Fenologia e fertilidade de gemas de variedades de uvas sem sementes no Vale do São Francisco

Patrícia Coelho de Souza Leão Emanuel Elder Gomes da Silva

Fenologia

A fenologia pode ser definida como o ramo da ecologia que estuda os fenômenos periódicos dos seres vivos e as suas relações com as condições ambientais (De Fina e Ravelo, 1973). Na viticultura, a fenologia desempenha importante função pois permite a caracterização da duração das fases do desenvolvimento da videira em relação ao clima, especialmente às variações estacionais, e é utilizada para interpretar como as diferentes regiões climáticas interagem com a cultura, ou seja, fornecem informações ao viticultor para conhecimento antecipado das prováveis datas de colheita, indicando ainda a aptidão climática das regiões para o cultivo e a produção de uva (Terra et al., 1998; Pedro Junior et al., 1993).

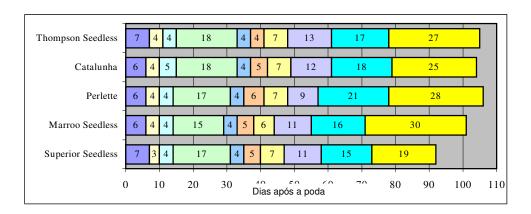
A fenologia varia em função do genótipo e das condições climáticas de cada região produtora, ou em uma mesma região devido às variações estacionais do clima ao longo do ano. A duração das fases fenológicas é, geralmente, condicionada pela disponibilidade térmica das regiões de cultivo, tendo a temperatura do ar estreita relação com o início da brotação e com a fase de florescimento. Em condições de clima tropical, como aquelas predominantes no Vale do São Francisco, a videira vegeta continuamente, não apresentando fase de repouso hibernal. A data de poda passa a ser a referência para o início do ciclo fenológico da videira, que sofre a influência das condições climáticas predominantes durante aquele período.

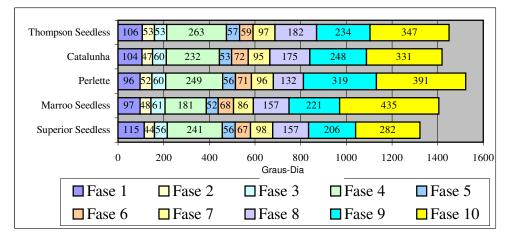
A caracterização das exigências térmicas da videira mediante o conceito de graus-dia tem sido utilizada por diversos autores, sendo um método eficiente para avaliar a duração do ciclo, a produção, a qualidade do produto (Hidalgo, 1980) e prever antecipadamente a data de colheita (Pedro Júnior et al, 1994).

Na viticultura brasileira foram realizados estudos de fenologia e caracterização térmica nas tradicionais regiões produtoras de uva no sudeste e sul do país (Mandelli, 1984; Silva, 1990; Pedro Júnior et al., 1993; Ferri, 1994; Pedro Júnior et al., 1994; Boliani e Pereira, 1996). No entanto, poucos estudos foram realizados sobre a fenologia da videira em condições tropicais (Leão e Pereira, 2001; Leão e Silva, 2003).

Existem diversos sistemas de classificação propostos por diversos autores. Entretanto, de uma maneira geral, podem ser considerados as seguintes fases principais do desenvolvimento da videira adaptando-se a escala BBCH (Lorenz et al.,1995): gemas dormentes (data de poda) à gemas inchadas (1), gemas inchadas à início de brotação (2), início de brotação à 5-6 folhas separadas (3), 5-6 folhas separadas à início de floração (4), início de floração à plena-floração (5), plena-floração à "chumbinho" (6), "chumbinho" à "ervilha" (7), "ervilha" à ½ baga (8), ½ baga à inicio de maturação (9) e início de maturação à maturação plena (10).

Caracterização fenológica e requerimentos térmicos de variedades de uvas sem sementes no Vale do São Francisco


O comportamento fenológico de cinco variedades de uvas sem sementes foram avaliadas durante seis ciclos de produção (dezembro de 2000 à abril de 2002), em Petrolina, PE.


As variedades apresentaram uma variação no número de dias e requerimentos térmicos necessários para completar cada estádio fenológico, de acordo com a época de poda.

A variedade mais precoce foi 'Superior Seedless', cujo ciclo fenológico variou de 85 (podas em junho e outubro de 2001) à 100 dias (poda em janeiro de 2002), com uma média de 91 dias entre o estádio de gemas dormentes à plena maturação. Os requerimentos térmicos nesta variedade, variaram entre 1088 à 1489 graus-dia (podas de junho de 2001 e janeiro de 2002, respectivamente). 'Marroo Seedless' foi a segunda variedade mais precoce, cujo ciclo fenológico variou entre 93 (poda em dezembro de 2000) à 110 dias (poda em junho de 2001), o que correspondeu a duração média de 100 dias desde a poda até a colheita e requerimentos térmicos que variaram entre 1109 a 1489 graus-dia. A duração do ciclo fenológico variou de 88 à 113 dias na 'Perlette', 96 à 110 dias na ' Catalunha' e de 93 à 110 dias na 'Thompson Seedless'. Estas três variedades apresentaram comportamentos semelhantes quanto à duração do ciclo e requerimentos térmicos, respectivamente de 105, 102 e 103 dias e 1514; 1411 e 1441 graus-dia, para as médias das cinco épocas de poda. Esta semelhança é mais evidenciada entre a 'Catalunha' e 'Thompson Seedless', onde a maior diferença na duração do ciclo entre as variedades foi de apenas 6 dias para a poda de outubro de 2002, devido ao fato de se tratar da mesma variedade (Wagner et al, 2003). A variedade Perlette destacou-se entre todas as variedades estudadas por ser a mais tardia e que demanda maior somatório térmico para completar o ciclo.

