Efeito da Variação da Composição do Substrato, Umidade e Inóculo na Produção de *Bacillus thuringiensis* em Fermentação Semi-sólida

Ana I. Catalán¹; Gisele Y. Miyashira²; Ricardo Wagner³; Graciela Benintende⁴; Regina O. M. Arruda⁵; Iracema O. Moraes⁵; Deise M. F. Capalbo⁶

¹Instituto de Investigaciones Biológicas Clemente Estable / Uruguay; ²Universidade de São Paulo/SP; ³Universidade Federal do Paraná/PR; ⁴IMYZA-INTA/Argentina; ⁵Universidade de Guarulhos- Lab. Bioprocessos – Praça Teresa Cristina, 01 – Guarulhos – SP - CEP 07023-070- reginaarruda@hotmail.com; ⁶Embrapa Meio Ambiente/SP

RESUMO

O controle microbiano é um dos processos de controle de pragas mais estudados, e visa a formulação de inseticidas à base de entomopatógenos. Bacillus thuringiensis (Bt) é um biopesticida de ampla aplicação. Trata-se de uma bactéria aeróbica, que durante a esporulação apresenta um corpo cristalino contendo endotoxinas ativas para certos tipos de larvas de insetos. A produção deste bioinseticida pode ser realizada por fermentação aproveitando resíduos agroindustriais como substrato. Recentemente a fermentação semisólida (FSS) tem recebido atenção por apresentar menor produção de resíduos líquidos e obtenção de produto mais concentrado. Durante o III Curso "Fermentação Semi-sólida na obtenção de Bioprodutos"/2002, foi proposto o estudo da produção de esporos de Bt por FSS sob diferentes condições de processo: composição do substrato; umidade e volume de inóculo; tipo de tratamento térmico. As avaliações realizadas indicaram a possibilidade de uso de tratamento térmico não convencional, como opção de processamento de alguns substratos

INTRODUÇÃO

A utilização indiscriminada de inseticidas para controle de pragas desperta o interesse de pesquisadores para o desenvolvimento de métodos alternativos não poluentes. O controle microbiano é um dos mais estudados visando a formulação de inseticidas a base de entomopatógenos para utilização em programas de manejo integrado de pragas (MIP), Arruda,1999. O *Bacillus thuringiensis* (*Bt*) é um pesticida microbiano muito estudado e de ampla aplicação. O *Bt* é uma bactéria aeróbica, gram-positiva, formadora de esporos, que produz um corpo cristalino contendo um ou mais polipeptídeos (endotoxinas) muito tóxicos para certos tipos de larvas de insetos.

A produção destes bioinseticidas pode ser realizada por fermentação aproveitando resíduos agroindustriais de baixo valor comercial como substrato. A fermentação submersa vem sendo amplamente utilizada para a produção de inseticidas em larga escala a base de *Bt* assim como enzimas e antibióticos. Recentemente a fermentação semi-sólida, muito utilizada no oriente para a produção de alimentos, tem recebido atenção por apresentar vantagens como menor produção de resíduos líquidos a serem tratados no final do processo, obtenção de produtos mais concentrados e, que muitas vezes estão prontos para o uso, etc, conforme Del Bianchi, et al., 2001. Hongzhang et al., 2002, também comentam as vantagens do processo e apresentam

um novo tipo de reator cilíndrico, em escala industrial (70 m³) em cujo interior podem ser colocadas bandejas horizontais ou verticais. É dotado de dispositivos para a circulação de ar, que promove a transferência de calor e de massa, sendo o substrato usado para a fermentação em estado sólido de *Bacillus thuringiensis* CM-1, composto de farelo de trigo e bolo de feijão (seco e em pó), na relação 7/3 (peso/peso). Adams et al., 2002, estudaram a utilização de cama de frangos, como substrato fermentativo, analisando o potencial de diversos microrganismos, incluindo o *Bacillus thuringiensis var. japonensis*, através da contagem de unidades formadoras de colônias (UFC) e contagem de esporos, os quais atingiram respectivamente 3.10° e 1. 10° UFC/g.L.

