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ABSTRACT: The assessment of the relationship among soil properties (such as total nitrogen and organic
carbon) taken along lines called transects is a subject of great interest in agricultural experimentation. This
question has been usually approached through standard state-space methods by some authors in the soil
science literature. Important limitations of the mentioned procedures used in practice are pointed out and
discussed in this paper, specially those related to the model parameters, meaning and practical interpretation.
In the standard state-space approach, based on an autoregressive structure, it does not present any parameters
that express the variables relationship at the same point in space, but only at lagged points. Also, its model
parameters (in the transition matrix) have a global meaning and not a local one, not expressing more
directly the soil heterogeneity. Therefore, the objective here is to propose an alternative state-space
approach, based on dynamic (space-varying parameters) regression models in order to avoid the
mentioned drawbacks. Soil total nitrogen and soil organic carbon samples were collected on a Typic
Haplustox. Samples were taken along a line (transect) located in the middle of two adjacent contour lines.
The transect samples, totaling 97, were collected in the plow layer (0-0.20 m) at points spaced 2 meters
appart. Results show the comparative advantages of the proposed method (based on an alternative state-
space approach) in relation to the standard state-space analysis. Such advantages are related to a more
adequate incorporation of soil heterogeneity along the spatial transect resulting in a better model fitting,
and greater flexibility of the model’s building process with an easier interpretability of the local model
coefficients.
Key words: dynamic regression, soil properties, spatial heterogeneity, Kalman filter

ANÁLISE DE DADOS DE SOLO VIA MÉTODOS DE ESPAÇO DE
ESTADO: REGRESSÃO COM COEFICIENTES VARIÁVEIS

RESUMO: A avaliação da relação entre certas variáveis representando propriedades do solo (tais como
nitrogênio total e carbono orgânico) coletadas ao longo de linhas chamadas “transects”, é assunto de grande
interesse em experimentação agrícola. Este problema tem sido usualmente abordado através de modelos
estatísticos padrão de espaço de estado por alguns autores na literatura de ciência do solo. As mais importantes
limitações dos procedimentos utilizados na prática são apontados e discutidos neste artigo, sendo relacionadas
ao significado dos parâmetros do modelo e a sua interpretação prática. A abordagem padrão de espaço de
estado, que é baseada em uma estrutura autoregressiva, não apresenta nenhum parâmetro que expressa a
relação entre as variáveis no mesmo ponto do espaço, mas somente em pontos defasados. Além disso, os
parâmetros do modelo (na matriz de transição) tem um significado global e não local, não expressando
diretamente a heterogeneidade do solo. Desta forma, o objetivo aqui é propor uma abordagem alternativa de
espaço de estado, baseada em modelos de regressão com coeficientes variando ao longo do espaço de
modo a evitar estas limitações. Dados de nitrogênio total e carbono orgânico do solo  foram coletados
de um Latossolo. Eles foram medidos na camada de 0 – 0,20 m ao longo de uma transeção de 194 m,
totalizando 97 amostras espaçadas entre si de 2 m, entre duas curvas de contorno adjacentes.
Os resultados mostram as vantagens comparativas do método proposto em relação ao método de espaço de
estados padrão. Tais vantagens estão relacionadas a uma mais adequada incorporação da heterogeneidade
do solo ao longo da transeção espacial resultando em um melhor ajuste do modelo e a uma maior
flexibilidade no processo de construção do modelo permitindo  uma fácil interpretabilidade dos coeficientes
estimados.
Palavras-chave: regressão dinâmica, propriedades do solo, heterogeneidade espacial, filtro de Kalman
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INTRODUCTION

The analysis of soil quality and crop yield data
by standard state-space methods has become a relatively
common practice in the area of soil science (Wendroth
et al., 1992; Dourado-Neto et al., 1999; Nielsen et al.,
1999; Wendroth et al., 2001). The assessment of the re-
lationship among certain soil quality variables such as to-
tal nitrogen, organic carbon, and others, is a subject of
great interest in agricultural experimentation and soil re-
search (Feller, 1993; Beare et al., 1994; Sikora & Stott,
1996; Wendroth et al., 1997, Timm et al., 2000). Usually
these soil variables are measured along lines called
transects, forming spatial data series, measured with er-
rors, so that the use of Kalman filter  based  methods
(state-space), in principle, sounds appropriate mainly for
filtering the measurement noise and the model uncertainty
of state equation. By standard state-space (Shumway,
1988) we understand that the state-variables are just a fil-
tered (noiseless) version of the observed variables and
that these noise-free quantities follow a (vector) first or-
der autoregressive model with constant parameters. This
is the special way by which the state-space approach has
been employed in the soil science literature (Wendroth
et al., 1992; 1997; 2001; Hui et al., 1998;  Nielsen et al.,
1999). Although largely used in practice for soil research
and related areas as mentioned above, we argue that this
basic approach presents limitations or drawbacks, the
main ones being the following:

