-
ronment that poses challenges for the development of algorithms12.

Large-scale applications or even local algorithms require a representative dataset to allow the model to 
understand and adapt to the variability of optical parameters at a given aquatic system. Therefore, it is neces-
sary to build in-situ databases to use the data collected in different locations. These initiatives are only possible 
through an inter-institutional collaboration network, based on the principles of free data sharing32. To support a 
bio-optical database availability for Brazilian freshwater and coastal ecosystems, this study describes the process 
used to collect, compile and organize BRAZA, a bio-optical dataset for Brazilian waters. With 17 collaborating 
institutions over Brazil and United States, we compiled 2,895 in-situ measurements of Rrs and other WQ param-
eters over the country’s five regions. This paper describes the dataset, the variability in the parameters available 
in the dataset (i.e., water quality parameters) and their quality control.

Methods
Study area.  The study area covers all the five Brazil’s regions (Fig. 1). The development of this dataset was 
based on a national-scale collaboration among more than 30 researchers from Brazil and the United States. The 
Instrumentation Laboratory for Aquatic Ecosystems at the National Institute for Space Research (LabISA-INPE 
led the efforts to create a large-scale dataset for bio-optical modeling data in Brazil. Since the 1990s, INPE team 
has collected numerous measurements of water AOPs and IOPs across Brazil. The effort to organize the data 
began in 201538, with the compilation of approximately 500 stations, primarily collected in the Amazon region. 
In 2019, Silva et al.37 organized the LabISA data into a comprehensive, SQL-like database, which was further 
updated in 2021 by Maciel et al.12 and more recently by Maciel et al.42. Despite these efforts, the vast size of Brazil 
and the huge bio-optical diversity of its waters demands a wider collection of measurements. As a result, pro-
ducing a comprehensive dataset for large-scale remote sensing of Brazilian waters requires significant effort and 
a multi-collaborative approach. Several researchers were invited to collaborate on the dataset’s construction to 
address this need. The sections below provide detailed information on the measurement of each variable and the 
available datasets.

The dataset collected includes >128 different environments in Brazil, as coastal waters, reservoirs, small 
and large rivers (e.g., Amazon, Negro, Tapajós, and Guamá rivers), fishponds, and floodplain lakes. The pro-
ject collaborators provided a total of 2,895 Rrs measurements across the five regions of Brazil. Apart from the 
radiometric measurements, the dataset contains 1,506 valid measurements of Chlorophyll-a and 161 of phyco-
cyanin. For sediment concentration, 1,420, 1,042, and 1,028 contains valid measurements of total suspended 
sediments (TSS) and their organic (TSO) and inorganic (TSI) fractions, respectively. Secchi Disk Depth (Zsd) 
is available for 2,374 stations, and turbidity for 1,246 stations. The absorption coefficient by CDOM at 440 nm 
(aCDOM(440)) is available for 837 stations. The Dissolved Total Carbon (DTC) and its organic (DOC) and 
inorganic (DIC) portions are available for 580, 801 and 733 stations, respectively. A description of the methods 
used for each variable measurement is available in Section 3.2.

Dataset organization.  The data organization used a database-oriented structure following that which sup-
ports the integration with global datasets such as GLORIA. The remote sensing data is presented in a table with 
the Rrs data between 400 and 900 nm (see Section 2.2.1). A second table contains the metadata (i.e., station iden-
tifier) and other necessary information such as date and time, geographic coordinates, and water quality parame-
ters. A Metadata sheet is available in excel file, as well as a sheet with associated Rrs measurement method. A third 
table includes the associated flags for each spectrum. Water quality parameters used in this dataset comprehend 
phytoplankton pigment concentrations (Chlorophyll-a, Pheophytin and Phycocyanin, ug L−1), non-algal parti-
cles information (total suspended sediment and its organic/inorganic part concentrations, mg L−1), aCDOM(440) 
(m−1), Secchi Disk Depth (Zsd) (m), turbidity (NTU), and Dissolved Total, Organic and Inorganic carbon concen-
trations (mgL−1) (DTC, DOC, DIC, respectively).

In-situ measurements.  Remote sensing reflectance.  The in-situ Rrs data was collected using different types 
of radiometers as identified in the Metadata table and can follow different settings. Measurements of water-leaving 
radiance (Lw), downwelling irradiance beneath water surface (Es), and sky radiance (Lsky) were taken for most of 
the available datasets to calculate Rrs. Radiometric quantities were measured generally between 9:30 and 14:30 
local time, to avoid low sun-zenith angle and glint occurrence. Although we expect differences in the measure-
ments between radiometers from different manufacturers, we considered it as having second order of importance, 
as the uncertainties between the measurements are generally lower than 10%43,44. In addition, by integrating a large 
database, we reduce the effects and possible biases of systematic errors45. Indeed, we expect this effort will stimu-
late future site intercomparisons. Following, detailed information about each form of measurement is presented.

