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4.1 Introduction

As a class, insects have an extraordinary ability to adapt to diverse environments 

(Chapman, 1982). At the species levei, the life system characteristics typically 

shared among agricultural pests - the ability to rapidly colonize new or unstable 

habitats through rapid reproduction and a high motility - include an ability to 

respond to changing environments (Kennedy and Storer, 2000). Insecticides, 

presented through either transgenic crops or conventional means, represent a 

severe environmental challenge in otherwise suitable habitats and pose an inter- 

esting evolutionary problem to.pest species. Individuais with a genetically based 

ability to overcome these challenges have higher fitness in more environments 

than other individuais in the population, and their geríotypes should increase in 

frequency, leading to the evolution of resistance to the toxin. After the first doc- 

umentation of insect resistance to a synthetic insecticide in 1947 (Metcalf, 

1973), the process of resistance evolution quickly drew the interest of population 

geneticists (Crow, 1957). A  desire to proactively manage resistance propelled 

development of an understanding of the underlying population genetics of re­

sistance evolution. The basic principies of modem resistance management pro- 

grammes were developed in a series of papers by Taylor and Georghiou 

(Georghiou and Taylor, 1977a,b; see also Taylor and Georghiou, 1979, 1982, 

1983; Taylor, 1986). These papers clearly identified the driving roles of func- 

tional dominance of resistance, including the effects of pesticide dose and the 

problems posed by pesticide decay, and the rate of immigration of susceptible
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insects in determining rates of ádaptation. Tbese concepts were further devel- 

oped by Tabashnik and Croft (1982, 1985) and others (Curtis et al., 1978; 

Plapp et al., 1979), who demonstrated that consideration of multiple habitats 

(treated and untreated fields) is important in understanding the evolution of re­

sistance. They used a continent-island concept in which there is an influx of 

susceptible alleles but negligible migration of resistance alleles into the untreat­

ed population. This concept essentially envisages an infinite supply of suscep­

tible immigrants, whereby the movement of any resistant individuais out of the 

area of selection would have an insignificant impact on gene frequencies in the 

surrounding habitats. Comins (1977a,b, 1979) developed a two-patch model 

that relaxed the assumption of outward migration and allowed the diffusion of 

resistance alleles into untreated habitats. He concluded that density-dependent 

processes in population dynamics in each patch are criticai components of any 

multi-patch model and therefore that infinite population models have limited 

ability in predicting resistance evolution. This idea was further explored by Gould 

et al. (1991), Onstad et al. (2001), Storer et al. (2003b), Sisterson et al. (2004) 

and Crowder and Onstad (2005), for example.

The development of spatially explicit finite population models (Caprio and 

Tabashnik, 1992; Mallet and Porter, 1992; Caprio, 1994; Peck et al., 1999; 

Sisterson et al., 2004) suggested that moderate rates of gene flow, interacting 

with genetic drift, could actually cause faster resistance evolution than either 

high or low rates of gene flow under some conditions. Spatial effects and het- 

erogeneous distributions of treated and untreated patches could also impact re­

sistance evolution rates (Peck et al., 1999; Storer, 2003; Sisterson et al., 2005). 

For the first time, these spatially explicit stochastic models produced estimates 

of variation due to demographic stochasticity.

From simulation studies using the early models, the conclusion that pesticide 

dose is a key determinant of rates of resistance evolution highlighted a restriction 

to devising effective resistance management strategies. While there is the poten- 

tial for immigration to delay resistance evolution when hígh doses of an insect- 

icide are used, this strategy was unlikely to be successful with conventional 

insecticides, because the uneven application and continuous decay of those 

compounds would expose insects to more moderate doses (Taylor and 

Georghiou, 1982), altering the dominance of resistance. Host plant resistance 

factors that are expressed at high leveis throughout a crop plant are able to 

overcome this restriction and open up new avenues for resistance management 

(Gould, 1986). The advent of transgenic crops that constitutively produced in- 

secticidal proteins accelerated the need and ability to devise effective manage­

ment strategies (McGaughey and Whalon, 1992; Roush, 19Q4; Wearing and 

Hokkanen, 1995; Gould, 1998). Gould (1994) and Roush (1994) argued that 

combining a consistent high dose in the genetically modified plant with planting 

of plants that do not express the toxin (a refuge from selection) could delay the 

evolution of resistance dramatically. The concept that the plants would continue 

to express the toxin in sufficient quantities over the course of the season to 

avoid large changes in functional dominance was key to this proposal (Onstad 

and Gould, 1998). Initially, mixtures of transgenic and non-transgenic seeds 

seemed like an ideal method to implement this strategy (Tabashnik. 1994a). but
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"orter ( I. y'j'2.) and üp'*i* -nd Onstad (2000) shovvcd thdt tana-l movc- 

merri aniong these plí.nt types could shiíl the dominance oi resistance much as 

i ayíor cu%! G^ovghiou f i9 8 2 ) had clescribed foi decaying pesticides. Therefore. 

the pU-niing of structiired reíuges u>as required when insecticidai transgenic 

crops wc-re infroduced in the UC<A.

■! he evolution of resistance is t population genetics phenomenon. aífecied 

b11 corpijip ■ >nter?< t’1̂ ns • í bio^oov 3nd ecclocy prop^rti^^ of he

ticicie and pesticide use patterns (Georghiou and Taylor. 1977a.b): and models 

have aiways played an important .ole in our undersíanding (Tavlor. 1983 

Tabashnik 1986). However. in a broader sense. ali humans construct models 

Indeed i has been suggested thaí hurnan knowledge can be seen as the con- 

struction oí models to understand our sociai. physicai and bioiogical surroundings 

(Richipond. 2001). Conside the simple everyday example of the decision to 

make c< : i>p of cofíee or tea in ihe morning. One might evaluate the time an o  

difficulty invoived. the cost of the beverage. .how much better it tastes than the 

coffee or tea at work. how much work is vvaiting at work. etc. Normally. one 

would not íormalize ali these parameíers. but they have probably been consicl- 

ered. at leasí íleetingly, by many aí one tirne or another. Similárly. those who 

work in agriculturai systems have conceptual models of what happens in those 

systems and what inputs or parameters are most important, and. in most cases, 

have not formalized values for those parameters. While there are many different 

goals of modelling. one goal is ío formalize these conceptual models. to explicitly 

state the rules and relationships between the components of the models. The 

model a 11 o ws one to organize ali available data into a coherent framework with 

clearly stated rules regarding transformation of the model from one state to the 

next. Once constructed. these models allow one to test hypotheses about effects 

of changes in parameters or how different components interact and result in ob- 

served system behaviour. Models based upon mechanistic processes become 

experimental systems in which it is possible to develop hypotheses about how 

one expects the system will behave and then test the system response (Peck. 