1st) Since the parameters of the auto-regressive
process are constant, they do not express directly the spa-
tial heterogeneity (soil variability) present in the transect
data. The main model parameters are global or space-in-
dependent (just average values) and not local or space-
dependent as it should be if we want to express the vari-
ables, relationship at each point in space, that is, to ex-
press the soil heterogeneity in an explicit way;

2nd) The model is restricted to an auto-regressive
process, introducing unnecessary constraints into the re-
lationship among the variables, limiting therefore the
model´s building process. For instance, it does not per-
mit to express the variables, relationship at the same point
in space, but only at lagged points, which restricts the
model´s building process;

3rd) Other limitations are related to the Kalman
Filter implementation via the EM (Expectation-Maximi-
zation) algorithm (Dempster et al., 1977; Shumway, 1988;
Shumway & Stoffer, 2000) which do not provide stan-
dard errors of parameter estimates in its basic formula-
tion, unless some extra computations are considered, as
for instance, using the SEM algorithm, that is, the EM
algorithm with estimation of standard errors (Meng &
Rubin, 1991; Shumway & Stoffer, 2000).

In fact, the third mentioned limitation is more re-
lated to the filter computational implementation than to

the method itself, and therefore, can be avoided in part
if we choose carefully the software to be used or if we
make some extra calculations in order to include the Hes-
sian matrix, which is related to the standard errors. For
instance, the ASTSA software in its first version
(Shumway, 1988) does not present standard errors of
auto-regressive parameter estimates, but these estimates
could be implemented with some extra computations (see,
for example, Meng & Rubin, 1991). However, the first
and the second mentioned limitations are more important,
since they are related to modeling flexibility and param-
eter interpretation.

In order to overcome the mentioned points about
the standard procedures in use, an alternative state-space
approach is proposed, based on dynamic (space-varying
coefficients) regression models, known as dynamic lin-
ear models- DLM´s (West & Harrison, 1997). The pro-
posed models should incorporate the spatial variability
(soil heterogeneity) present in the data set through the re-
gression parameter evolution along the transect, accord-
ing to a Markovian process (random walk).

The consideration of a dynamic model of a re-
gression type as an alternative to the standard state-space
approach has the merit of overcoming the two main dif-
ficulties just mentioned. The choice of predictors (regres-
sors), in our approach, is more flexible (not restricted to
the auto-regressive form) and the regression coefficients
are space-dependent. Although theoretically simple, in
practice this modeling process requires some data trans-
formations, as it will be illustrated in the next sections.

Therefore, the objective of this study is to pro-
pose another methodology using a dynamic regression
model with coefficients changing along the space as an
alternative to the standard state-space model.

MATERIAL AND METHODS

Soil samples used were collected in Jaguariuna
(22o 41’ S and 47o W), SP, Brazil, on a Typic Haplustox
in May 1999. Samples were taken along a line (transect)
located in the middle of two adjacent contour lines. The
transect samples, totaling 97, were collected in the plow
layer (0-0.20 m) at points spaced 2 meters appart. The
transect soil had been limed, received phosphate (broad-
casted and incorporated) and was planted to an oat crop,
three months before soil sampling. Samples were air
dried, granted to pass a 2 mm sieve and analyzed for or-
ganic carbon by the Walkey-Black method (Walkey &
Black, 1934) and for total nitrogen by the Kjeldhal
method (Bremner, 1960).

The proposed method to build and implement a
model for soil quality data analysis (along a spatial
transect) is based on the following main assumptions:
Along the transect with inherent soil variation, local char-
acteristics are better represented by a local model (and
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not a global one) with space-varying coefficients express-
ing the heterogeneity of the site; Different variables mea-
sured by different scales or units, in order to be analyzed
or modeled in conjunction and in an efficient way, could
be conveniently transformed into a dimension-free scale,
as suggested by Hui et al. (1998). However, a method that
does not involve data transformation is preferable since
it allows an easier interpretation; Some soil quality vari-
ables (as for instance, soil total nitrogen) are time-con-
suming and expensive to be measured, but can be well
correlated to other variables easier to be measured (as for
example, the soil organic carbon).

The proposed method for soil quality data analy-
sis through space-varying regression models is based on
the following procedure:

1st stage : Data transformation
The data should be transformed from x to x’

through x’ = [x – (m – 2s)] / 4s, where m and s are the
mean and standard deviation of the original x data as sug-
gested in the mentioned soil science literature (Hui et al.,
1998; Nielsen et al., 1999; Wendroth et al., 2001).