	(1)	 Satlantic HyperPRO II. Measurements taken with HyperPRO II were slightly different from those of the 
other sensors. HyperPRO II measures the upwelling radiance below water surface (Lu) and Es, in a buoy 
or free-falling mode. Therefore, it is necessary to extrapolate the Lu data to Lw. Lu data were extrapolated 
to the surface by calculating the Diffuse Attenuation Coefficient of upwelling radiance (KLu) based on the 
empirical method proposed by Austin and Petzold19 and Morel et al.46 when measured in buoy mode or by 
calculating a KLu based on Lu(0-) profiles when measured in profile mode. Lu(0-) data were converted to 
Lw using the Fresnel and water refraction index (1.34). Variable values necessary to these calculations were 
obtained from the HyperPRO II user manual. The bandwidth is 3.3 nm.

	(2)	 TRIOS-RAMSES radiometers. In this setting, one radiometer is used to measure water leaving radi-
ance (Lw), with an angle of 45° in relation to nadir and an azimuth angle in relation to the sun of 135°. 
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Simultaneously, another radiometer measured sky radiance (Lsky), with an view angle of 45° in relation 
to zenith and an azimuth angle of 135°. Finally, a cosine sensor TRIOS-RAMSES was used for measured 
downwelling irradiance just beneath the water surface (Es). The nominal bandwidth of RAMSES is 3.3 nm. 
This setting follows the geometrical protocols of Mobley47.

	(3)	 ASD FieldSpec. ASD FieldSpec-4 also was used in radiance mode to collect Lw, Lsky, and the radiance of a 
Spectralon Lambertian plaque (Ls), which is then converted to irradiance by integrating it into the 
hemisphere (i.e., multiplying Ls by π). In some stations, they were collected in the Reflectance mode, 
measuring water reflectance and subtracting it by the sky reflectance multiplied by the ρ factor from 
Mobley47. The nominal bandwidth of this sensor is 2.2 nm in the visible-to-near-infrared (VNIR) channels.

	(4)	 ASD HandHeld-2. In this setup, the HandHeld-2 instrument is used in radiance mode to collect water 

Fig. 1  Study area. Each red-point corresponds to in-situ measured station. The Amazon box was grouped due 
to the large number of unique lakes. Numbers in each box refer to the location highlighted in the Brazil map.
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leaving radiance (Lw), sky radiance (Lsky) and Lplate. In some stations (noted in the Metadata table), ASD 
HandHeld-2 data was collected in Reflectance mode without measuring Lsky. The spectral resolution of 
HandHeld-2 is defined by ASD as < 3 nm at 700 nm.

	(5)	 Spectron SE-590. The measurements collected with the SPECTRON SE-590 followed the same pattern 
of the used for ASD’s HandHeld-2 and FieldSpec-4 measurements. A radiance measurement of the water 
(Lw) and a Lambertian plaque (Lplate) was taken. In this setup, no Lsky measurements were taken. Lplate was 
extrapolated to Es by integrating the Lplate throughout the hemisphere (i.e., multiplying Lplate by π). The half-
band width is approximately 10 nm, with a 3-nm difference between each channel.

Except for Satlantic HyperPRO II, Rrs was calculated using Eq. 1, with the ρ calculated using Mobley47 
Look-up-Table and auxiliary parameters, such as wind speed, sun-zenith and view angle when available. For 
HyperPro II measurements, Rrs was calculated as Lw/Es (i.e., without the Lsky effect). When wind speed is not 
available, we consider it less than 5 m s−1.
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The resulting Rrs was also classified into specific Optical Water Types (OWTs) based on seven OWTs pro-
posed by Pahlevan et al.45. These seven OWTs are based on a grouping of the 21 OWTs defined by Spyrakos  
et al.48. The Pahlevan et al.45 OWTs classes were used instead of Spyrakos et al.48 to reduce the number of classes 
and group similar spectra. In this classification, OWT-1 are related to more clear waters, OWT-6 is connected to 
eutrophic locations and OWT-7 to very turbid waters. To assign a class to each measured Rrs spectrum, we used 
the Spectral Angle Mapper (SAM)49 with the seven OWTs as reference. The class for a specific spectrum was 
determined by the lowest SAM value between the spectrum and the seven references.

Water quality variables.  A diverse set of water quality variables was compiled in this study to construct the 
database. These variables are: Chl-a; Pheophytin, Phycocyanin, Suspended Sediment (total, organic and inor-
ganic – TSS, TSI, and TSO) concentration; aCDOM(440), Zsd, Turbidity, DTC, DOC and DIC. The methods for 
measuring each of these WQ variables are defined below:

Chlorophyll-a (Chl-a) and Pheophytin (P) concentrations.  In most of the measurements, Chl-a and P were 
measured by filtering a determined water volume (~100–1000 mL) in a 47 or 25 mm diameter and 0.7 pore size 
Whatmann Glass-Fiber Filter (GF/F) in duplicates. Chlorophyll-a concentrations (Chl-a) were determined fol-
lowing the protocol outlined by APHA50, which involves pigment extraction using 90% acetone. The breakdown 
of algal cells was carried out by incubating the samples at 4 °C for 12 hours, followed by centrifugation at 3000 rpm 
for 20 minutes. The absorption of the extracted pigments was measured using a spectrophotometer. To account 
for phaeophytin correction, the samples were acidified with 0.1 M HCl and reanalysed on the spectrophotometer. 
Pigment concentrations were calculated using Lorenzen’s equation, as described in APHA50. After that, the aver-
age Chl-a and P values were calculated. For SS e Alcatrazes the non-acidification method was used (Welshmeyer).

