01.02.70305.07

CONGRESSO NACIONAL DE PESQUISA DE FEILLA O

RESUMOS

08 a 12 de Setembro de 2002 Universidade Federal de Viçosa Viçosa-MG

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE FITOTECNIA

UTILIZAÇÃO DE LODO DE ESGOTO NA CULTURA DO FEIJÃO: EFEITO SOBRE O CRESCIMENTO E FIXAÇÃO SIMBIOTICA DO N,

Rosana F. Vieira¹; Siu M. Tsai² e Manoel A. Teixeira³

Os biossólidos contêm matéria orgânica, macro e micronutrientes, que exercem papel fundamental na produção agrícola, manutenção da fertilidade e estrutura do solo. A mineralização da matéria orgânica fornece também nutrientes para os microrganismos. Em consequência do seu alto conteúdo em N orgânico, o emprego dos biossólidos, em substituição aos fertilizantes nitrogenados, tem emergido como uma forma racional e promissora de utilização desse composto orgânico. O objetivo deste trabalho foi verificar o efeito da aplicação do lodo de esgoto, como fonte de N, no crescimento do feijoeiro e na eficiência da simbiose com estirpes (nativas e selecionadas) de rizóbio.

O experimento foi conduzido em vasos com 5 kg de solo (Latossolo Vermelho-Amarelo) coletado na camada de 0 – 20 cm, na estação experimental da Embrapa Meio Ambiente, em Jaguariúna, SP. Os tratamentos foram distribuídos em blocos ao acaso, com quatro repetições, e constituíram-se de: ausência de adubos químicos e de lodo (T1), adubação química completa (T2), doses 1 (T3), 2 (T4) e 3 (T5) de lodo de esgoto, feijão inoculado recebendo um "start" de nitrogênio (T6), feijão inoculado + dose 1 de lodo (T7), feijão inoculado + dose 2 de lodo (T8) e feijão inoculado + dose 3 de lodo (T9). As doses de lodo foram calculadas levando-se em consideração o teor de nitrogênio do lodo e as necessidades da cultura. Tomou-se como base uma taxa de mineralização do lodo de 30%. A dose 1 (14,8 t ha-1, na base seca) representou a metade do N mineral recomendado para a cultura do feijão, a dose 2 (29,6 t ha-i, na base seca) e a 3 (59,2 t ha-1, na base seca) representaram, respectivamente, a quantidade de N mineral recomendada e duas vezes essa quantidade. Os vasos do tratamento T2 receberam 60 kg P₂O₅ ha⁻¹, 50 kg K₂O ha-1 e 84 kg N ha-1, respectivamente, nas formas de superfosfato simples, cloreto de potássio e sulfato de amônio. O N foi aplicado de forma parcelada, no plantio e aos 15 e 30 dias após a emergência das plantas. O tratamento T6 recebeu 10 kg N ha-1 no plantio. Devido ao baixo teor de potássio no lodo, os vasos com lodo receberam doses adequadas de KCl. O pH do solo foi ajustado por meio da aplicação de 7,9 g de calcário (PRNT = 95%) por vaso.

Quatro sementes de feijão foram plantadas por vaso; após o desbaste foram deixadas apenas duas plantas. Nos tratamentos T6 até T9 as sementes foram inoculadas com inoculante comercial à base de turfa (1kg 50 kg de

Embrapa Meio Ambiente, CP 69, CEP 13820-000, Jaguariúna, SP

²Centro de Energia Nuclear na Agricultura, CP 96, CEP, Piracicaba, SP

³Universidade do Vale do Sapucaí, CP 213, CEP 37550, Pouso Alegre, MG

sementes-1). As avaliações da atividade da nitrogenase, número e peso dos nódulos secos, quantidade total de N e pesos da parte aérea e vagens secas foram realizados aos 46 e 58 dias após a emergência. Os conteúdos de N mineral no solo foram medidos aos 10 dias após a emergência e depois a cada 15 dias até a colheita do feijão. Os vasos foram mantidos com a umidade em torno de 90% da capacidade de campo.

Verifica-se pela Tabela 1 que a presença de lodo de esgoto, nas duas doses menores, estimulou a formação de nódulos no feijoeiro pelas bactérias nativas, apesar dos teores mais altos de N mineral no solo oriundo da mineralização do lodo (Tabela 2).

Tabela 1. Atividade da nitrogenase (μg C₂H₄ vaso⁻¹h⁻¹), número e peso dos nódulos secos (mg planta) em plantas de feijão.

