Cally Man.

INFLUÊNCIA DO ÁCIDO GIBERÉLICO NA PRODUÇÃO DE SEMENTES DE ALFACE¹

PAULO ANSELMO ANDRADE AGUIAR²

RESUMO. Testou-se o efeito de várias concentrações e épocas de aplicação de ácido giberélico (AG_3) na produção de sementes de alface, sob condições irrigadas no Sub-Médio São Francisco. Utilizou-se a cultivar Babá, que apresenta cabeça pouco compacta no final do ciclo vegetativo Observou-se que o AG_3 estimulou o desenvolvimento do pendão floral e proporcionou um florescimento mais precoce das plantas. Todavia, o seu uso como agente estimulador da produção de sementes não foi efetivo, já que a cultivar utilizada apresentava cabeça pouco compacta, tendo saido do pendão floral normalmente, sem o concurso do AG_3 .

Termos para indexação: sementes de alface, ácido giberélico, produção de sementes, Lactuca sativa L.

INFLUENCE OF GIBBERELIC ACID ON LETTUCE SEED PRODUCTION

ABSTRACT. Several concentrations and time of application of gibberelic acid (GA_3) were tested in lettuce seed production under irrigated conditions of 'Sub-Médio São Francisco'. Babá cultivar that has a loose-heading at the end of the vegetative cycle was used. It was observed that GA_3 promoted seed stalk formation and stimulated early flowering. However, its use as an agent for increasing seed production was not effective with this loose-heading cultivar, since the stalk emergence occurred without the concourse of GA_3 .

Index terms: lettuce seeds, gibberelic acid, seed production, Lactuca sativa L.

Trabalho apresentado no II Congresso Brasileiro de Sementes, Recife, PE., 21 a 25/09/81.
Recebido para publicação em 25-09-81

Eng. Agr., Ph.D. em Tecnologia de Sementes, Pesquisador do CPATSA/EMBRAPA, Rua Presidente Dutra, 160 - 56.300 - Petrolina - PE.

INTRODUÇÃO

A utilização do ácido giberélico (AG₃) nos vegetais superiores tem sido largamente estudada desde o seu isolamento do fungo Giberella fugikuroi, causador da doença bakanae na cultura do arroz. Os agricultores japoneses observaram que as plantas atacadas por esta doença eram mais altas, finas e cloróticas, quando comparadas com plantas sadias (Phinney and West 1961).

Apesar das várias finalidades desta substância, admite-se que o efeito mais marcante é o de estimular o crescimento das plantas (Weaver 1972). Todavia, em muitas culturas, além de favorecer o crescimento vegetativo, acelera o florescimento (Lindstron et al 1957), aumenta o tamanho da inflorescência (Lindstron & Wittwer 1957), além de exercer outras funções na planta.

Na produção de sementes de alface (Lactuca sativa L.), o AG₃ tem sido recomendado porque facilita a saída do pendão floral antes da formação da cabeça, no final do ciclo vegetativo (Harrington 1960). Segundo o autor, a aplicação de AG₃ nas concentrações de 3 a 10 ppm, quando as plantas apresentam quatro a oito folhas, promoveu um incremento significativo na produção de sementes de alface. Contudo, este aumento foi atribuído a um efeito puramente físico da saída antecipada do pendão floral.

No presente estudo, levantou-se a hipótese de que o efeito do AG₃ poderia ir muito mais além do que o simples impedimento do desenvolvimento normal da haste floral. Para comprovar esta hipótese, utilizou-se a cultivar 'Babá,' que apresenta cabeça pouco compacta e permite a saída normal do pendão floral no final do ciclo vegetativo da planta.

MATERIAL EMÉTODOS

O experimento foi realizado no Campo Experimental de Bebedouro, Petrolina-PE, Brasil, utilizando-se sementes de alface (*Lactuca sativa L.*) cultivar 'Babá,' produzidas pela Agroceres S.A. A cv. 'Babá' apresenta, no final do ciclo vegetativo, cabeça pouco compacta, formada por folhas mais soltas do que certas cultivares do grupo cabeça-manteiga.