Phycocyanin (PC).  PC concentration was measured by filtering a defined volume of water (100–500 mL) 
through a 47 mm diameter and 0.7 pore size Whatmann Glass-Fiber Filter (GF/F). Water samples were collected 
from the subsurface (~15 cm) in dark bottles and stored in cooled containers to prevent thermal and photodegra-
dation. Filtration was performed using GF/F filters under low light conditions and low vacuum pressure to min-
imize pigment degradation. Filters were stored in liquid nitrogen until further analysis. PC extraction followed 
the protocols of Sarada et al.51, with adaptations by Horváth et al.52. Filters were suspended in a phosphate buffer 
(100 mM and pH 7.2) and submitted to 3 freeze–thaw cycles. The samples were then sonicated for 90 seconds at 
20 kHz and centrifuged for 15 minutes at 3,000 rpm. PC concentrations were determined spectrophotometrically 
applying the formula proposed by Bennett and Bogorad53. All samples were analysed in duplicate, and the mean 
value was used as the reference concentration for each sampling station.

Suspended Sediments (Total, Organic, Inorganic).  Were measured using the Wetzel and Likens54 or55 methods 
in most of the stations. For that, water samples (generally 0.1 to 1 L) were filtered into previously weighted 0.7 μm 
pore size GF/F filters (for some campaigns in Pará state, a 0.4 μm filter was used). After filtering, samples were 
stored in refrigerated containers until further analysis in laboratory. For Total Suspended Sediments, the filters 
were dry for 24 hours at 60 °C and their weight was measured. Total Inorganic Sediments (TSI) were measured by 
placing these filters into a muffle at 480 °C for 1 hour, to eliminate organic portion, and then weighed again. Total 
Organic Sediments (TSO) were calculated by the difference between TSS and TSI.

aCDOM(440).  Dissolved organic matter is composed of a complex set of dissolved substances that come from 
the decomposition of animal and vegetal tissues and from the synthetic activity of microorganisms. The chromo-
phore fraction of dissolved organic matter is called Colored Dissolved Organic Matter (CDOM). To calculate 
the aCDOM(440) water samples were filtered in a 0.22 μm pore size filter for each station whose absorbance is 
measured by the spectrophotometer according to Bricaud et al.56. To carry out these measurements in inland 
waters, a 10 cm cuvette was used, whereas for the Alcatrazes and São Sebastião channel the pathlength was set 
to up to 2 m. To remove residual absorption and effects of temperature variation, dispersion and refraction, 
the aCDOM(440) values were subtracted from the average between 750 and 800 nm according to Green and 

https://doi.org/10.1038/s41597-025-05609-1


6Scientific Data |         (2025) 12:1270  | https://doi.org/10.1038/s41597-025-05609-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Blough57. The calculation for aCDOM(440) follows Bricaud et al.56. The equipment and methods used to measure 
aCDOM(440) are detailed in the metadata table.

Secchi Disk Depth (Zsd).  Zsd is a widely used and classic measurement of water transparency. It represents the 
depth in which a disk lowered in the water disappears in relation to an observer view21,58. In the datasets available 
in this study, the Secchi Disk Depth (Zsd) was measured with a 30 cm diameter black-white or white disk until the 
depth of disappearance of the disk. White disk was used only in the Alcatrazes and São Sebastião field missions, 
and it is not expected a high difference between these two disks.

Dissolved Carbon (Total, Organic, Inorganic).  To determine the DOC concentration, water samples were col-
lected, filtered through a Whatman nylon membrane filter with a pore size of 0.22 μm and 47 mm in diameter, 
stored in sterilized polyethylene bottles, wrapped in aluminium foil and kept refrigerated (4 °C) until the time 
of laboratory analysis. The samples were left at room temperature before analysis. Concentration measurements 

Fig. 2  Number of flagged Rrs spectra in each flag. (A) Total number of flagged spectra and (B) Total number 
of negative spectra per wavelength. BS: Baseline Shift, Neg: Number of Negatives; NR: Noisy Red; OS: Oxygen 
Signal; Susp: Suspicious.

Fig. 3  Example of spectra flagged as “Suspicious” based on the interpretation of specialists.
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were carried out using a Total Organic Carbon (TOC) analyzer, allowing the direct measurement of DOC and 
DIC. The inorganic fraction is purged using phosphoric acid (H₃PO₄) and hydrochloric acid (HCl), transforming 
carbonates and bicarbonates into CO₂ and H₂O59. By separating these fractions, it is possible to determine the 
DOC concentration in water samples.

Turbidity.  Turbidity is a measurement of light scattering in a determined angle and wavelength and are repre-
sented in Nephelometric Turbidity Unities (NTU). It is an important measurement as it is easy to be taken in the 
field and have a very high relationship with inorganic suspended sediments. The equipment and methods used to 
measure turbidity in the field are detailed in the Metadata table.

As the data were measured using different methods by each collaborator, each of these methods are identified in 
the Metadata table for each entry of the BRAZA dataset, when necessary.