Define-se fermentação semi-sólida (FSS) o processo em que há o crescimento microbiano, e conseqüente transformação do substrato, constituído de materiais sólido umedecidos, na ausência de água livre. A utilização do material sólido pelos microorganismos pode acontecer de duas formas: quando este serve como principal fonte de nutrientes ou quando este é apenas um suporte sólido entre o microrganismo e a fonte de nutrientes¹. A atividade de água do substrato é importante em FSS porque uma pequena quantidade de umidade pode limitar o crescimento e o metabolismo do microrganismo, Pelizer, 1995.

Neste trabalho estudou-se o efeito da umidade, diferentes proporções de quirera de milho e bagaço de cana como substrato e volume de inóculo para a produção de *Bt* var. *israelensis* por fermentação semi-sólida. Avaliou-se também a importância do tratamento térmico no processamento do substrato.

MATERIAIS E MÉTODOS

- Microrganismos e condições de crescimento

Linhagem de *Bacillus thuringiensis* var. *israelensis* - HD 567 (*Bti*), provenientes do United States Departament Agriculture (USDA) que estão liofilizadas no laboratório de Formulação e Fermentações do CNPMA/EMBRAPA (Jaguariúna, SP).

O *Bti* foi re-hidratado, inoculado em tubos de ensaio com meio ágar estéril, levados à estufa por 24 h a 30 °C para desenvolvimento.

Para a pré-fermentação em meio líquido, foram usados frascos Erlenmeyer de 250 mL com 100 mL de caldo nutriente, cuja composição é: extrato de carne 3g/L; peptona 8 g/L; Cloreto de Sódio 8 g/L.

A inoculação foi feita colocando-se assepticamente uma pequena quantidade de microrganismo-estoque ao meio.

A pré-fermentação ocorreu à temperatura ambiente (27 a 30 °C) a 150 rpm, por 24 horas.

- Preparação dos reatores

Como reatores foram utilizadas embalagens de polipropileno de alta densidade, estéreis, de 26,0 cm x 22,5 cm, com bocal hermético de 5,5 cm de diâmetro e capacidade total de um litro (EMBAQUIM Com. Ind. Ltda.)

Aos reatores foram adicionados 100 g de substrato composto por: milho (tipo quirera, adquirida da empresa Yoki Ind. e Com. Ltda.) e bagaço de cana (proveniente da Usina Ester, Limeira, SP), em diferentes proporções. Foram adicionados também 10 mL de água destilada.

O reator, com a tampa semi-aberta, contendo o substrato foi submetido a um tratamento térmico, em forno de microondas, em potência alta (freqüência de microondas de 2.450 MHz), por 2 minutos. Esperou-se 2 minutos para fechamento da tampa do reator.

- Condições operacionais do processo fermentativo

Cada reator foi inoculado com diferentes quantidades do cultivo pré-fermentado, com adição de água destilada estéril para o ajuste de umidade.

Ainda na câmara de fluxo laminar, será permitida a entrada de ar dentro da embalagem plástica, possibilitando que fique uma camada de até 10 cm de altura de ar. Os reatores foram colocados em estufa a 30 °C. A cada 24 horas os reatores foram agitados manualmente e aerados.

- Acompanhamento do processo

Dos reatores 1, 8, 15 e 18 foram retirados cerca de 2 g a cada 24 horas para a determinação de UFC/g e pH. Ao final da fermentação foram retirados 2 g de todos os reatores para as mesmas medidas. Para contagem de unidades formadoras de colônias (UFC) as amostras coletadas foram tratadas com ultra-som (20 minutos), diluídas, submetidas a choque térmico (10 minutos a 80 °C seguido por banho de gelo) (MORAES, R., 1993). O plaqueamento foi realizado em meio sólido e incubados a 30 °C por 24 h.

A análise do pH foi feita utilizando-se, aproximadamente, 0,5 g do meio fermentado, diluído em 9,0 mL de água destilada em tubos de ensaio. Os tubos foram tratados com ultrasom por 20 minutos e mediu-se o pH. Ao final da fermentação, as embalagens foram abertas e secas a 50°C por 24 horas.