2004). In many cases, the system is complex enough that it can behave in un- 

expected ways, and the conclusions are not necessarily an obvious result of the 

assumptions and rules used in model construction. Indeed, it is often when the 

model behaves differently from expectations that it is providing the most import­

ant In fo rm ation . Such unexpécted results may indicate that something is 

missing from the model, they may guide future research by identifying research 

needs, or they may indicate that our conceptual understanding of the system is 

incorrect and requires modification. For example, one early assumption of the 

high-dose/refuge strategy was that random mating between adults produced in 

refuges and transgenic fields would maximize delay of resistance evolution 

(Tabashnik, 1994b). Using a spatially complex model, Caprio (2001) suggested 

that because of source-sink dynamics, some degree.of isolation between a 

refuge and a highly toxic crop might actually delay resistance much longer than 

having random mating between the different habitats. Indeed, these predictions 

were supported by the model of Sisterson et al. (2005), and subsequent field 

work demonstrated that model predictions were consistent with the patterns 

observed in the field (Carrière et al., 2002; Caprio et al., 2004). As noted by
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Alstad and Andow (1995), these dynamics will also create a halo of increased 

damage surrounding areas planted to refuges. In spatially complex models, Peck 

et al. (1999) and Sisterson et al. (2005). found that resistance first evolved in 

areas with a locally high density of transgenic fields and then spread outwards. 

Selection in these small areas led to foci of locally higher resistance allele fre- 

quencies, an increased frequency of resistant homozygotes and a more rapid rate 

of resistance evolution. Once resistance became common in these areas, migra­

tion spread resistance alleles across the region. The spatial characteristics of 

the system and the dispersai characteristics of the insect are criticai to determin- 

ing the potential for these spatial dynamics effects (Sisterson et al., 2005).

4„2 Simple Veirsys Complex IWSodlels

As we have seen, there is a wide range in complexity of resistance models, from 

elegantly simple analytical models to increasingly complex simulations of spe- 

cific agroecological systems. The simplest models include only a few parameters: 

(i) initial resistance allele frequency; (ii) strength of selection (e.g. percentage of 

the population exposed to the insecticidal transgenic crop); and (iii) the domi­

nance of resistance. Because such models have only a few parameters, it is pos- 

sible to conduct a complete analysis, which provides an understanding of the role 

of each parameter. It is often possible to construct analytical solutions to iden- 

tify optimal strategies (e.g. Lenormand and Raymond, 1998). From these simple 

models, we have developed an understanding of the general principies of re­

sistance evolution from which we can design effective resistance management 

strategies, such as the potential power of the high-dose/refuge strategy (Gould, 

1998). For example, the non-random mating model developed by Caprio

(1998), a simple deterministic model with a few parameters, was used for de- 

signing preliminary proactive resistance management strategies for Bt cotton in 

the mid-west region of Brazil (Fitt et al.. 2006).

However. these models do not inform us about the effectiveness of a specinc 

strategy in a specific system. VVhile simple models provide an understanding of 

the few parameters that are used it is unclear how dependeni the results are on 

many of the simplifying assumptions These models are- highly abstracted and 

simplified versions of field conditions. and the input parameters may actually 

be combinations of many other parameters that can be measured empirically. 

Because of this simplification/abstraction process. there may betnany underly- 

ing processes not explicitly represented. Therefore, it is not possible to evaluate 

properly the iníluence of those hidden parameters on the resistance mode! end 

points. Of course. even çomplex models are also simplified/abstracted versions 

of reality and suffer the sams problem. presumably to a lesser extent.

At the opposite end of th spectrum are complex models that may represem 

several interrelàted complex process and incorpora i t-.-çis. i.f not hunclreds, of 

parameters. These p^Sameters tend to be less abstract f,nid. closer to parameters 

*Jor which ( mpirically measured estinííWes exist, although data gap» in each 

model certóinly exist. They ttnd to Ije monj highly meíJnanistic simulations oí 

the real world. Complex ftiorleU ire often closecl systems ' *ith finite populations.
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m corpo io í?  s íb c h õ íiic  va iher theihcltiermiwsíic processes add spaiiai and terp 

poioi '.♦ariybilily and-aliow íor nwonmgnial fiucíuáijons. Sucl'i models tend to 

be much more sysierji-speciíic..ci"aiing with a particuiar pfest. crop or qeographft 

cemui;lahon (e.g. Pecí< ei oi.. : >95: ouse ei ai.. 2G0z. Storer eí ai 2003a: 

Sisierson ei o/.. 2004). While i,h<=£e models have noi radically aiídredíour un 

o'6i'sfencTnig oi resistance e\/o!nt!oh.- the sarne parameters anci the same resist- 

ance i nanagemeni strategies have been supported as were supported bv. simpler. 

anaMicai models - íhey perrnii insights into the actua! risk of resistance in any 

ôjien rsal-woric! scenanu. c.s v-ell as into the potential effectiveness and i i in it -  
aiions of a given rrianagemení tactic.

As an exampie land^ape ecoiogy is increasingiy being integratec! into re- 

sislance studies. opatsally nen models allow one to incorporate insec! rnove- 

rnent among multiple habitats io examine issues such as interactions among 

dJfíeretit c/ops (5forer ei aí. ^><03a,b). One key component in such models is 

a shiiL ?!"/ iocus from a single insect on a singie crop to a broader perspective of 

foliowmg an insect as it moves through a variety of habitats during ihe.course 

oí a growing season. These models’dan include temporal, as wei! as spatial, 

variation in such components as crop composition and toxin expression. For 

exampie, Helicouerpo. zeo in the Delta region of the mid-southern USA begins 

the season on wild hosís such as crimson clover and wild geranium 

(itadelbacher, 1979: Parker. 2000). Later, it moves on to whorl and eventual- 

ly ear-siage maize. tíy mid-July. most maize is no ionger suitable habitat for H. 
zea, and, at this time, aduits may move into a number of crops, including cotton, 

sorghum and soybean. ^inally, in late summer, some H. zea may overwinter in 

crop fieids (where cultivation may yield a significant amount of mortality), while 

others may move to weedy hosts and overwinter there (Parker 2000; Storer et 
al.. 2003a). Figure 4.1 shows simulated numbers of pupae in each habitat over 

the course of a season (Parker and Caprio, unpublished data). Population dy 

namies in each of these habitats. combined with population genetic issues, such 

as selection by various pesticides and toxins in the different habitats, will aífect 

the impact of pest management decisions. For exampie, while high adoption 

rates of transgenic cotton in the Delta may reduce the number of H. zea moths 

emerging from the cotton acreage and reduce overall density in the autumn, 

density-dependent interactions in maize may allow H. zea numbers to build back 

up to damaging numbers in the early season when maize is a host. Numbers are 

limited in ear-stage maize, as generally only one adult will emerge from each ear 

due to cannibalism (Barber, 1936). Thus, density-dependent mortality will be 

high at this stage when populations are large (which can accelerate resistance 

evolution) (Storer et al., 2003a), but if population leveis decline because of mor­

tality due to transgenic crops, density-dependent mortality may have less impact 

on the evolution of resistance. When density leveis are high, each ear of maize 

will probably be infested with multiple larvae. H. zea larvae are cannibalistic, and 

the largest larvae are most likely to survive. When a Bt toxin is present in 

kernels, resistant larvae will experience less growth retardation than susceptible 

larvae and will have a greater chance of surviving not only the Bi toxin, but also 

the density-dependent mortality. In contrast, when densities are low, individual 

ears will likely be uninfested or have a single larva, and the rate of selection will
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Fig. 4.'i Temporal dynamics of Helicoverpa zea pupal numbers in a simulated niid- 

souihern US agroecosystem. The y-axis is the proportion of ali pupae preseni on a 

given date. (Caprio and Parker, unpublished daia.)

only be relatad to ths chance of surviwing the Bt toxin. These dynamics dernon- 

strate that the two systems interact in a complex manner, and bot.h systems 

must be understood before one can begin to assess the risk of the evolution oí 

resistance. Current transgenic maize varieties express CrylAb or CrylF insec- 

ticida! proteins from Bctcillus thu.ringiensis (Bt) to controi Lepidoptera; while 

CrylAc and combinations of Cry 'A r with C ry íf  or Cry2Ab are expressed in 

current transgenic cotton varieties. Severa! studies have demonstrated the po­

tential for some levei of cross-resistance among these toxins (e.g. Gould et a i.  