Data Records
The BRAZA dataset is available at Figshare60 and it contains three associated Excel files tables with the data. All 
these three tables contain a unique identifier (BR_ID) to connect each table. The first table (rrs.xlsx) contains 
the BR_ID and Rrs between 400 and 900 nm (e.g., Rrs_400 for 400 nm, in steradians, sr−1)). The second table 
(stations.xlsx) contains three sheets: the first sheet (Data) contains the unique station identifier (BR_ID), a sta-
tion_name, ancillary data (e.g., latitude, longitude, date, hour (GMT), lake name)) and water quality related 
parameters, with associated unit (e.g., chla_ugl, for Chlorophyll-a in micrograms per liter). In this table, a sec-
ond sheet (Metadata) contains the methods used for each measurement, when available, with associated refer-
ences. The third sheet (rrs_methods) contains the explanation on each different method used to calculate the 
Rrs. Finally, a third table (flags.xlsx), contains the associate flags for the quality-control of the dataset, as stated 
in Section 42.3.

Fig. 4  Variability of Rrs for the available data. Each box-title represents the state in which the Rrs came from. 
Solid line are the median values, and shaded represents median ± standard deviation of Rrs values. Please, note 
that y-axis is in different scale for visualization purposes.
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Technical Validation
Quality control.  We assessed the quality of each spectrum in the dataset, as well as the WQ variables meas-
ured by using visual inspection and other metrics described below. Similar to the GLORIA32 dataset, we keep 
all Rrs data allowing users to decide whether to use the flagged data. For the Rrs assessment, we provided a table 
(“flags.csv”) with the flagged data in each of our assessment (Fig. 2a). The first flag is for negative values (Fig. 2b), 
which could happen due to uncertainties in glint correction (i.e., large Lsky values) or the low water signal at 
longest wavelengths. Among the 685 flagged spectra (25% of the dataset), at least one wavelength had negative 
values whose frequency increased at wavelengths larger than 700 nm. Dataset users should be cautioned to use 
or simply remove it from further analysis. We also flagged specific spectra by visual inspection. Unusually (i.e., 
larger values in the blue in high turbid waters) were flagged. That was manually done by three different specialists 
to ensure consistency (Fig. 3). An example of some flagged spectra is shown in the Fig. 3. We also flagged using 
the GLORIA dataset flags “baseline_shift”, “oxygen_signal”, and “noyse_red_edge”. These flags were calculated in R 
programming language, using the scripts provided by Maciel et al.61, which was also used in the GLORIA dataset 
to ensure consistency. Detailed explanation of these flags is available in32. Another flag used was “suspicious”. We 
used this flag by visually inspection of each spectrum by specialized researchers to use or remove this data from 
further analysis. Spectra that did not seem to be realistic (e.g, high TSS concentration and very low Rrs values 
were flagged). Spectra that did not seem to be realistic (e.g, high TSS concentration and very low Rrs values were 
flagged).

In addition to the previous metrics, we used a quantitative score called Quality Water Index Polynomial 
(QWIP)62 to assess the quality of the retrieved Rrs spectra. The QWIP is based on the Apparent Visible 
Wavelength (AVW), a one-dimensional metric of colour that is correlated to the spectral shape based on a 
weighted harmonic mean for visible wavelengths. This approach allowed us to identify Rrs data that falls outside 
a general trend observed for optically deep waters, ranging from clear ocean to turbid environments. The QWIP 
is based on a fourth-order polynomial, that was fitted between AVW and a Normalized Difference Index (NDI) 
between 492 and 665 nm bands. The QWIPscore is the subtraction of the predicted QWIP based on the ANW (i.e., 

Fig. 5  Variability of Rrs for each OWT according Pahlevan et al.45 classification. Please, note that y-axis has 
different scale for improving the visualization.
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the fourth order polynomial) and the real NDI ratio between 492 and 665 nm bands for a given spectrum. The 
process will ultimately provide a measure of deviation between the measured spectra and the central tendency 
of the ratio. If the difference between the NDI and the QWIP exceeds ± 0.2, the spectrum will be flagged. In our 
dataset, 669 spectra were flagged, and the QWIP was included in the flags.csv table.

Rrs variability.  The compiled in-situ dataset represents the bio-optical properties across all five regions of Brazil 
(Fig. 4). In the dataset, the largest Rrs sample size is from Pará state (North Brazil) (N = 1,209 points), primar-
ily from Curuai Lake (N = 929), which has been the subject of study for over 20 years by the LabISA team 
and other collaborators, involving more than ten field missions for data collection. Following Pará, São Paulo 
state (Southeast) has 750 unique stations, with data collected over more than 15 years in several reservoirs 
(i.e., Ibitinga, Promissão) and coastal waters of São Sebastião Channel. The dataset for São Paulo encompasses 
various eutrophic reservoirs (e.g., Billings (N = 353), Ibitinga (N = 89), and Promissão (N = 66)), clear water 
environments (e.g., Paraíbuna Reservoir (N = 13)), and coastal waters (São Sebastião Channel (N = 172)). This 
diverse range of environments, including rivers, reservoirs, floodplains, and coastal waters, allows for the cre-
ation of a database with significant optical variation. After Pará and São Paulo, the third most representative 
state is Amazonas state (North), with 230 unique stations, followed by Rio Grande do Sul (South Brazil) state, 
with 143 valid measurements, Ceará (N = 131) (Northeast), Paraná (N = 128) (South), and Tocantins (TO) 
(N = 105) (North) stands as states with N > 100. Minas Gerais State (MG) (N = 42) (Southeast), Rio de Janeiro 
(RJ) (N = 39) (Southeast), Paraíba (PB) (N = 37) (Northeast), Rondônia (RO) (North) (N = 31), Mato Grosso 
(MT) (N = 26) (Central-west), Mato Grosso do Sul (N = 19) and Roraima (RR) (N = 5) (North) presented a 
lower sample size.