2nd stage : Model Building and Fitting
Step 2.1 – Define which variable is the basic re-

gressor (in our case, the “easy to measure” variable is soil
organic carbon in its filtered version) and which one is
the response or dependent variable (in our case, the “ex-
pensive to measure” variable is soil total nitrogen in its
original version). The lagged version of the dependent
variable can eventually be used as a second regressor;

Step 2.2 – Once the model variables have been
previously defined and prepared (transformation, etc.),
then fit the space-varying coefficient regression model as
a special dynamic model with regression components,
using any implementation of the DLM, as for instance,
the BATS system (Bayesian Analysis of Time Series;
West & Harrison, 1997), or the PRVWIN System
(PRediction with Varying coefficients  models for
WINdows; PRVWIN User´s Guide, 2000) or STAMP
(Structural Time Series Analyzer, Modeller and Predic-
tor; Koopman et al., 2000).

Model Formulation
The standard state-space model for the soil data

(nitrogen Ni and carbon Ci, i = 1, 2, ...n, where the sub-
script i indicates the position along the transect) is for-
mulated by an observation equation which relates the ob-
served data yi= (Ni, Ci)’ to a non-observable state-vector
xi=(Ni*, Ci*)’, and a system equation that describes the
state-vector evolution in space, as follows,

observation (measurement) equation:
 yi = xi + vi ,           vi ~ N(0; V)

system (space evolution) equation:
xi = G xi-1 + wi ,    wi ~ N(0; W) ,

where G is the system evolution matrix (its elements are
the auto-regressive coefficients), vi is the observation (mea-
surement) error with variance matrix V, and wi is the sys-
tem perturbation with variance matrix W. The key element
is the state-vector xi formed by the  filtered version (noise
free) of the observables, which is obtained sequentially by
the Kalman filter updating equations. For further details,
see for example, Shumway & Stoffer (2000), where the full
implementation aspects are presented.

The alternative modeling approach to the soil data
is the space-varying coefficient regression (state-space)
model in which the state-vector is formed by the dynamic
regression coefficients βi , as follows,

observation equation:
yi = Fi βi + vi ,           vi ~ N(0; V)

system evolution equation:
βi = βi-1 + wi ,            wi ~ N(0; W) ,

where yi = Ni   is the response variable, Fi = (1, Ni-1, Ci)
are the considered regressors, vi and wi are defined as be-
fore (with the exception that vi is now a scalar), and the
regression coefficient state-vector follows a random-walk
type of evolution. This non-standard state-space model,
known as dynamic regression model (which is a special
case of the so called dynamic linear model) can be imple-
mented as a DLM, for instance, using the BATS system
(Pole et al., 1994 ; West & Harrison, 1997) or the
PRVWIN System (PRVWIN User´s Guide, 2000) or
STAMP (Koopman et al., 2000; Durbin & Koopman,
2001) or SsfPack  (State-space form Package; Koopman,
et al., 1999; Durbin & Koopman, 2001).

RESULTS AND DISCUSSION

The available data consist, therefore, of two spa-
tial series with 97 observations each : the nitrogen series
and the carbon series. These two series are plotted against
the transect points (Figure 1). The series do not present
any exceptional or extreme points such as outliers or like-
wise (Figures 1A and B). At both series along the transect
points there is a detectable soil heterogeneity previously
assumed (assumption i), since the process level and the
process variability are not totally stable through the space.
This is true since both series present a slow growth in
level from transect point 1 to 80 and a decreasing one
from point 80 to the end of the series, which can be seen
as a process with at least two different regimes. Also, the
series variability, mainly for nitrogen, presents some vis-
ible intervals with very low dispersion (transect points 30
until 40, and points 80 until 97), contrasting with a higher
variability in the other parts of the transect. Therefore,
our assumption i that the process presents local charac-
teristics changing in space seems to be reasonable.
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The data information is initially explored through
an analysis of its correlation structure. The correlation
structure between the two series (Cross-Correlation Func-
tion – CCF) is shown at Figure 2C, where the high value
(near 0.80) for CCF at lag 0 suggests that the carbon se-
ries can be a good predictor for the nitrogen series. This
is in accordance with our assumption iii about using a
variable easy to measure such as the soil organic carbon
to predict a more expensive one such as the soil total ni-
trogen. Also, the significant values for the Auto-Corre-
lation Function – ACF at the first three lags for both se-
ries (Figures 2A and 2B) show the presence of spatial cor-
relation and an autoregressive structure for observations
distant until 6 m in this study. This data can be analyzed
through a state-space model, since it is based on a vec-
tor AR structure (Figures 2A, 2B and 2C).

Model Implementation and Numerical Results
The two classes of models just presented are here

implemented in different versions. The standard state-
space model presented (called from now on Model I) is
implemented in three different versions: (a) without data
transformation; (b) with standard transformation (vari-
ables centered on the mean and divided by its standard
deviation); and (c) with the data transformed from x to
x’.