- Planejamento experimental

Para verificar a influência das variáveis (composição do substrato, umidade do meio e quantidade de inóculo) fez-se um planejamento fatorial 2³ + configuração estrela, conforme Tabela 1.

Tabela 1:Planejamento fatorial tipo estrela

ENSAIO	MILHO		UMIDADE		INÓCULO		ÁGUA
1	+1	77,5	+1	26	+1	12,5	3,5
2	+1	77,5	+1	26	-1	7,5	8,5
3	+1	77,5	-1	24	+1	12,5	1,5
4	+1	77,5	-1	24	-1	7,5	6,5
5	-1	72,5	+1	26	+1	12,5	3,5
6	-1	72,5	+1	26	-1	7,5	8,5
7	-1	72,5	-1	24	+1	12,5	1,5
8	-1	72,5	-1	24	-1	7,5	6,5
9	-1,6	71	0	25	0	10	5
10	+1,6	79	0	25	0	10	5
11	0	75	-1,7	23,3	0	10	3,3
12	0	75	+1,7	26,7	0	10	6,7
13	0	75	0	25	-1,6	6	9,2
14	0	75	0	25	+1,6	14	1,0
15	0	75	0	25	0	10	5
16	0	75	0	25	0	10	5
17	0	75	0	25	0	10	5

Para a análise dos resultados, utilizou-se o programa STATISTICA.

Foram feitos também 2 ensaios (18 e 19) para verificar a influência do tratamento térmico, as condições foram iguais às do ponto central (ensaio 15), exceto pelo tratamento térmico que não foi realizado.

RESULTADOS E DISCUSSÕES

A Tabela 2 apresenta os resultados em UFC/g após 72 h de fermentação.

Tabela 2 : Unidades	s formadoras d	e colônia final	para cada ensaio.
----------------------------	----------------	-----------------	-------------------

ENSAIO	UFC/g	Log UFC/g
1	1,26E+09	9,10
2	3,94E+09	9,60
3	4,52E+09	9,66
4	4,13E+09	9,62
5	3,18E+09	9,50
6	2,28E+09	9,36
7	4,18E+09	9,62
8	1,86E+09	9,27
9	1,15E+10	10,06
10	7,76E+09	9,89
11	4,76E+09	9,68
12	3,82E+09	9,58
13	1,20E+09	9,08
14	2,54E+09	9,40
15	8,77E+09	9,94
16	6,15E+09	9,79
17	5,23E+08	8,72
18	1,43E+07	7,16
19	1,92E+06	6,28

Para a análise estatística não foram considerados os ensaios 17, devido a problemas experimentais que resultaram em baixo valor de UFC/g, 18 e 19, que não estavam incluídos no planejamento inicial e foram realizados simplesmente para verificar a influência do tratamento térmico. O tratamento estatístico dos dados resultou no seguinte modelo empírico (equação 1), para um limite de confiança de 70% ($\square = 0,3$):

$$logUFC/g = 9.89 - 0.11Umidade^2 - 0.28In\'oculo^2 - 0.12Milho*In\'oculo - 0.09Umidade*In\'oculo (1)$$

Observa-se que os resultados obtidos para *Bacillus thuringiensis israelensis*, em UFC são melhores que os obtidos por Adams et al., 2002, para *Bacillus thuringiensis var. japonensis*.

A influência das diferentes variáveis pode ser vista na Figura 1. Verifica-se que o volume de inóculo, seguido da umidade inicial do meio apresentam maior influência no processo. Analisando-se essas variáveis isoladamente, observa-se que quanto maior o valor destas, menor o valor de UFC/g ao final da fermentação. Ao relacionar as variáveis quantidade de milho no meio e volume de inóculo, observa-se que deve-se utilizar maior quantidade de milho com menor volume de inóculo ou vice-versa, para se obter melhores resultados. O mesmo pode se dizer com a relação existente entre umidade inicial do meio e volume de inóculo.



Figura 1: Efeito das variáveis no valor de UFC/g ao final da fermentação.