The variation in the Rrs spectra is evident and further illustrated by the variability of the OACs. Despite 
this, we can see that the spectra capture high turbidity (e.g., the Amazon Region), eutrophic (e.g., RJ and SP 
states), and clear water environments (Três Marias reservoir in MG state). High sediment concentrations were 
observed in the Amazon Basin stations (e.g., Pará state, median TSS = 25.5 mgL−1). Water transparency was 
lowest for the Pará stations (median Zsd = 0.36 m), and the highest was obtained for MG state (Zsd = 3.08 m). The 
aCDOM(440) was higher for the AM state (3.07 m−1), much connected to the waters of Mamirauá Várzea63 and 
Negro River39,64.

The variability in Rrs observed in the state-grouped dataset is also illustrated in Fig. 5, plotted according to 
each respective OWTs (see Section 2.1). The large number of stations were classified as OWT-7, which is related 
to the turbid waters of Amazon Basin (e.g., Pará and Amazonas states) (N = 1,207). The second most common 
class was OWT-4, that represents medium turbid environment (N = 747). As commented, it is observed by the 
values of the OACs (e.g., mean Zsd = 1.01 m, and mean TSS = 7.31 mgL−1 for OWT-4 versus mean Zsd  =0.28 
and mean TSS = 36.64 mgL−1 for OWT-7). It was followed by OWT-5 (N = 412), OWT-2 (N = 155), OWT-1 
(N = 151), OWT-3 (N = 76) and OWT-6 (N = 38). Note that some stations were not classified as the wavelengths 
measured were only between 400–700 nm.

Fig. 6  (A) Frequency distribution of OWT’s per state. Each colour represents its specific class based on x-axis. 
(B) Mapping with the locations of the OWT’s.
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This variability is also observed in the frequency of the OWTs per state (Fig. 6). For AM, OWT-4 and OWT-7 
were the most available, indicating turbid environments, as expected. For MG data, OWT-3 was the most com-
mon, linked to the clear waters of the Três Marias reservoir (the unique sample location in this state). For Pará 
state, it followed what was obtained for Amazonas, with the most common OWTs being OWT-7 and OWT-3. 
For Paraná, Rio de Janeiro, Rio Grande do Sul and Roraima datasets, the most common OWT was OWT-4, 
indicating medium turbid locations. For SP, OWTs 3 and 5 were the most frequent, connected to the coastal 
waters of São Sebastião channel and eutrophic (OWT-5 and OWT-6) reservoirs in Billings, Ibitinga, Promissão 
and Nova Avanhandava.

Fig. 7  Violin plot of water quality parameters variations under the dataset for each state. For the units of these 
measurements, please see Section 2.2.2.
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Water quality parameters variation.  The variability of the WQ parameters is shown in Fig. 7. It is pos-
sible to observe that the Chl-a varies widely (~0 to up to 1,000 µgL−1), but remains mainly between 1–100 µgL−1, 
with the highest values obtained for the SP state, mostly in the Billings reservoir. Suspended Sediment presented 
its highest values for PA state, in the Curuai Lake (up to 1000 mg L−1), which was also observed for TSI and TSO. 
Zsd was higher (in average) for MG state (Três Marias reservoir), although the highest observed values were 
for the Alcatrazes Archipelago (coastal waters of the SP state, with Zsd maximum of 18 m). DTC and DIC were 
highest for the RS data, on Lake Mangueira. DOC highest values were obtained in the AM dataset, mainly related 
to the Negro River (organic-matter rich area). It was also followed by the results obtained for aCDOM (440), in 
which the highest values were obtained for AM and PA data. Turbidity also followed results of TSS. Other vali-
dation performed was the analisis of the relationships between the WQ variables (Fig. 8). We identified a strong 
negative correlation between total suspended solids (TSS) and the Zsd in all states, with a correlation coefficient 
of R = −0.908, which was expected. Additionally, a significant relationship was found between Chl-a and Zsd in 
certain states, such as São Paulo, where Chl-a significantly contributes to the absorption budgets in eutrophic res-
ervoirs. Furthermore, both the aCDOM(440) and Zsd exhibited a high negative correlation for the state of Minas 
Gerais (MG), with a correlation coefficient of R = −0.889.

Code availability
The scripts used for quality control of the data, as well as processing and generating all the figures of this paper, 
are available in Zenodo65.

Received: 19 March 2025; Accepted: 10 July 2025;
Published: xx xx xxxx

References
	 1.	 MAPBIOMAS. MAPBIOMAS v. 4.1. (2020).
	 2.	 Getirana, A., Libonati, R. & Cataldi, M. Brazil is in water crisis — it needs a drought plan. Nature 600, 218–220 (2021).

Fig. 8  Relationships between the Chl-a, TSS, Zsd and aCDOM(440) in the available BRAZA dataset. Note that 
the values in this figure are in log-scale.

https://doi.org/10.1038/s41597-025-05609-1


1 2Scientific Data |         (2025) 12:1270  | https://doi.org/10.1038/s41597-025-05609-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

	 3.	 de Mello, K. et al. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J Environ 
Manage 270, 110879 (2020).

