

Métodos Utilizados no Biocontrole de Fitopatógenos

CNPMA-7500-2

Embrapa

Empresa Brasileira de Pesquisa Agropecuária Embrapa Uva e Vinho Ministério da Agricultura, Pecuária e Abastecimento

Métodos usados no Biocontrole de Fitopatógenos

Editores: Rosa Maria Valdebenito Sanhueza Itamar Soares de Melo Exemplares desta publicação podem ser adquiridos na:

Embrapa Uva e Vinho

Rua Livramento, 515 Caixa Postal 130

Fone: (0xx)54 3455 8000 Fax: (0xx)54 3451 2792 http://www.cnpuv.embrapa.br

Comitê de Publicações

Presidente: Lucas da Ressurreição Garrido Secretária-Executiva: Sandra de Souza Sebben

Membros: Luiz Antenor Rizzon, Kátia Midori Hiwatashi, Osmar Nickel,

Viviane Maria Zanella Bello Fialho

Normalização bibliográfica: Kátia Midori Hiwatashi Elaboração da capa: Luciana Elena Mendonça Prado

1ª edição

1ª impressão (2007): 500 exemplares

Todos os direitos reservados.

A reprodução não-autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).

Dados Internacionais de Catalogação na Publicação (CIP) Embrapa Uva e Vinho

Métodos usados no biocontrole de fitopatógenos/Editado por Rosa Maria Valdebenito Sanhueza e Itamar Soares de Melo. – Bento Gonçalves: Embrapa Uva e Vinho, 2007.

141 p.

ISBN 978-85-89921-05-3

1. Doença de planta. 2. Antagonismo. 3. Microrganismo. I. Valdebenito Sanhueza, Rosa Maria, ed. II. Melo, Itamar Soares de, *ed.*

CDD 579 (21. Ed.)

Apresentação

Em consonância com a missão institucional da Embrapa Uva e Vinho, desde longa data vêm sendo desenvolvidas ações de pesquisa e desenvolvimento que têm gerado importantes resultados no tocante ao componente ambiental. E isto ocorre porque é comprovada a necessidade de buscar-se o desenvolvimento sustentado do espaço rural, tendo-se em vista as exigências de mercado, dos produtores e dos órgãos ambientais em reduzir-se o impacto ambiental da atividade produtiva.

É neste contexto que o controle biológico se insere. Ao maximizar o uso de organismos naturais no manejo de pragas e doenças, esta tecnologia contribui decisivamente para que a produção se dê com reduzido impacto, em benefício da almejada sustentabilidade. Esta publicação é resultante de estudos de pesquisadores da Embrapa Uva e Vinho e de outras Unidades da Embrapa, além de essenciais parceiros, os quais, em parceria, têm contribuído para a melhoria do conhecimento sobre esta importante área.

Temos certeza que as informações aqui divulgadas servirão para o maior conhecimento e uso do controle biológico, bem como de estímulo e suporte para novas ações de pesquisa que resultem em tecnologias ambientalmente limpas e tecnicamente viáveis.

Alexandre Hoffmann Chefe-Geral Embrapa Uva e Vinho

Sumário

Isolamento de antagonistas a patógenos que colonizam ferimentos de plantas
Rosa Maria Valdebenito Sanhueza e Itamar Soares de Melo 9
Obtenção de epífitas de frutos e seleção de antagonistas no controle de
podridões de pós-colheita
Rosa Maria Valdebenito Sanhueza e Itamar Soares de Melo 13
Isolamento de colonizadores de clamidosporos de Fusarium oxysporum
Itamar Soares de Melo e Rosa Maria Valdebenito Sanhueza 17
Isolamento de bactérias do rizoplano e endorizosfera e seu efeito na colonização
de raízes e na promoção do crescimento de plantas
Itamar Soares de Melo e Rosa Maria Valdebenito Sanhueza 21
Isolamento de antagonistas para controle de doenças vasculares
Rosa Maria Valdebenito Sanhueza e Itamar Soares de Melo 27
Avaliação do efeito protetor e curativo de antagonistas a patógenos que colonizam folhas
Rosa Maria Valdebenito Sanhueza, Margareth Zamboni-Pinotti e
Ana Elisa Silveira Perez
Multiplicação de Clonostachys rosea
Rosa Maria Valdebenito Sanhueza e Gilberto Dall Onder
Seleção de fungos endofíticos em fruteiras e flores
Rosa Maria Valdebenito Sanhueza e Margareth Zamboni-Pinoti 39
Isolamento seletivo de bactérias ativas para nucleação de gelo
Itamar Soares de Melo e Rosa Maria Valdebenito Sanhueza 43

Isolamento de fungos micorrízicos	
Itamar Soares de Melo e Rosa Maria Valdebenito Sanhueza	45
Isolamento seletivo de Bacillus	
Wagner Bettiol	49
Obtenção de mutantes e competitividade de isolados de bactérias resisten a antibióticos	tes
Itamar Soares de Melo e Rosa Maria Valdebenito Sanhueza	53
Obtenção de mutantes de <i>Trichoderma</i> spp. resistentes a fungicidas	
Itamar Soares de Melo e Rosa Maria Valdebenito Sanhueza	55
Identificação de bactérias por análise dos ácidos graxos	
Itamar Soares de Melo e Rosa Maria Valdebenito Sanhueza	59
Identificação de bactérias pelo sequenciamento de genes 16S ribossômico (16S rDNA)	
Fernando Dini Andreote	67
Identificação e diferenciação de linhagens de leveduras antagônicas fitopatógenos utilizando sondas convencionais como indicadores na reação polimerização em cadeia	
Luis Fernando Revers e Rosa Maria Valdebenito Sanhueza	75
Produção de sideróforos por rizobactérias Itamar Soares de Melo e Rosa Maria Valdebenito Sanhueza	79
Produção de antibióticos por microrganismos	
Rosa T. S. Frighetto e Itamar Soares de Melo	83