Tratamentos ¹	Dias após a emergência						
	46	58	46	58	46	58	
	Ativ.da nitrogenase		Número de nódulos		Peso de nódulos		
T1	0,27 c ¹	3,82 a	84,66 ef	187,00 c	21,63 d	74,00 d	
T2	'14,58 bc	5,33 a	134,66 de	156,66 c	169,67 c	339,10 bc	
Т3	37,80 a	4,90 a	390,00 ab	331,67 abc	390,47 a	569,87 a	
T4	36,91 a	4,48 a	237,67 cd	278,00 abc	394,03 a	618.97 a	
T5	4,79 c	4,76 a	8,67 f	197,00 с	24,73 d	253,57 cd	
T6	24,42 ab	5,56 a	487,33 a	205,33 bc	307,17 ab	418,30 ab	
T7	10,51 bc	12,75 a	343,00 bc	381,33 ab	226,10 bc	459,93 ab	
T8	13,93 bc	5,00 a	267,33 c	242,00 bc	235,80 bc	511,45 ab	
Т9	6,97 c	4,67 a	277,00 c	452,67 a	136,77 cd	400,85 abo	

¹ Valores seguidos pela mesma letra, na coluna, não diferem significativamente entre si (Duncan, P<0.05%)

Tabela 2. N mineral $(NH_4^+ + NO_3^-, \mu g g^{-1} de solo)$ em solo cultivado com feijão

Tratamentos1	Dias após a em	Dias após a emergência da planta						
	10	25	40	55				
T1	42,42	33,95	15,99	1,75				
T2	52,75	22,23	25,84	4,00				
T3	68,24	34,93	16,00	1,75				
T4	80,25	32,95	16,50	3,75				
T5	102,37	68,86	14,00	6,17				
T6	53,62	29,68	13,62	3,75				
T7	65,87	41,57	16,44	3,00				
T8	85,36	47,60	15,12	3,50				
T9	107,00	49,00	16,83	3,00				

Os dados relativos aos tratamentos T6, T7, T8 e T9 demonstraram tendência de decréscimo no número de nódulos formados pelas bactérias oriundas do inoculante, nas plantas cultivadas na presença de lodo, embora o peso dos nódulos secos não diferisse muito entre esses tratamentos. No tratamento T5 praticamente não ocorreu nodulação, possivelmente em decorrência dos elevados teores de N mineral no solo.

Os tratamentos T3, T4 e T6 não diferiram significativamente entre si quanto à atividade da nitrogense, apesar de se verificar uma tendência à maior atividade dessa enzima nas plantas noduladas com estirpes nativas que receberam as duas menores doses de lodo de esgoto (Tabela 1).

Os maiores teores de N total na parte aérea ocorreram nos tratamentos T4 e T5 (Figura 1). Comparativamente ao tratamento que recebeu adubação química completa, os maiores valores de matéria seca e N total das vagens foram obtidos nas plantas que receberam as duas maiores doses de lodo e que não foram inoculadas (Tabela 3); todos os outros tratamentos, à exceção da testemunha, não diferiram significativamente do tratamento que recebeu a adubação química.

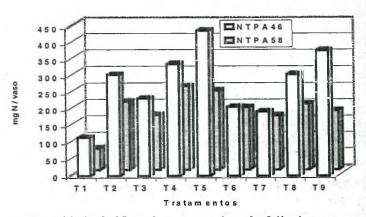


Figura 1. Quantidade de N total na parte aérea do feijoeiro

Tabela 3. Matéria seca (g pl-1) e N total (mg pl-1) das vagens

Tratamentos	Matéria seca das vagens	N total das vagens	
T1	2,88 d	47,11 c	
T2	11,32 bc	192,01 b	
T3	10,25 c	183,23 b	
T4	13,64 a	243,46 a	
T 5	12,95 ab	215,51 ab	
T6	11,16 bc	197,19 b	
Т7	9,59 c	171,08 b	
T8	 11,20 bc	188,29 b	
T 9	11,44 bc	185,56 b	

¹ Valores seguidos pela mesma letra, па coluna, não diferem significativamente entre si (Duncan. P<0,05%)

Este trabalho demonstrou que a aplicação de fertilizante nitrogenado no feijoeiro pode ser substituída , com sucesso, por quantidade adequada de lodo de esgoto. Como os teores de N mineral no solo praticamente não diferiram entre os tratamentos com as duas menores doses de lodo, as quantidades recomendadas deste composto deverá se basear na metade do N necessário à cultura, para se evitar problemas ambientais oriundos da lixiviação e desnitrificação do nitrato no solo. Ficou também evidenciado que a aplicação de lodo pode estimular a nodulação e fixação simbiótica de N_2 em plantas noduladas pelas estirpes nativas de rizóbio.