	 4.	 Tundisi, J. G., Goldemberg, J., Matsumura-Tundisi, T. & Saraiva, A. C. F. How many more dams in the Amazon. Energy Policy 74, 
703–708 (2014).

	 5.	 Lobo, F. D. L., Costa, M. P. F. & de Moraes Novo, E. M. L. Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian 
waters impacted by gold mining activities. Remote Sens Environ 157, 170–184 (2015).

	 6.	 CETESB. InfoAguas. (2020).
	 7.	 ANA. Hidroweb: Hydrological Information System. http://hidroweb.ana.gov.br (2024).
	 8.	 Slabon, A. & Hoffmann, T. Uncertainties of Annual Suspended Sediment Transport Estimates Driven by Temporal Variability. Water 

Resour Res 60, e2022WR032628 (2024).
	 9.	 Sagan, V. et al. Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical 

simulations, machine learning, and cloud computing. Earth Sci Rev 205, 103187 (2020).
	10.	 Kuhn, C. et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of 

chlorophyll-a and turbidity. Remote Sens Environ Accepted, 104–118 (2019).
	11.	 Pahlevan, N. et al. Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3. 

Remote Sens Environ 270, 112860 (2022).
	12.	 Maciel, D. A., Barbosa, C. C. F., de Moraes Novo, E. M. L., Flores Júnior, R. & Begliomini, F. N. Water clarity in Brazilian water 

assessed using Sentinel-2 and machine learning methods. ISPRS Journal of Photogrammetry and Remote Sensing 182, 134–152 
(2021).

	13.	 Giardino, C. et al. First evaluation of PRISMA Level 1 data for water applications. Sensors (SUBMITTED, (2020).
	14.	 O’Shea, R. E. et al. Advancing cyanobacteria biomass estimation from hyperspectral observations: Demonstrations with HICO and 

PRISMA imagery. Remote Sens Environ 266 (2021).
	15.	 Bresciani, M. et al. Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting 

PRISMA and DESIS for Four Italian Lakes. (2022).
	16.	 Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic press, 1994).
	17.	 Preisendorfer, R. W. Hydrologic Optics. Volume 1. Introduction. (1976).
	18.	 Mobley, C. D., Boss, E. S. & Roesler, C. Ocean optics web book. OOWB/NASA (2010).
	19.	 Austin, R. W. & Petzold, T. J. The determination of the diffuse attenuation coefficient of sea water using the coastal zone color 

scanner. Austin, R. W Petzold, T. J. 112, 211–212 (1981).
	20.	 Fassoni‐Andrade, A. C. et al. Amazon hydrology from space: scientific advances and future challenges. Reviews of Geophysics 1–97 

https://doi.org/10.1029/2020rg000728 (2021).
	21.	 Lee, Z.-P. et al. Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sens Environ 169, 139–149 

(2015).
	22.	 Pahlevan, N. et al. Seamless retrievals of chlorophyll- a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: 

A machine-learning approach. Remote Sens Environ 2, 111604 (2019).
	23.	 Lee, Z.-P., Carder, K. L. & Arnone, R. A. Deriving inherent optical properties from water color: a multiband quasi-analytical 

algorithm for optically deep waters. Appl Opt 41, 5755 (2002).
	24.	 Chen, X. et al. Long-Term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020. Hydrol Earth 

Syst Sci 26, 3517–3536 (2022).
	25.	 Zhang, Y. et al. Improving remote sensing estimation of Secchi disk depth for global lakes and reservoirs using machine learning 

methods. GIsci Remote Sens 59, 1367–1383 (2022).
	26.	 Lee, Z.-P., Du, K. P. & Arnone, R. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical 

Research C: Oceans 110, 1–10 (2005).
	27.	 Sander de Carvalho, L. A., Faria Barbosa, C. C., de Moraes Novo, E. M. L. & de Moraes Rudorff, C. Implications of scatter corrections 

for absorption measurements on optical closure of Amazon floodplain lakes using the Spectral Absorption and Attenuation Meter 
(AC-S-WETLabs). Remote Sens Environ 157, 123–137 (2015).

	28.	 Lavigne, H. et al. The HYPERMAQ dataset: bio-optical properties of moderately to extremely turbid waters. Earth Syst Sci Data 14, 
4935–4947 (2022).

	29.	 Castagna, A. et al. Optical and biogeochemical properties of diverse Belgian inland and coastal waters. Earth Syst Sci Data 14, 
2697–2719 (2022).

	30.	 Drayson, N. et al. Australian aquatic bio-optical dataset with applications for satellite calibration, algorithm development and 
validation. Data Brief 44, 108489 (2022).