1995a: ánrat-FuentSs et a i .  2000; Siqueira et al.. 2004). The overall rate of 

the evolution of resistanc e to the Cry proteins in cotton will be impacted by 

pest isianagemént decisions in maize (ILSI/HES!, 1999: Storer et al. 200!tó). 

Simiiariy. altering. the pianiing ciafè oí soybeans- (0/ the maiurily group ^ianteci) 

can affect the infestation of these habitats which act as refuges to tran;- 

genic cotton (Gustafson eí o.l 2<;0Cj). Clearly the interactions among the 

temporal dynamics of lhe different habitais in a system may also play an impor- 

íant role in Hie evolution oí resisi i-ricr ’he dr 'dopmeni of Jxhausíivs models 

to dé>cribè such uomplex systems aHyws ihe modeller to consider the «!!«<..is of 

thes'.» iníevadion on vevsíênce c;[1, jIhSío 1 and puiential managfc)n%ní approa.ch.es.
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4.3 Resistance Probabilistic Risk Assessment

The possibility of resistance evolution should be regarded as a hazard associat- 

ed with the use of any pesticidal technology, similar to the possibility of water, soil 

or food contamination. The challenge when deploying these technologies re- 

sponsibly is not just to determine that such hazards exist, but to quantify the risk; 

that is, quantify the probability of an adverse occurrence and the magnitude of 

the effect of that occurrence. Where an unacceptable risk is identified, risk mit- 

igation measures (such as spray drift reduction or pre-harvest intervals) can be 

implemented. Leonard (2000) describes the application of the risk assessment 

paradigm to resistance management for pesticides in Europe and a set of guide- 

lines for performing the risk assessment. Beyond such qualitative approaches, 

complex models can be used to determine the magnitude of the risk quantita- 

tively and to design appropriate mitigation measures.

Modelling uncertainty

Uncertainty is inherent in ali risk assessments in which simulation models are 

used to extrapolate information beyond the domain of direct observation 

(Hoffman and Kaplan, 1999). Different types of simulation models will produce 

a variety of different results, and interpretation of these results will depend on 

the underlying structure of the models and the assumptions (explicit and implicit) 

made. For complex models, interpretation becomes far more challenging as 

multiple processes are occurring simultaneously, and there is a temptation to use 

the models in a predictive manner. In quantitatively assessing the risk of the 

evolution of resistance, information on mean values of selected end points (such 

as time until resistance allele frequency exceeds some levei over some proportion 

of the Bt crop area) is not sufficient. In some cases (skewed or multimodal output 

distributions) even additional summary measures, like variance or standard error, 

do not allow risk quantification. To be useful, the model output information 

should be represented by Monte Cario probability distributions, used for calcu- 

lating the probability of occurrence of adverse effects, generally related to the 

tails of output distributions (see Fig. 4.2). For a given set of input parameters, 

deterministic models will always produce the same point estimate, therefore not 

being useful for estimating risks. From a broader perspective, when assessing 

risk we are most often interested in the tails of probability distributions, in par­

ticular the tail that represents the proportion of events that exceed our accept- 

able criteria. The mean of the distribution, which has been 

the focus of resistance modelling since its inception, may be relatively un- 

informative, especially when the shapes of the Monte Cario distributions of 

alternative risk scenarios are different. It is conceivable that two strategies 

with similar mean times to resistance could actually have different risk assess­

ments, because they respond differently to conditions that are responsible for



Assessing the Risk of Evolution o f Resistance 97

250

200 0.2

c
3
O
o

150

100 0.1

to
n
l_
0C l
d
O
'€
o
Q_
O

50

- r - t - r f l  l ' l T v J0.0
- 3  - 2 - 1 0  1

Log resistance allele frequency 
increase over 8 years (1000 sumulations).

rig. 4.2. ivlonte Cario probability distribution of the mean relative log raia of increase 

for a resistance allele to a high-dose transgenic event with íitness costs over the 

initial 8 years of the simulations.

the tails of the distribution, such as rare draws oí relatively high values of 

dominance.

Generally. if óne wants to know how sensitivo these results are to isola.te or 

conjoint perturbations in the initial input parameters. one runs the model for a 

series of parameter values without assigning probabilities to those values the so 

called sensitivity analysis. The aim of sensitivity analysis is not producing risk es- 

timates. büt evaluating the relative influence oí input parameters on the model 

end points. !t is useful íor indicating that In form ation  on some key parameters 

should be refined, while, for çther ones. improving information would be irrel- 

evant (Isukapalli and Georgopoulus, 2001*. An approac.h widely usecl for re 

sistance risk assessment is based on choosing a series of likely or unlikely 

scenarios (best-case, worst-case. etc:.) by setting input parameters to some user-

deiViec! values a n d  : m n i ing  c l e t i in n - i í .......r'  .. > s s t ím a te j  {cer.tral ter.
dency measures, like mean) are then produced for each oytput variable without 

any associated uncertaintya rom ;‘isk assessm.ént perspective, the weakne-, 

of this apprOach. (deterministic JCehario analysjç) is th á fno  probabiü.ties are 

^ssigned to the.different scenarios. 5o rrj -.cünarios may be seen as unlik°k.\ 

but there is ftttfe fe guide th° inferpr^Ustion oí the actual probability' 4!
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occurrence- i-.-laiive fo otjwir !n faci. the relMive weighti given io lhe

clií{evolif seenarios are entirely subj<?< i and vary c onjitlerably among useri. oí 

the informatiftn. Uespiíe thaí. th< outeumês oí model í uns with such settings are 

meaninglessíj# understanding the i a! Wterld unless lhere is some way to assess 

the probability oí such a worst case occurring. These resuits Gan bc^easily mis- 

interpreted as being appropriatsíy conservative when cíesigning a resistance 

management plan or seíiing policy

To be useful for risk assessments models need to produce probaDiiisttc 

outputs represented by distributions íor each end point oí interest. These distri­

butions are used to quantify risks generally related to the occurrence of extreme 

event*. Because they are increasingly based on mechanistic processes reflecting 

real-world biology. complex models lend themselves to be used as predictive 

tools. just as chmate models are used to predict future states of climate. and 

epidemiologica! models are used to predict the spread of new disêases. However. 

none of these models should be used to provide exact predictions, since there 

is considerable uncertainty inherent to their underlying process. To be used as 

predictive tools it is imperative that such models be analysed for their inherent 

uncertainty. in the same way that weather forecasts incorporate uncertainty by 

stating there is a certain chance of rain and providing a range of likely amounts. 

represented by the rain output distribution. For complex models that incorporate 

stochastic varíability and parameter uncertainty, both sources of variability are 

important in performing risk assessments for the evolution of resistance. We see 

the formalization of methods for probabilistic risk assessments for transgenic 

crops using uncertainty analysis as an important new direction in the modelling 

of resistance evolution. If we are to progress beyond the conventional risk as­

sessment of transgenic crops in which a series of scenarios (best-case, worst- 

case, etc.) are simulated using deterministic models with no formal guidance on 

the likelihood of those-scenarios, then we must seek to formalize methods for 

accounting for parameter uncertainty, as well as process stochasticity. These 

methods allow produetion of model outputs represented by probability distribu­

tions, instead of simple point estimates. Those distributions can then be used for 

assessing risk, which, by its own definition, should incorporate the probabilistic 

nature of adverse event predictions. Below we present parameter re-sampling 

procedures based on Monte Cario methods that, when combined with stochastic 

resistance models, will provide an altemative to deterministic scenario analysis.