Produção de bactérias para uso no controle biológico	
Deise Maria Fontana Capalbo	97
Encapsulamento de microrganismos	
Rosa Maria Valdebenito Sanhueza e Itamar Soares de Melo	103
Roteiro para formulação experimental pó molhável de biopesticida (sinternacional WP)	sigla
Cláudia Medugno	109
Isolamento de actinomicetos visando ao controle biológico de fitopatógeno Joelma Marcon, Jose Antonio da Silva e Maria Carolina Quecine	
Avaliação in vitro da colonização de raízes por rizobactérias	
Brígida P. Vilar Queiroz e Itamar Soares de Melo	121
Seleção de rizobactérias capazes de formarem biofilmes	
Francisco Eduardo de C. Costa e Itamar Soares de Melo	125
Avaliação ecotoxicológica de microrganismos em organismos não-alvo,	
organismos aquáticos e mamíferos	
Vera Lúcia de Castro e Cláudio Jonsson	129
Apêndice	
Meios de Cultura e Soluções	137

Isolamento de colonizadores de clamidosporos de Fusarium oxysporum

Itamar Soares de Melo 1

Rosa Maria Valdebenito Sanhueza 2

Fusarium oxysporum é um fungo de solo com várias "formas specialis" que causam murcha em diversas espécies de plantas. É muito difícil controlar esse fungo devido à sobrevivência no solo, principalmente na forma de clamidosporos.

A ocorrência de microrganismos associados aos clamidosporos já foi demonstrada (TOYOTA; KIMURA, 1991). Tais microrganismos podem ser de considerável importância como agentes potenciais de biocontrole.

Objetivo

Isolar microrganismos associados aos clamidosporos de *F. oxysporum* e investigar o efeito desses microrganismos sobre o crescimento do patógeno.

Protocolo

Parte I - Isolamento de bactérias

- Produzir microconídios de F. oxysporum em meio líquido, sob agitação (80-100 rpm) por, aproximadamente, oito dias.
- Coletar os microconídios sob algodão absorvente e lavá-los em água destilada.
- Coletar microconídios em um filtro millipore com uma abertura de 0,8 μm, numa quantidade de 10⁴-10⁵ microconídios/filtro.
- Deixar os filtros flutuando sobre a superfície de água destilada por 24 horas a 28°C, a fim de que os microconídios germinem.

¹ Eng. Agrôn., Doutor, Embrapa Meio Ambiente, Caixa Postal 69, 13820-000 Jaguariúna, SP.

Eng. Agrôn., Doutor, Embrapa Uva e Vinho, Caixa Postal 130, 95700-000 Bento Gonçalves, RS.

- Colocar cerca de 2-4 g de solo natural numa placa de Petri esterilizada. Umedecer o solo com água destilada em quantidade suficiente para que o mesmo fique pastoso (o solo não deve, neste caso, ser argiloso).
- Os filtros millipore com os microconídios germinando são colocados sobre o solo, nas placas de Petri, tampadas em seguida.
- Incubar as culturas por aproximadamente 12 dias (observar a presença de clamidosporos).
- 8. Proceder ao isolamento de bactérias colonizando os clamidosporos, seguindo as etapas seguintes:
 - 8.1. lavar completamente com água destilada o lado do filtro em contato com o solo;
 - 8.2. coletar os clamidosporos sobre os filtros em uma solução de NaCl 0,7%;
 - 8.3. submeter a solução à sonificação por, aproximadamente, 1 minuto;
 - 8.4. filtrar a solução em millipore de 2,0 µm;
 - 8.5. fazer diluições em série do filtrado e plaquear em nutriente ágar;
 - 8.6. incubar as culturas e observar periodicamente o crescimento de colônias bacterianas que deverão ser purificadas e identificadas.

Parte II - Efeito das bactérias sobre o crescimento de *F. oxysporum*

- 1. Coletar microconídios de F. oxysporum sobre um filtro millipore de 0,2 µm.
- Deixar flutuar em solução salina 0,85% os filtros contendo os microconídios por 24 horas.
- 3. Inocular cada isolado bacteriano identificado nos filtros.
- 4. Incubar as culturas sobre solo umedecido, a 28°C, por aproximadamente sete dias.

- 5. Após a incubação, retirar os filtros das placas, lavar a parte da membrana em contato com o solo com água destilada e dividir os filtros em partes, onde uma parte é corada com rosa bengala para avaliar o número de esporos. As outras partes do filtro são transferidas para água destilada ou meio batata-dextrose-diluído.
- 6. Após 8-10 horas de incubação adicional, a germinação dos esporos é avaliada por observação dos tubos germinativos.

Referência Bibliográfica

TOYOTA, K.; KIMURA, M. Bacteria adsorbing on the chlamidospores of *Fusarium oxysporum* f. sp. *raphani*. **Japanese Journal of Soil Science and Plant Nutrition**, v. 62, p. 533-535, 1991.