Não se observam diferenças estatisticamente significativas com relação às quantidades de milho testadas. Isso é importante porque o milho, apesar de ser a fonte de nutrientes, pode ser utilizado em menores proporções, reduzindo o custo do substrato.

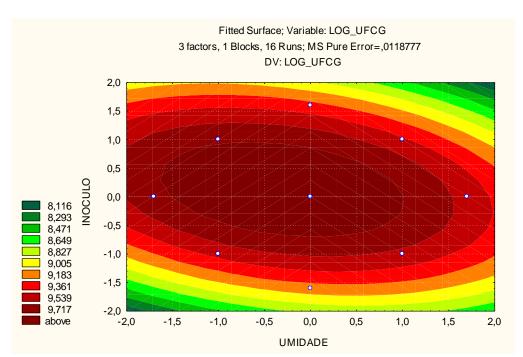


Figura 2: Análise do efeito da umidade inicial e do volume de inóculo no valor de log UFC/g.

Analisando-se a Figura 2, observa-se que o ponto central adotado no experimento (ensaios 15 e 16) estava próximo à condição ótima que corresponde a valores de umidade inicial do meio entre 24,5 e 25 % e de volume de inóculo entre 10 e 11,7 mL.

Os valores de pH variaram entre 5,5 e 6,0 sendo que o pH da água utilizada para as diluições das amostras foi de 6,2. Esta variação é muito pequena se comparada a observada na fermentação submersa em que o pH no final do processo atinge valores superiores a 10. O método empregado pode não ser o adequado para a análise de pH em substrato semi-sólido.

Observou-se que o maior crescimento ocorreu no ensaio 15 (ponto central), o qual resultou em 8,77x10⁹ UFC/g Este resultado está de acordo com a melhor condição de cultivo observada no tratamento estatístico.

Verifica-se que o ensaio 18, realizado sem tratamento térmico do substrato não apresentou crescimento. Isto indica que o tratamento térmico aplicado pode promover a gelatinização do substrato, tornando os nutrientes mais acessíveis ao microrganismo.

CONCLUSÕES

Para as condições de cultivo estudadas, utilizando-se como reator o saco plástico de volume 1 litro, e como microrganismo o *Bacillus thuringiensis* var *israelensis* e 100g de meio de cultivo, conclui-se que:

- o ponto central adotado no experimento estava próximo à condição ótima para esse processo o que corresponde a valores de umidade inicial do meio entre 24,5 e 25 % e de volume de inóculo entre 10 e 11,7 mL
- o volume de inóculo, seguido da umidade inicial do meio apresentaram maior influência no processo e analisando-se essas variáveis isoladamente, observou-se que quanto maior o valor destas, menor o valor de UFC/g ao final da fermentação.

- ao relacionar as variáveis quantidade de milho no meio e volume de inóculo, deve-se utilizar maior quantidade de milho com menor volume de inóculo ou vice-versa, para se obter melhores resultados.
- há necessidade do tratamento térmico do substrato para que este possa ser utilizado pelo microrganismo.

REFERÊNCIAS BIBLIOGRÁFICAS

Adams, T.T., Eiteman, M. A., Hanel, B.M. (2002) Solid state fermentation of broiler litter for production of biocontrol agents. *Bioresource Technology* 82 (1): 33 – 41.

Arruda, R. O. M. (1999) Estudo da fermentação semi-sólida para produção de Bacillus thuringiensis, *Tese de Doutorado*. Universidade de São Paulo/FCF, 92 p.

Del Bianchi, V. L., Moraes, I.O., Capalbo, D.M.F. (2001) Fermentação em estado sólido. In: Schmidell et al. *Biotecnologia industrial* Ed. Edgard Blüecher S. Paulo, v 2: 247 - 276.

Hongzhang, C., Fujian, X., Zhonghou, T., Zuohu, L. (). A novel industrial-level reactor with two dynamic changes of air for solid-state fermentation. *Journal of Bioscience and Bioengineering*, 93 (2): 211 – 214

Pelizer, L. H. (1995) Estudo de fermentação semi-sólida utilizando-se resíduos agroindustriais, *Dissertação de Mestrado*. Universidade de São Paulo.