Uncertainty in model predictions arises from several sources. As insect re­

sistance simulation models seek to simpiify highly complex ecological systems 

in highly variable environments, it cannot be known that the model strueture suf- 

ficiently, or accurately, describes the system being modelled. The variability in­

herent to the systems being modelled translates to uncertainty in the appro- 

priate values for input variables and parameters (Fig. 4.3). The values for the 

input parameters are not perfectly known, and random (or unpredictable) vari­

ability in the biotic and abiotic environment (temporal and spatial) causes vari­

ability in the value of the parameters. Finally, for a stochastic model of a closed 

system, different outeomes can result from the same inputs (Fig. 4.4a). The modeller 

is therefore challenged to account for and describe the uncertainty and variability.
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Fig. 4.3. Exampie of a Monte Cario probability distribution for the input parameter, 
Vip resistance allele fitness costs. One thousand draws were made from a beta 
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Incomplete understanding of the biological processes leads to uncertainty in 

the true value of a given model parameter. Often modellers need data that have 

not been considered important from a pest management perspective, and there­

fore are unavailable. For exampie. differential mortality of bollworms in refuge 

patches compared with Bt crop patches during winter can have a profound 

effect on predicted rates of adaptation to Bt cotton. However, measuring the 

levei of mortality under natural conditions is extremely diffícult to do, and in the 

past was not regarded as important when the predominant pest management 

tools were curative rather than prophylactic. To measure winter mortality of 

bollworms. the field researcher needs to provide good estimates of the final 

population of pupae in the soil in the autumn and of the population of emerq 

ing moths in the spring. Few studies in the literature have provided these esti 

mates, leaving the modeller uncertain as to the correct value to assign to this 

parameter.

. Natural variability in the environment means that the true value of a given 

parameter varies with space and time To use the same exampie, mortality of 

bollworm pupae in a refuge during winter can depend on the vigour of the



10% of mean; and (d) mean = default, standard error = 20% of mean.

population as it enters winter (and therefore the quality of the host plant during 

the preceding larval stage), the weather conditions throughout winter (temper- 

ature, moisture), the presence of predators in the soil, the degree of parasitism 

of the population, the soil type and cultivation activities in the field before moth
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emergence (perhaps leading to soil compaction, or exposure of pupae to the el- 

ements). While the proportion of pupae that survive will clearly be variable, both 

spatially within and among fields and temporally from year to year, this complex 

of factors is typically modelled as a single parameter, such as winter survival 

(Peck et al., 1999; Onstad et al., 2001; Storer 2003; Storer et a!., 2003a,b; 

Sisterson et al., 2004).

The use of stochastic models presents an important component of modelling un­

certainty, since a single set of input variables and parameter values can lead to 

a range in output values. The variance in model results can also be profoundly 

affected by stochastic influences. Deterministic models treat rates as fixed items: 

if the mortality rate is 60%, then exactly 60 out of every 100 individuais will die 

during that time period, and, by extension, 60.6 die if there are 101 individu­

ais. Therefore, a single set of input parameters gives a single set of values for 

output variables. In stochastic models, fractions of individuais are not allowed, 

and such rates are seen as the probability that an individual will die during the 

time period. The total number that die during any particular period would be a 

random draw from a binomial distribution (N,p), where N is the total number of 

individuais and p is the probability. For the exampie above, while on average the 

stochastic model will give 60% mortality winter survival, any single realization 

could give between 0 and 100% mortality with a binomial frequency distribution 

of survival rates. There are a number of possible events in a model of the evo­

lution of resistance in which such stochastic influences might be incorpora teci. 

including mortality (both natural and response to toxins), fecundity, mating and 

dispersai. These stochastic processes can have a large impact on model vari- 

ances in some cases and neqligible impacts in others (Fig. 4.4a).

!n a model simulating boüworm adaptation to Bt maize and Bt cotton, 

Storer et o.!. (2003a) conducted five runs of sach scenario with a particular pa­

rameter set to improve theestimate of the mean values for the end points. 

Although the standard cleviation stabilized after five runs, there was no way to 

determine whether those five runs were sufficient to capture ali of the important 

possible stochastic variation. For exampie stochastic influences can be great when 

resistance alleles are initially rare, while they are much less impsrta.nt when re­

sistance alleles are relatively common. Selection acts independently of popula- 

iion size while genetic drift becomes more important as population size 

decreases. Extinction of resistance alleles becomes a rea! possibility when they 

ars rare *jo it is possible that in 99 realize.tions the resistant allfele goes exíinct 

l'> gsnstic d.iit and fesistance Suecu^ely ooés noi evoive, "Whiie in one reai 

ization the resistance allele persists (and resistance may evolve very fast in this 

case). Clearly the variance in these resulíb is great. and questions addressing the 

scale of tfvj model become important. Ífíhe model-system was 100-íold larger 

100 timeálhe number ■/ fields). woijld rhis reduce the variance? Sisí- sou 

-í ol. (£004)j.ound that as regio» increased !he time to resistance deor-.-à-.ed. 

difl tlvj varfônce in rim<£ \t> .isíanc? i iirouah >hs judicious use or - o



cal iJiirírnflK'?. ii is ppssibfe'fo transíer variance estirnates froíji binlween sim 

itlalion.s íu spaíiH variance wilhin 0 single simulation. The appropriaíeness oí 

1 i''es(-> svaie parameters to acíua! fieid conditiojns Musi b«.cá%killy considerai 

vhen períorming rislLissessmeiçs.

!i a stochastic model is run a suíncieni number of tfrjfeÇ ihe variability oí ih  

gí itput can be clescribed by a probability distribution. jusí as it is possible to use 

repeated realizations 01 deterministic models with different parameter values io 

asiess ihe irnoací oí uncertainty in those values on the variance in model results 

so one can use this technique with a single set oí parameters to assess the impact 

of síochasíicity on the model results. One thousand realizations pf a model with 

unvarying parameters are likely to provide a reasonable esíimate of the influencc 

oí stochastic factors on the evolution of resistance (Fig. 4.4a). 'While Peck ei al.