No presente estudo, estudou-se o efeito de várias concentrações de AG₃ em diferentes épocas de aplicação na cultura do alface, conforme é mostrado a seguir:

Tratamentos	Concentração de AG ₃ /Época de aplicação após o transplantio		
1	0 ppm (controle)		
2 .	5 ppm/7 dias		
3	5 ppm/14 dias		
4	5 ppm/ 7 e 14 dias		
5	10 ppm/ 7 dias		
6.	10 ppm/14 dias		
7	10 ppm/ 7 e 14 dias		
8	15 ppm/21 dias		

As mudas foram pulverizadas com a respectiva concentração de AG₃ (Cia Imperial de Industrias Químicas do Brasil, nome comercial: Activol GA), no período da manhã, quando as plantas estavam turgidas, utilizando-se um pulverizador manual. Foram gastos 350 ml, 1.000 ml e 1.250 ml de cada solução por parcela de 24 m², nas três épocas de aplicação, respectivamente.

No experimento, utilizou-se o delineamento de blocos ao acaso em quatro repetições. Cada repetição foi formada por 160 mudas dispostas em quatro fileiras duplas, espaçadas de 0,30 x 0,30 m. As mudas, após 28 dias, foram transplantadas para o local definitivo e foram submetidas às práticas agrícolas normais de cultivo irrigado de alface, na região do Sub-Médio São Francisco.

RESULTADOS

Os resultados obtidos demonstraram uma atuação efetiva do AG₃ na anatomia e fisiologia da planta, principalmente em termos de altura e precocidade no florescimento (Tabela 1).

- O AG₃, quando aplicado na concentração de 5 e 10 ppm, em duas épocas (sete e quatorze) dias, provocou um intenso e irregular desenvolvimento dos entrenós da planta, causando uma elevada percentagem de acamamento, principlamente na concentração de 10 ppm. Já a utilização de AG₃ a 15 ppm numa única aplicação, 21 dias após o transplantio, não causou um desenvolvimento exagerado da planta com consequente acamamento.
- O AG₃, quando aplicado nas épocas e concentrações indicadas, resultou numa maior precocidade no florescimento das plantas (Tabela 1). Constata-se, de

um modo geral, uma precocidade superior a 20% das plantas pulverizadas com AG_3 em relação à testemunha.

Tabela 1. Influência do AG₃ na altura, percentagem de acamamento de plantas de alface e percentagem de florescimento 48 dias após o transplantio.

Concentração de AG ₃ /Época de aplicação após o trans- plantio	Altura de planta (cm) _a	% de acamamento _a	% de florescimento
0 ppm	15,0	0,0	67,2
5 ppm/ 7 dias	17,8	0,0	87,6
5 ppm/14 dias	18,8	0,0	89,7
5 ppm/ 7 e 14 dias	28,8	13,3	91,6
10 ppm/ 7 dias	17,5	2,3	91,9
10 ppm/14 dias	26,8	0,3	91,6
10 ppm/ 7 e 14 dias	37,3	55,0	84,1
15 ppm/21 dias	25,5	0,0	80,7

^a Início do florescimento.

Na Tabela 2, estão registrados os dados obtidos na primeira e segunda colheitas e produção total de sementes de alface. A análise estatística dos dados não revelou diferença significativa na produção de sementes de alface. Observa-se, todavia, uma produção inferior das plantas pulverizadas com 5 ppm e 10 ppm, em duas épocas sete e quatorze dias devido ao problema de acamamento das plantas, mencionado anteriormente (Tabela 1).

DISCUSSÃO

A atuação do AG₃ na altura da planta e precocidade no florescimento (Tabela 1) vem confirmar resultados já constatados na literatura. O crescimento dos entrenós jovens da planta é estimulado pela aplicação do AG₃, principalmente em termos de comprimento, já que o número de entrenós normalmente permanece constante

Tabela 2. Influência do AG₃ na produção de sementes de alface – cultivar Babá.