	31.	 Knaeps, E. et al. The SeaSWIR dataset. Earth Syst Sci Data 10, 1439–1449 (2018).
	32.	 Lehmann, M. K. et al. GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality. Sci Data 

10 (2023).
	33.	 Zhai, M. et al. Satellite-ground synchronous in-situ dataset of water optical parameters and surface temperature for typical lakes in 

China. Sci Data 11, 1–14 (2024).
	34.	 Ross, M. R. V. et al. AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland Waters. Water Resour Res 55, 

10012–10025 (2019).
	35.	 Loisel, H., Jorge, D. S. F., Reynolds, R. A. & Stramski, D. A synthetic optical database generated by radiative transfer simulations in 

support of studies in ocean optics and optical remote sensing of the global ocean. Earth Syst Sci Data 15, 3711–3731 (2023).
	36.	 Pitarch, J. & Brando, V. E. A hyperspectral and multi-angular synthetic dataset for algorithm development in waters of varying 

trophic levels and optical complexity. Earth Syst Sci Data 17, 435–460 (2025).
	37.	 Silva, E. F. F. da et al. A machine learning approach for monitoring Brazilian optical water types using Sentinel-2 MSI. Remote 

Sensing Applications: Society and Environment vol. 23 https://doi.org/10.1016/j.rsase.2021.100577 (2021).
	38.	 Barbosa, C. C. F. et al. Brazilian inland water bio-optical dataset to support carbon budget studies in reservoirs as well as 

anthropogenic impacts in Amazon floodplain lakes: Preliminary results. International Archives of the Photogrammetry, Remote 
Sensing and Spatial. Information Sciences - ISPRS Archives 40, 1439–1446 (2015).

	39.	 Marinho, R. R. et al. Estimating the Colored Dissolved Organic Matter in the Negro River, Amazon Basin, with In Situ Remote 
Sensing Data. Remote Sens (Basel) 16, 613 (2024).

	40.	 Lima, T. M. A. de et al. Assessment of Estimated Phycocyanin and Chlorophyll-a Concentration from PRISMA and OLCI in 
Brazilian Inland Waters: A Comparison between Semi-Analytical and Machine Learning Algorithms. Remote Sens (Basel) 15 (2023).

	41.	 Curtarelli, V. P. et al. Diffuse attenuation of clear water tropical reservoir: A remote sensing semi-analytical approach. Remote Sens 
(Basel) 1–23 (2020).

	42.	 Maciel, D. et al. Towards global long-term water transparency products from the Landsat archive. Remote Sens Environ 299, 113889 
(2023).

	43.	 Zibordi, G. et al. In situ determination of the remote sensing reflectance: an inter-comparison. Ocean Sci 8, 567–586 (2012).
	44.	 Alikas, K. et al. Comparison of Above-Water Seabird and TriOS Radiometers along an Atlantic Meridional Transect. Remote Sensing 

12, 1669 (2020). 2020, Vol. 12, Page 1669.
	45.	 Pahlevan, N. et al. ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, 

rivers, and coastal waters. Remote Sens Environ 258 (2021).

https://doi.org/10.1038/s41597-025-05609-1
http://hidroweb.ana.gov.br
https://doi.org/10.1029/2020rg000728
https://doi.org/10.1016/j.rsase.2021.100577


13Scientific Data |         (2025) 12:1270  | https://doi.org/10.1038/s41597-025-05609-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

	46.	 Morel, A. & Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J Geophys Res Oceans 106, 7163–7180 (2001).
	47.	 Mobley, C. D. Polarized reflectance and transmittance properties of windblown sea surfaces. Appl. Opt. 54, 4828–4849 (2015).
	48.	 Spyrakos, E. et al. Optical types of inland and coastal waters. Limnol Oceanogr 63, 846–870 (2018).
	49.	 Clark, R., Swayze, G., Boardman, J. & Kruse, F. Comparison of Three methods for Material Identification and mapping. Summaries 

of 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop (1993).
	50.	 APHA. Standard Methods for Examination of Water and Wastewater (Standard Methods for the Examination of Water and 

Wastewater). Standard Methods 5–16 ISBN 9780875532356 (1998).
	51.	 Sarada, R., Pillai, M. G. & Ravishankar, G. A. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin 

yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry 34, 795–801 (1999).
	52.	 Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol 14, 1–20 (2013).
	53.	 Bennett, A. & Bogobad, L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58, 419–435 (1973).
	54.	 Wetzel, R. G. & Likens, G. E. Limnological Analysis. (Springer Science & Business Media, 2013).
	55.	 APHA. Standard methods for the examination of water and waste water. Am J Public Health Nations Health https://doi.org/10.2105/

AJPH.56.3.387 (1999).
	56.	 Bricaud, A., Morel, A. & Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible 

domains. Limnol Oceanogr 26, 43–53 (1981).
	57.	 Green, S. A. & Blough, N. V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural 

waters. Limnol Oceanogr 39, 1903–1916 (1994).
	58.	 Pitarch, J. A review of secchi’s contribution to marine optics and the foundation of secchi disk science. Oceanography 33, 26–37 

(2020).
	59.	 Qian, J. & Mopper, K. Automated High-Performance, High-Temperature Combustion Total Organic Carbon Analyzer. Anal Chem 

68, 3090–3097 (1996).
	60.	 Maciel, D. BRAZA - a bio-optical database for the remote sensing of water quality in BRAZil coAstal and inland waters. figshare 

https://doi.org/10.6084/m9.figshare.28566197 (2025).
	61.	 Maciel, D. A., Lehmann, M., Gurlin, D. & Pahlevan, N. R code for GLORIA quality control flags. Zenodo https://doi.org/10.5281/

ZENODO.7372445 (2022).
	62.	 Dierssen, H. M. et al. QWIP: A Quantitative Metric for Quality Control of Aquatic Reflectance Spectral Shape Using the Apparent 