(1999) founci that ihe initial distribution oí Bt and non-Bí fields determined 

whether 01 noi resistance foci became established (and therefore resistance 

e^olved rapidly), Storer (2003) showed in a stochastic spatially explicit model oí 

com rootworm adaptation to Bt maize that. even if the initial conditions are held 

constant. there can be a twofold variation in time to resistance due only ío sto- 

chasticity in the model.

in this case. we assume that we know ali the parameters with no uncertainty 

(they remain constant for ali runs). and the variance in the results reflects the 

limits of our ability to predict the evolution of resistance. It is therefore important 

to realize that, short of the impacts of scale factors we noted earlier. this distri­

bution is the limit of our ability to predict the evolution of resistance. Mo addi- 

tional knowledge could reduce this variance, just as no additional replication 

can reduce the standard deviations in a measurement.

Aiiiah/smg parameter yn«gríainíy

Resistance modellers have traditionally attempted to understand the importance 

of such uncertainty by running a sensitivity analysis: by perturbing parameter 

values one at a time and investigating the effect of the perturbation on model 

outeomes. Typically, one can ascertain the effect of perturbations on the value 

of a parameter by applying ±10% of the default value, while holding ali the 

other parameters at their default values. By repeating this for each parameter, 

the'modeller can determine how important the urfcertainty around each pa­

rameter is to the interpretation of model outeome. For exampie, Crowder 

and Onstad (2005) found that density-dependent mortality and functional dom­

inance of resistance had large effects on rates of adaptation, but fitness costs did 

not.

The single parameter perturbation technique only allows the modeller to 

determine the effects of changing one parameter at a time and only under 

default values for the other parameters. Therefore, the technique does not allow 

the modeller to investigate potential interactions among pairs (or even groups) 

of parameters. The technique also does not allow the modeller to use informa­

tion on the magnitude of the uncertainty in parameter values. There may be 

more information available about the true value of some parameters than for
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others, or certain parameters may be less influenced by environmental effects 

than others. Storer et al. (2003b) attempted to account for differential knowl- 

edge among parameters in a sensitivity analysis of their com earworm/boll- 

worm model by testing ranges of parameter values that represented the authors’ 

opinion of the ‘biologically reasonable’ range values. The same sensitivity analy­

sis also included investigations into potential interactions among parameters 

and input variables.

An alternative to the deterministic scenario approach and individual param­

eter perturbations that has generally been used for risk assessments is to more 

formally specify our uncertainty in some key model parameters. For each select- 

ed parameter, we specify a probability distribution, referred to as the input pa­

rameter distribution. In place of running a specific number of scenarios, by 

subjectively setting the input parameters to some values, in this risk assessment 

approach one runs a large number of model realizations, randomly drawing 

new values for each parameter from the specified input probability distributions. 

After completing many (often greater than 1000) realizations (replicate simula­

tions but with randomly drawn parameters), the results can be arranged as 

output probability distributions for each model end point. referred to as a Monte 

Cario output distribution. They are a direct measure of the impact of parameter 

uncertainty on the output distributions used for our assessment of risk (Fig. 4.4b, 

c, and d). One can now begin to address questions such as what is the risk of 

resistance evolving within a certain amount of time, or what is the probability 

that a transgenic event will last more than a given number of years. This descrip- 

tion of the uncertainty of our results (which differs from our uncertainty in our 

parameters) is criticai to effective risk assessment.

This risk assessment technique effectively assigns probabilities to outcomes 

and has recently been adopted to examine risk of the evolution of insect resist­

ance to transgenic crops (Maia. 2003: Maia and Dourado-Neto, 2004; Caprio 

et a i .  2006). Uncertainty due to environmental variability can be incorporated 

into the model by using a different probability each time a parameter is used 

during a single model run; for exampie. for each simuiated winter and,'in a 

multi-patch model, a different probability for each patch. Uncertainty due to es 

timates based on field data to provide the true value of a parameter can be ac- 

counted for by running a model multiple times, each time using a different value 

for the parameter (see Fig. 4.3). A large number of parameters can simultane- 

ously be varied in this manner. using random draws for each run foi; each pa­

rameter value. and the model run for hundreds. perhaps thousands. of times. 

As additional data become available. these uncertainty distributions can be 

updated.

At r int. the modeller neeels to provide p&obability disu-ibution:, íor th:-' 

v»alues of the parameters under consicleratiQn. Hoííman and Kaplan (19&S3. di - 

cussiny characterization of input parameters uncestaimy. pointed out that i.i 

oí classicaf statistics (mean, variance) to summarize the variability oí direct ob 

servations is usually inappropriatü. íor n ,k pçojectkJfis. They cot nmSftt Lha*

Classical statistics should be restrttfed fo instai v s . ;•!•' n dcifâ ac.:
übfain«d irom eilher a random or vrni.ified raiidOiTi 'le-ion npprop”kic-!i•



f-vtictgeci acÇprcüng to t+ig s p a o -  a n d  í im e  rec iu irem enis  o í  the 
í 'sbC33í 'o" í : i . ^nd  t i " '  rh<- d a i a  a r e  d irectly-fe lK yani to ihe  targei 

Jua ls  or jiiicruori o .1 íiitírresi.

sucíi ■-iluation^arçjv lr  Ir<?<4Uunt in ecoiogica! risk assessments. for which v: 

Ir-ijjolciiions are rnade beyond ihe spajíal exient and time periods in which ciaia 

have been coilecied. cornbining ç perí knowledge with sampling/experimenta1 

data fo; qbtaining inpi.it «isirihutions becomes imperaíive. The form of the proH- 

ability distribution íor any given rjarameter value shdLld reflect the HlpwMg* 

oí the íriM value. its variance. ançl oui uncertainty in those values. For extimpie. 

a parameter about which nothing is known. except the probable range [ci.bj 

could be assigned any value between a and b with equal probability (the uniform

Io.bj conirnuous distribution). Alternatively. ií there are maximum (q) and 

minimum (fc>) values known. as well as a most likely value. a triangular or beto. 

probability distribution could be used (hig. 4.3). As many biological input vari­

ables are known to fit the normal or log-normal distribution. such distributions 

can be used if íhere is some knowledge of thç mean and variance. Several al- 

ternative probability distributions could also be used if there is sufficient urider-" 

standing oí the jiarameters to justify their use. including skewed distrwWions 

(e-S- gamma. beta. Weibull) or discrete distributions (binomial. Poisson.- known 

probabilities assigned to an enumerable set oí possible values). For exampie. 

Maia and Dourado-Neto (2004) used uniform, symmetrical triangular, and sym- 

meíricai truncated norma! distributions for characterizing uncertainty of the re­

sistance allele initial frequency. a key parameter in a simple, deterministic 

non-random mating model (Caprio. 1998).

characterizing input distributions should be regarded as an iterative process: 

as parameters are identified where uncertainty is criticai to model output. addi- 

tional effort can be used to improve information on those parameters. For more 

details on the methods for obtaining distributions for uncertain model inputs, see 

Clemen and Winkler (1999), Hoffman and Kaplan (1999) and Kaplan (2000).