The dynamic (space-varying) regression model
for the nitrogen series presented in the last sub-session
is implemented in two different versions: in the first one
(called Model II) the regressors are the same as in model
I (lagged nitrogen and lagged carbon), and in the second

one (called Model III) the regressors are carbon and
lagged nitrogen. Since soil carbon is more correlated to
soil nitrogen than lagged carbon (as shown in Figure 2C),
we expect that model III will fit better to the data than
model II.

In practice, all the models have the lagged nitro-
gen as the second regressor and the carbon (or lagged car-
bon) as the first regressor, what is in accordance with any
preliminary data exploration (Figure 2). The implemen-
tation of model I, apart from the data transformations in
versions (b) and (c), are  practically automatic, since most
algorithms for the Kalman filter sequential updating equa-
tions consider a non-informative initialization (it is not
necessary to specify a mean vector and a variance-cova-
riance matrix for the state-vector distribution at the ini-
tial point) as a possible option, usually as default. The
basic difference among the several implementations
(softwares)  available for both state-space approaches are
related to the treatment given to the hyper-parameter ma-
trices (G,V,W), for example, if estimated by the E-M al-
gorithm coupled with the KF as in the ASTSA software

Figure 1 - Spatial data series: soil total nitrogen Nt (1A) and soil
organic carbon C (1B) along the 97 point transect.
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Figure 2 - Estimated spatial correlation structure: Nitrogen ACF
(2A), Carbon ACF (2B) and CCF of Nt versus C (3C).
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or by Bayesian methods (using Markov Chain Monte
Carlo – MCMC algorithms) as in the PRVWIN software,
or other method. For more details about the combination
of the Kalman Filter KF and EM algorithm see, for in-
stance, Shumway & Stoffer (2000), and for the Bayesian
approach see, for instance, West & Harrison (1997). Since
we have mentioned a few model implementation possi-
bilities (softwares), with different characteristics, related
to availability (free or commercial), estimation methods
(Bayesian or Classic) and type of models (Standard State
Space – SSS or Dynamic Linear Models – DLM´s), sum-
mary is presented of this information in Table 1. In fact,
the final results are practically invariant of the particular
implementation (at least the main softwares we have men-
tioned).

The two approaches or classes of models (total
of three models in five different versions) have been fit-
ted to the nitrogen-carbon data, where some parameter
estimation (point and interval) and goodness of fit results
are obtained. In fact, the improvement in goodness of fit
with the R2 measure ranging from 0.752 (Model IA),
0.806 (Model IB), and 0.991 (Model IC) shows that the
performance of the standard state-space model depends,
in this study, on the particular data transformation. For
the Model II, R2 measure is 0.943 and for the proposed
Model III is 0.997, i.e., the proposed method (Model III)
has better fitting performance when compared to Model
II and Model I. However, there are some other advantages
of qualitative nature for the proposed method since: (i)
it does not require data transformation; (ii) the predictor
variables are chosen more freely; and (iii) the model pa-
rameters have a more direct interpretation since it is a lo-
cal regression model. With respect to (i), in general, for
simplicity reasons, we should prefer procedures that do
not depend on data transformations. Regarding (ii), the
fact that the proposed Model III presents a parameter re-
lating soil carbon and soil nitrogen at each point (the key
quantity of interest) which the standard Model I does not
present, is an important differential in favor of the alter-
native procedure. Also, with respect to (iii), since the data

present local characteristics (level and variability) that
change along the transect points, it is not surprising that
the soil nitrogen-carbon model parameter estimates
change in space (Figure 3). In this figure, the interval pa-
rameter estimates are also presented for each point, giv-
ing a more complete information on the soil carbon-ni-
trogen relationship.

The model (III) on line fitting for the nitrogen se-
ries with its two standard deviation confidence intervals
are presented in Figure 4, together with the original data,
showing clearly the good fitting performance, with all the
data points inside the confidence intervals.

The fact that both state-space approaches provide
very good fitting performance (R2 coefficient greater than
0.99) is not surprising since they have a local character-
istic, having the state variable adapted to the data at each
point via Kalman Filter. Therefore, both approaches show
a similar behavior with respect to fitting and predicting
characteristics. On the other hand, they are very differ-
ent regarding to the extraction of qualitative information
from the data, where the two main differences are related
to parameter definition and interpretation. As explained
in this paper, the key parameters for the standard state-
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Figure 3 - Space-varying parameter estimates (carbon coefficient).
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space are the autoregressive coefficients (with the men-
tioned shortcomings) and the key quantities for the alter-
native state-space approach are the space-varying soil car-
bon-nitrogen relationship expressing the soil spatial het-
erogeneity along the transect.
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