Concentração de AG ₃ /Época de aplicação após o trans- plantio	Produção na 1ª colheita (kg/ha)	Produção na 2ª colheita (kg/ha)	Produção Total (kg/ha)
0 ppm (controle)	60 6	399	1005
5 ppm/7 dias	547	231	778
5 ppm/14 dias	595	373	968
5 ppm/ 7 e 14 dias	487	193	680
10 ppm/7 dias	588	295	883
10 ppm/14 dias	607	353	960
10 ppm/ 7 e 14 dias	443	253	696
15 ppm/21 dias	637	281	1018
Tukey (5%)	317,5	302,0	561,5
C.V. (%)	19,9	34,5	22,7

(Weaver 1972). O crescimento foi bem mais acentuado quando aplicado em duas épocas sete e quatorze dias, causando, inclusive, o acamamento de várias plantas. Resultados similares foram obtidos com a utilização de outros reguladores de crescimento na cultura da alface, quando aplicações destas substâncias foram feitas em intervalos regulares (Clark & Wittwer 1949). Harrington (1960), utilizando várias concentrações e épocas de aplicação de AG₃ na produção de sementes de alface, cv., 'Great Lakes', constatou também uma maior precocidade no florescimento das plantas tratadas.

Um aspecto conflitante com os resultados obtidos por Harrington (1960) foi quanto à produção de sementes de alface. Segundo o autor, a aplicação de AG₃ nas concentrações de 3 a 10 ppm, quando as plantas apresentavam quantro a oito folhas, promoveu um incremento significativo na produção de sementes de alface. Contudo, este aumento foi atribuído a um efeito do AG₃ na saída antecipada do pendão floral, antes da formação da cabeça. No presente estudo, levantou-se a hipótese de que o efeito de AG₃ poderia ir muito mais além do que o simples impedimento do desenvolvimento normal da haste floral nas cultivares de cabeça

compacta, já que Lindstron & Wittwer (1957), trabalhando com geranimum (*Pelargonium hortorum*), observaram que o AG₃ atua também no aumento das inflorescências.

Para testar a hipótese levantada, utilizou-se a cv. 'Babá,' que apresenta cabeça pouco compacta, eliminando-se, assim, o problema do impedimento da saída do pendão floral. A análise estatística dos dados de produção não revelou diferença significativa entre os tratamentos utilizados (Tabela 2). Isto indica que, provavelmente, a utilização do AG₃ na produção de sementes de alface somente se justifica nas cultivares de cabeça compacta, que impedem total ou parcialmente a saída do pendão floral, conforme preconizado por Harrington (1960).

CONCLUSÃO

A utilização do AG_3 na produção de sementes de alface estimula o desenvolvimento do pendão floral e proporciona um florescimento mais precoce das plantas. Todavia, o seu uso como agente estimulador da produção de sementes não se justifica nas cultivares que apresentam cabeça pouco compacta, já que a saída do pendão floral ocorre normalmente sem o concurso do AG_3 .

REFERÊNCIAS

- 1. CLARK, B.E. & WITTWER, S.H. Efect of certain growth regulators on seed stalk development in lettuce and celery. Plant Physiol. 24(4): 555-75, 1949.
- 2. HARRINGTON, J.F. The use of gibberelic acid to induce bolting and increase seed yield of tight-heading lettuce. Proc. Amer. Soc. Hort. Sci. 75: 476-9, 1960.
- 3. LINDSTRON, R.S. & WITTWER, S.H. Gibberelin and higher plants, IX: Flowering in geranium (*Pelargonium hortorum*). Mich. Quart. Bull. 40 (1): 225-31, 1957.

- lin and higher plants, IV: Flowering responses of some flower crops. Mich. Quart. Bull., 39 (4): 673-81, 1957.
- 5. PHINNEY, B.O. & WEST, C.A. Gibberelins and plant growth. Encyclopedia of Plant Physiol. Springer, Berlin. 1961. p. 1185. V. 14.
- 6. WEAWER, R.J. Plant growth substances in agriculture. Freeman and Company, San Francisco, 1972. 594p.