As an exampie of the Monte Cario approach to uncertainty analysis. we 

consider below a very simple deterministic model of resistance evolution. This 

is a two-patch model, with one patch insecticidal (e.g. a Bt crop) and the other 

patch non-insecticidal (i.e. refuge), and resistance is conveyed by a single gene 

with two alleles. The insecticide is assumed to kill 100% of susceptible insects 

(SS genotype) and none of the resistant insects (RR genotype). Survival of het- 

erozygotes (RS) is given by the functional dominance of the R allele, h. In ad-- 

dition to h, there are two other parameters: the initial frequency of the R allele 

(q0) and the proportion of the landscape that is planted to the refuge (x). The 

population consists of non-overlapping generations, there is no fitness cost as- 

sociated with resistance, and there is random mating and random oviposition 

across the two patches (i.e. Hardy-Weinberg dynamics determine the frequen­

cy of the three genotypes entering each generation). The model output is the 

R-allele frequency after ten rounds of selection.

In the first instance, let us assume that nothing is known about the values 

of h, q0, or x: that is, we make no assumptions about the frequency of resist­

ance, the functional dominance of resistance, or about how much the landscape 

will not be treated with the insecticide. Therefore, we assume that the values of
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each of the parameters are represented by uniform probability distributions 

between 0.0 and 1.0. The model is run 1000 times, each with a new random 

independent draw for the values of the three parameters (i.e. Monte Cario sam- 

pling procedure) using Crystal Bali® 2000 (Decisioneering, Inc., Denver, 

Colorado). The probability distribution of the R-allele frequency after ten rounds 

of selection is given in Fig. 4.5a. The lowest final R-allele frequency is 0.0051; 

the highest is 1.0. The mean is 0.85, and the median is 0.95. Seventy-five per 

cent of the runs result in a final R-allele frequency greater than 0.81; 25% of 

the runs result in a final R-allele frequency greater than 0.99. We conclude that 

a large proportion of the three-parameter space leads to r apid resistance evo­

lution. However, we know that probability distribution across the parameter 

space is not uniform.

In a second iteration of the process, we make some assumptions about the 

parameter values based on what we know about use of Bt crops and resistance 

to the Cry proteins used in them to better reflect a real-world scenario. Bt cotton 

is planted on 60-90% of cotton grown in the core of the US cotton belt (USDA 

NASS), varying by geography. Therefore the distribution of values for x, the 

proportion of the land as refuge (non-Bt cotton), can be better characterized by 

a uniform distribution with a minimum of 1@% and a maximum of 40% (we do 

not have data giving the proportions of Bt and non-Bt on a finer scale than 

state levei, preventing us from using a more refined probability distribution). 

The frequency of R alleles to Bt cotton in tobacco budworm is believed to be 

extremely low, since years of monitoring for resistance and use or Bt cotton 

have not found any evidence of resistance. However, we do not believe it is 

zero. One literature estimate of R-allele frequency is 3 >c 10~' (Gould et al., 

1995b). Other modellers typically use a value of 10'3 or L&t as an. appropri- 

ate estimate. We therefore modify our assumptions about the probability distri­

bution of R-allele frequency to be 10 where y is distributed normally with a 

mean of -3.5 and a standard deviation of 0.5. The functional dominance of re­

sistance to Bt cotton in tobacco budworm is also believed to be very low. High 

leveis of resistance to Cry proteins tend to be recessive (herre and Van Ris,

2002), and Bt cotton expresses a high dose of Cry proteins such that het- 

erozygotes are expected to show very Io survival. ' unctional dom.ina.nce is un- 

likely to be zero, and the probability or a given value of h is assumed to be 

distributed in log-normal manner with a mean value of 0.1 and standard devia- 

tiqyri. of 0.05.
The Monte Cario simulation (1000 uns) is conducted using these probability 

distributions for the three selected parameters/o  obtain the probability distri­

bution for R-allele frequency after ten rounds oí selection (Fig. 1 5b). ihe dis­

tribution is somewhat bimodal, with a large peak at the lowest end of the range 

and a small peak at the highest end. The lowest final R illele frequency is 

4 x 10"’; the highest is ü.995. * he mean ís o.OõG. and the nieoiàii is> u.uO í. 

Three-quarters oí the runs result in a fina! K-aliele frequency' less than 0.02. 

The refined probabilistic risk assessmehl based on a very srrftple deterministic 

model indiçates that the probability oí , .sisiance to Bt cotton r >\ mg m ten 

senerations i^tobaepo budworm is e^irernely low. • hlffiexercise. !ia- hown us 

9|at. while uridar the wôíst-case sfcenario ■ ■MMe Ireq^.ency rouH íheOreftically 

exceçd 0.5 withtn ten genera ions unebr the assumptions’o1 '<ht5 sanplfStíc
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Fig. 4.5. Monte Cario output distributions for resistance allele frequency after ten 
rounds of selection (i.e. 10-year gene frequency forecasts from 1000 trials) in a 
theoretical population based on Monte Cario parameterization of a simple population 
genetics model with (a) no prior information and (b) prior, but uncertain, information 
on selection pressure, dominance of resistance, and initial allele frequencies.
Results from 958 trials are displayed in (a), 1000 in (b).
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model the probability of this occurring, based on understanding of resistance to 

Bt proteins and Bt cotton usage, is <5%.

Similar analyses can be applied to more sophisticated models of resistance 

evolution that incorporate more biologically realistic processes and more real- 

istic agricultural landscapes. As more parameters are added to a model, it 

becomes important to consider how they may be correlated with one another. 

For exampie, a model may have two parameters governing insect dispersai: the 

proportion of individuais that disperse at a given time step and the distance that 

the dispersing insects move during the time step. These parameters may be 

negatively correlated; the rate of spread of a population across the landscape is 

likely to be a function of these two parameters. Thus in making random draws 

for one parameter, one may need to consider the random value drawn for the 

other, so that the rate of population spread remains realistic. In these situations, 

we need to use methods for sampling input distributions that account for cor- 

relation patterns among parameters (e.g. Latin hypercube sampling) (Iman and 

Conover, 1982).

These risk assessment techniques also offer advantages in the area of sen­

sitivity analysis. If the randomly assigned parameter values are saved along with 

the simulation results, a sensitivity analysis that includes interactions and corre- 

lations among parameters can be performed. Assuming the data can be lin- 

earized, step-wise regression or Bayesian model averaging can be used to 

identify the parameters or parameter interactions the model is most sensitive to 

(Caprio et al.. 2006; McCaffery et al.. 2006). These interactions are general­

ly left out in conventional scenario-based modelling and sensitivity analysis. For 

exampie, in a data set examining the introduction of Vip3A cotton (Caprio and 

McCaffery, unpublished data), the data were first analysed without interactions 

between parameters, which showed significant effects for initial gene frequen­

cy and dominance of the resistance allele. When ali two-way interactions were 

included into the model, a highly significant interaction term between these two 

- parameters was found. in retrospect, this interaction is reasonable. As we know 

from basic population genetics texts, the heritability of recessive traiís increas- 

es dramatically as gene frequency increases, and thus the impact of dominance 

decreases as initial gene frequency approaches 1.0.

Using a version of a deterministic non-random mating model (Caprio eí 

al.. 1998), Maia (2003) found complex interactions in a sensitivity analysis. She 

analysed the sensitivity of two output variables, R-allele frequency across targel- 

pest generations (RFreq) and number of generations until resistance (NCsr). to 

perturbations in the input parameters initial R-allele frequency and functional 

dominance of resistance. for different scenarios (combinations of e/uge size 

and refuge pest management). The results showed that RFreq sensitivity to both 

input variables changed considerably among scenarios as well as across gener­

ations, ranging from high sençitivity (c- :pohent<al patterns) irfljhc initial gencr- 

ations to null sensitivity after several rounds of selection.