Visible Wavelength. Frontiers in Remote Sensing 3, 869611 (2022).
	63.	 Da Silva, M. P., De Carvalho, L. A. S., Novo, E., Jorge, D. S. F. & Barbosa, C. C. F. Use of optical absorption indices to assess seasonal 

variability of dissolved organic matter in Amazon floodplain lakes. Biogeosciences 17, 5355–5364 (2020).
	64.	 Marinho, R. R. & Zanin, P. R. & Filizola Junior, N. P. The Negro River in the Anavilhanas Archipelago: Streamflow and 

geomorphology of a complex anabranching system in the Amazon. Earth Surf Process Landf 47, 1108–1123 (2022).
	65.	 Maciel, D. dmaciel123/BRAZA: Version 0.1. https://doi.org/10.5281/zenodo.15690038 (2025).

Acknowledgements
This research is funded through the 2017-2018 Belmont Forum and BiodivERsA joint call for research proposals, 
under the BiodivScen ERANet COFUND program, and with the funding organizations French National Research 
Agency (ANR), São Paulo Research Foundation and National Science Foundation (NSF), the Research Council of 
Norway and the German Federal Ministry of Education and Research (BMBF). This study was financed, in part, by 
the São Paulo Research Foundation (FAPESP), Brasil. Process Number #2013/09045-7; #2018/12083-1, #2020/14613-
8, #2021/13367-6, 2022/08775-0, and #2023/13904-7), by the Coordenação Nacional de Aperfeiçoamento de Pessoal 
de Nível Superior (CAPES) - Finance Code 001, by Fundação de Amparo à Pesquisa do Estado do Amazonas (Edital 
Universal FAPEAM 20 anos) and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), 
grant numbers 482605/2013-8, 140505/2020-2 and 444756/2024-8. This study was also funded in part by Paraíba 
State Research Support Foundation / FAPESQ, Amazon + 10 Initiative - São Paulo Research Foundation (FAPESP 
2022/10443-6), Rondônia Research Foundation (FAPERO), and the Tocantins Research Foundation (FAPT). We 
thank ITV for supporting field data collections in Pará state. It was also partially funded by the Distrito Federal 
Research Foundation (FAPDF; grant number 00193-00001379/2024-02). Lino Sander would like to thank FAPERJ 
projects: Temático - 210.078/2023, APQ1 - e-26/210.202/2018, JCNE - E-26/201.406/2022, and the Sistema de 
Monitoramento da Costa Brasileira (SiMCosta) for the scientific funding. The authors also thank the Brazilian 
Space Agency (AEB) for supporting this research. Authors are in debt with Jean Ommeto (INPE) and José Etham 
de Lucena Barbosa (UEPB) for coordinating the projects that generated the in-situ data for Paraíba state. We also 
thank the AQUASENSE project (http://aquasense.igd.unb.br/) for providing the hydrological and water-quality 
data collected in the Madeira River basin. The authors also thank all the local people, boat drivers, crew members, 
students, and other people that were indispensable during the field mission collection. We would like to thank the 
anonymous reviewers for their careful evaluation and insights provided in the review process.

Author contributions
D. A. M. wrote the manuscript, contributed to data collection and organization, applied the quality control of 
the data, organize the data acquisition and the wrote the manuscript. C. B. and E. N. were responsible for project 
management, data maintenance and writing of the manuscript. D.A.M, J. C. P. S. and R. P. were responsible for the 
quality control of the dataset. All the other authors were responsible for data collection and sample organization.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.A.M.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41597-025-05609-1
https://doi.org/10.2105/AJPH.56.3.387
https://doi.org/10.2105/AJPH.56.3.387
https://doi.org/10.6084/m9.figshare.28566197
https://doi.org/10.5281/ZENODO.7372445
https://doi.org/10.5281/ZENODO.7372445
https://doi.org/10.5281/zenodo.15690038
http://aquasense.igd.unb.br/
http://www.nature.com/reprints


1 4Scientific Data |         (2025) 12:1270  | https://doi.org/10.1038/s41597-025-05609-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial- 
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribu-

tion and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed 
material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons 
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Crea-
tive Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-nc-nd/4.0/.
 
© The Author(s) 2025

https://doi.org/10.1038/s41597-025-05609-1
http://creativecommons.org/licenses/by-nc-nd/4.0/

	A bio-optical database for the remote sensing of water quality in BRAZil coAstal and inland waters (BRAZA)

	Background & Summary

	Methods

	Study area. 
	Dataset organization. 
	In-situ measurements. 
	Remote sensing reflectance. 
	Water quality variables. 


	Data Records

	Technical Validation

	Quality control. 
	Rrs variability. 

	Water quality parameters variation. 

	Acknowledgements

	Fig. 1 Study area.
	Fig. 2 Number of flagged Rrs spectra in each flag.
	Fig. 3 Example of spectra flagged as “Suspicious” based on the interpretation of specialists.
	Fig. 4 Variability of Rrs for the available data.
	Fig. 5 Variability of Rrs for each OWT according Pahlevan et al.
	Fig. 6 (A) Frequency distribution of OWT’s per state.
	Fig. 7 Violin plot of water quality parameters variations under the dataset for each state.
	Fig. 8 Relationships between the Chl-a, TSS, Zsd and aCDOM(440) in the available BRAZA dataset.