The model of Western com rootworm adaptation to Bt maize in í?tDí;-r 

(2003) was subjected to just such an analysis (Storer, unpublished daia). or íhis 

Monte Cario sensitivity analysis. 2 parameter# were simultaneously variecl nc- 

cording to predefinec! probability distribuiions based on assumptions oí llv-
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underlying distribution oí uncertainty or variability for each parameter. and the 

model was run 2000 times. Two parameter correlations were included. First, sur 

vivai of susceptible larvae on Bt maize was 80% positively correlated with the 

functional dominance (and therefore with the relative survival of heterozygous 

larvae). Secondly. the fecundity of adult rootworms was 80% negatively corre­

lated with density-independent mortality in winter, so that the population size in 

the absence of Bt maize remained biologically reasonable. The output from the 

sensitivity analysis provided a distribution for expected rates of adaptation for 

rootworms when Bt maize was planted on 90% of the acreage (10% refuge). 

For this model. a relative rate of adaptation (RRA) was defined as the average 

annual increase in R-allele frequency on a log scale, expressed as a fraction of 

the baseline rate of adaptation.

RRA = f - Í l n ^  / 0 .327
%) • 

where qY is the R-allele frequency after Kyears and 0.327 is the adaptation rate 

(year ’) for the baseline run (Storer, 2003). This rate is calculated when the R- 

allele frequency first exceeds 0.075, when the rootworm egg population in the 

autumn falls below 20,000 per field, or after 10 years, whichever is soonest.

The mean RRA for the Monte Cario analysis was 0.35 (standard deviation 

= 0.42), while the median was 0.23 (Fig. 4.5c). These averages represent 3.5 

to 5.4 times slower adaptation than that predicted using the default parameter 

settings. The extreme values were -0.86 and 5.07 (negative values of RRA re- 

sulted from a decline in region wide r-allele frequency due to local r-allele ex- 

tinction when populations were small). In the sensitivity analysis, 96.5% of the 

RRA values for the same yalue were less than 1.24. This finding suggests that 

the RRA value obtained using the default parameters is greater than the 95% 

confidence limit for the estimate of the true RRA.

The parameters with the largest effects on RRA were the functional domi­

nance of the R allele (explaining 58.5%  of the variation) and the dose (explain- 

ing 33.5% of the variation). Lower functional dominance and higher doses 

caused lower RRA. As input parameters, these two parameters had 80% cor- 

relation. The next most important parameter was another genqtic factor: the 

fitness cost of resistance (3.1% of the variation). Winter survival (2.9%) and fe­

cundity (1.1%), the pair of correlated parameters, were the next most important. 

The other parameters combined explained less than 1%. These findings indicate 

that, until we have isolated resistance alleles in the field, it will be difficult to 

predict with greater accuracy the rate that the alleles will spread. The probabil­

ity that adaptation will be slower than predicted by using default values was 

greater that 95%, suggesting that the set of default parameter values chosen in 

this case was highly conservative.

Caprio et al. (2006) incorporated both stochastic influences and parame­

ter uncertainty in a model of resistance to methyl parathion in Western com 

rootworm. They compared the variance in model results (Monte Cario output 

distribution for ‘time until resistance’, TR) with parameters fixed at their default 

values and estimated the impact of stochastic influences. Additional runs of the
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model integrated both parameter uncertainty in 18 parameters and stochastic 

influences to estimate their joint influences. In this case, the parameter uncer- 

tainties were defined as normal distributions with a standard deviation that was 

a specified percentage of the default mean value. Uncertainty was not included 

in Fig. 4.4a. The variability among model output values was entirely due to sto­

chastic demographic processes. For the other cases, the standard deviation in- 

creased from 5 to 10 to 20% (Fig. 4.4b, c, and d) demonstrating the impact of 

increased parameter uncertainty on the TR Monte Cario output distribution. 

Ultimately, this combination of both stochastic and parametric uncertainty pro- 

vides an improved description of the model output uncertainty, thus improving 

our ability to predict the time it will take for resistance to evolve to a particular 

insecticidal protein in a particular use páttern.

Resistance risk assessment requires that the modeller not only provides 

point estimates for input parameters, but also a complete characterization of 

their respective uncertainties via probability distribution functions (PDFs). These 

PDFs can come from a number of sources, including expert opinion and em- 

pirical data (Hoffman and Kaplan, 1999; Kaplan, 2000). In the worst scenario, 

a flat uniform distribution can be chosen to describe uncertainty of parameters 

for which there is no prior information. In cases where there is a minimum of 

data to support a default parameter value, many modellers will be reluctant to 

speculate on an input probability distribution. Often, however, limits to likely 

values can be estimated which, together with a most likely value (usually the 

default value), provide sufficient information for a triangular distribution. The 

beta distribution can alsO be used with these three parameters, avoiding the 

sharp changes in the second moment present in the triangular distribution: The 

beta distribution also places less emphasis on the tails of the distribution than 

the triangular distribution. Vose (2000) describes a PERT distribution based on 

the beta distribution, as well as a modified PERT that reduces the weight placed 

on the most likely value, gradually transforming into a uniform distribution. The 

beta distribution requires four parameters: a minimum and maximum value as 

well as two shape parameters. The modified PERT distribution uses the most 

likely v/alue and a bias value (defaulting to four in the standard PERT distribution) 

to determine the two shape parameters This modified PERT distribution can 

be used to reflect the modeller s uncertainty in his/her estimate of the most 

likely value. These distributions require a minimum number of parameters 

(maximum. minimum, and'most likely values) and provide a simple mechanism 

to incorporate uncertainty into models. Subsequently. sensitivity analysis can 

indicate which parameters have the most impact on the model results. and 

further refinements can be made in the uncertainty charactçrizations for those 

parameters.

It should be realized that risk estimates can be highly sensitiva to ihe type 

uipLu aisiiíbuíion. Using the nori-rauclorii mãiing niudel. iMaia âiiu Dourado* 

Neto (2004) evaluated the influence of three types of distributions for lhe R-allele 

initial frequency: uniform (UN), symrnefrical triangular (ST), and symmetrical 

Iruncafed^iormal (TN), with the same range on risk estimates (probability of 

RFreq exce :ding a criticai value) across generations for three resistance man- 

'ijpmenr scenarios. For ali scenarios ‘*>&w íound that risk estimates cofsespoiv
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clitTo io 0 . and 1 ■■ .irnilòi'. but estimates ohtained t o , ,, s Uk,-

U. distribui íor vven- dilierept. especiaiiy íor Éie risks at the initial and lasí 

rounos of selection. , • •

Míhough the rfsk ossessmertl techniques clescribed attempt 10 incorporate 

aii I ailable knowledg? in a ío nalized framework. the uncertainty distrihutflShs 

uãJ! oíten contain eienvjfts oí, subjectivity. While the results are of.ten *$sv : 

sitive tò small vajjiations in the maximum or minimum values in a triangular dis­

tribution (these are areas ,í probability). humans tend to underesjimate risk 

(Vose. 2000: Bedford and 1'ooke. 2001: Evans and Olsen. 2002). and hence 

sei ihese extreme values too conservatively. Of particular interest is lhe process 

oí anchoring (Vose. 2í)00). in which the modeller anchors his/her estimate-iia 

a most likely value and sets extreme values based on this estimate. This usually 

underestimates uncertainty. and extreme values should be independently esti- 

mated. in general, the process oí collecting and cornbininq expert opinion re 

quires great attention from the modeller.

in some cases, because oí the large number oí parameter combinations. it 

mau be difficult to summarize al! results using a single criterion. and àll combi­

nations may not be reasonabie. For exampie. in Fig. 4.4a, b, c and d (Caprio 

et al.. 2006), one can see a bimodal distribution developing as the uncertainty 

and observed frequencies of field failures within 3 years increase. in this case. 

as the variance in the input distributions incraased. an increasing number oí 

simulations included parameter combinations that effectively did not control the 

simulated pest. and the model results reflected only the time required for the 

initial population to build up to damaging leveis. In a subsequent analysis. these 

values were excluded. because it was presumed that the pesticide never would 

have been deployed under those settings. Another exampie is the determination 

of proper stop criteria that are suitable for ali realizations of a model. Most mod- 

ellers use some Sort of frequency-based criterion, for exampie when the resist­

ance allele frequency in reievant fields exceeds 50%. However. when performing 

a risk assessment, some of the simulations may include Darameters that lead to 

extremely low rates of selection, and the simulations are generally stopped after 

a reasonably long period of time (20-50 years). This leads to right censored 

data with little resolution in how changes in parameters affect resistance evolu­

tion beyond the maximum simulated time. Under some situations, this could 

lead to an underestimate of the sensitivity of the model to certain parameters. 

Approaches using performance criteria (the ability of the toxin to maintain pop- 

ulations below some levei) (Caprio et al., 2006) are also subject to similar prob- 

lems. An alternative approach is to estimate the exponential rate at which the 

resistance allele frequency changes per year and to use this as a -qualitative 

measure of risk (e.g. Storer, 2003). The assumption here is that the rate of 

change in allele frequency is constant as long as resistance alleles are rare (Fig. 

4.6). This rate is determined almost entirely by the fitness of resistant heterozy- 

gotes relative to that of susceptible homozygotes, and the rate only begins to 

change whpn resistant homozygotes begin to be relatively common. As an aside, 

note that one can change the fitness of the homozygote considerably, changing 

dominance from recessive to dominant, while having little impact on the rate of 

resistance evolution. Dominance is reievant only to the degree it describes the
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. Fig. 4.6. The constant rate of increase in log resistance allele frequency in a 

simulation of Western com rootworm resistance to a low-dose transgenic event.

relative fitness of heterozygotes or susceptible homozygotes. The estimated rates 

can have problems when initial gene frequencies are varied due to uncertainty. 

In a model of the introduction of Vip3a cotton, Caprio and McCaffery (unpub­

lished data) varied the initial gene frequency from 10 1 to 10~4, based on pub- 

lished estimates for other species. In realizations of the model where the initial 

. frequency was close to 10"1, the resistance allele frequency 

was high enough that it no longer fell within that region where the exponential 

rate of increase was constant. In these cases the rate could not be reliably 

estimated, leading to left censored data. Other realizations of the model used pa­

rameter values that would lead to long resistance times (indeed. with fitness 

costs, negative rates can easily be achieved). so frequency-based criteria would 

also lead to lossof Inform ation due to right censored data. It may not be unusual 

that the extensive variety of results in a risk assessment will require that some 

in form ation  be lost, but the results should indicate the important parameters 

within the time frame examined.

Resistance simulations, especially prospeciive ones run before widespread 

deployment of a new technology, tend to be run assuming maximum. adoption 

of the technology. While it is possible to predict technology adoption curves, this 

is rarely done, meaning that the results are highly conservative. One outcome 

of this approach may be to magnify the effects of parameter uncertainty on the 

oredictions of resistance evolution.
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Conclusions: Towards the Appropriate Interpretation and Use of 
Resistance Models

As resistance risk assessment and management has developed since the 1950s, 

especially spurred on by the release of transgenic insecticidal crops, we have 

seen enormous reliance on models. Empirical experimentation with insect re­

sistance is inherently tricky, since a successful field experiment to examine the 

effectiveness of a given strategy would inevitably create the problem we are 

trying to avoid. Experiments in greenhouses (Tang et al., 2001; Zhao et a i, 
2003) can be regarded as models of the field in that the environmental influ­

ences are controlled, as are many of the biological processes along with the 

operational manipulations. Data from such experiments have been extremely 

useful in validating the findings of the simple generalized Computer models, 

which can be regarded as experiments in cyberspace. From these physical and 

virtual experiments, we have been able to assess the relative merits of different 

resistance management strategies, such as high-dose/refuge and gene pyra- 

miding. However, it remains problematic to extend these findings to devise ap­

propriate strategies to use in commercial field conditions.

More complex models are more system-specific and have greater predictive 

utility to understand the resistance risks in any particular use pattern. However, 

as we have seen, it is vital to understand the predictive limitations of these 

models, particularly by understanding the uncertainty associated with the model 

predictions. ‘Garbage in, garbage out’ is a truism of these models, and modellers 

are faced with a huge challenge to parameterize them correctly. Indeed, there 

is generally no single correct parameter set to use when modelling across space 

and time.

Crude attempts to capture the uncertainty by running best-case and worst- 

case scenarios are of limited utility if there is no attempt to relate those scenar­

ios to the real world. In this chapter, we have described the application of 

established risk assessment tools to resistance management models that provide 

more useful descriptions of our uncertainties in predictions of resistance 

evolution. While simple models have been used to develop regulatory policy 

around resistance management (ILSI/HESI, 1999; US EPA, 2001; Fitt et al., 

2006), we are seeing with more sophisticated approaches that not ali the im­

portant processes are necessarily taken into account, and that the resistance 

risk is not uniform for ali products and ali use patterns. That resistance has not 

evolved to Bt crops after more than 10 years of use is evidence that one or 

more of the assumptions made in the early models were highly conservative or 

that those models inadequately described the resistance risks (Tabashnik et al.,
2003).

System-specific models with an appropriate uncertainty analysis in a risk 

assessment context show whether or not resistance management strategies are 

needed, and, if so, what strategies should be implemented. Clearly, the need for 

flexibility inherent to this approach does not lend itself to a ‘one size fits ali’ reg- 

ulatory-driven strategy, as much as it does to a locally developed and imple­

mented strategy within an overall regulatory policy. With probabilistic risk 

assessment tools, we can start to determine under what circumstances there
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may be an unreasonable resistance risk, and consequently under what circum- 

stances resistance management is warranted. Of course, for implementation of 

the risk assessment process to be useful, there must be some agreement of what 

constitutes an unacceptable risk. By leaving this undefined, the European and 

Mediterranean Plant Protection Organization has left the interpretation of un- 

acceptability to the subjective opinion of regulatory decision makers (Leonard, 

2000). For resistance to Bt crops, this could be failure of the product within a 

certain time frame with a certain probability. With spatial models, this could be 

further refined by stating over what proportion of the area where the Bt crop 

is used resistance would be unacceptable. A regulatory policy developed around 

defining these unacceptable risks would go a long way towards establishing ra- 

tional resistance management plans.
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