O estádio fenológico de amadurecimento de frutos compreendido entre o início ao final da maturação foi o que apresentou maior duração em todas as variedades, bem como maior demanda térmica. Nas variedades 'Superior Seedless' e 'Marroo Seedless' a poda que promoveu a maior duração desta fase do ciclo foi aquela realizada no final de janeiro e início de fevereiro de 2002, quando obteve-se respectivamente 31 e 37 dias nas duas variedades. Por outro lado, para as demais variedades, a poda realizada em dezembro de 2000 foi a que proporcionou maior duração deste estádio fenológico, sendo

de 37, 33 e 31 dias para 'Perlette', 'Thompson Seedless' e 'Catalunha', respectivamente. Outros estádios fenológicos que também apresentaram duração mais prolongada que os demais foram a fase final de crescimento de bagas (½ baga à início de maturação) cuja média variou de 15 dias na 'Superior Seedless' à 21 dias na 'Perlette', e o período compreendido entre 4 a 6 folhas separadas e início de floração (15 dias na 'Marroo Seedless', 17 dias na 'Superior Seedless' e 'Perlette' e 18 dias na 'Thompson Seedless' e 'Catalunha'). As fases fenológicas desde ½ baga até final de maturação foram as que exigiram maior somatório térmico em todas as variedades.

Figura 1. Duração média e requerimentos térmicos (graus-dia) das fases fenológicas¹ e do ciclo de poda à colheita de cinco variedades de uvas sem sementes no Vale do São Francisco, Petrolina-PE.

¹ Fase 1: gemas dormentes à gemas inchadas; Fase 2: gemas inchadas à início de brotação; Fase 3: início de brotação à 5-6 folhas separadas; Fase 4: 5-6 folhas separadas à início de floração; Fase 5: início de floração à plena-floração; Fase 6: plena-floração à "chumbinho"; Fase 7: "chumbinho" à "ervilha"; Fase 8: "ervilha" à ½ baga; Fase 9: ½ baga à inicio de maturação; Fase 10: início de maturação à maturação plena.

Fertilidade de gemas

A fertilidade das gemas pode ser definida como a capacidade que estas apresentam para se diferenciar de vegetativas em frutíferas, podendo ser considerada como medida quantitativa do potencial de uma planta em produzir frutos. A diferenciação floral na videira e em outras plantas perenes ocorre durante a fase de crescimento vegetativo do ciclo anterior e envolve três estádios bem definidos: formação dos "anlage", formação dos primórdios de inflorescência e formação das flores (Srinivasan & Mullins, 1981). A diferenciação das gemas tem início nas gemas basais e continua em direção a porção apical da brotação.

Essa característica depende de cada variedade, mas em uma mesma variedade pode sofrer grandes variações de um ciclo para outro, onde o clima pode exercer grande influência sobre a fertilidade de gemas.

A luminosidade diária, temperaturas acima de 30°C e luz solar incidente sobre as gemas são os principais fatores climáticos que atuam sobre o aumento da diferenciação floral (Baldwin, 1964; Buttrose, 1969; 1970; 1974; Rives, 2000; Sommer et al., 2000). Por outro lado, condições de manejo do vinhedo que podem afetar a temperatura e a luz solar incidente, tais como o sombreamento (May & Antcliff, 1963), a direção de crescimento dos ramos (May, 1966), a desponta e a desbrota de ramos (Lavee et al., 1967), os sistemas de condução (Sommer et al., 2000) e outros aspectos do manejo têm sido estudados por diversos autores.

O conhecimento da posição das gemas férteis para cada variedade é de fundamental importância na definição do tipo de poda a ser empregada no vinhedo. Podem ser encontradas referências de resultados obtidos para diferentes variedades, em regiões de produção muito distintas, como o Nordeste do Brasil (Leão e Pereira, 2001), sul do Brasil (Tonietto e Czermainski, 1993), Venezuela (Valor e Bautista, 1997), México (Murrieda, 1986) e Itália (Sansavini e Fanigliulo, 1998). Entretanto, existem poucas informações sobre o comportamento de variedades em condições de clima tropical, como aqueles predominantes no Vale do São Francisco. Esse conhecimento é um importante subsídio para se estabelecer técnicas mais racionais de poda que resultem no aumento de produtividade dos vinhedos.

Comportamento de variedades de uvas sem sementes em relação a brotação e fertilidade de gemas no Vale do São Francisco

Superior Seedless:

As podas que promoveram as menores porcentagens de brotação e fertilidade de gemas foram realizadas em dezembro de 2000 e fevereiro de 2002. Para a poda de dezembro de 2000, houve uma brotação de 49,21% e uma fertilidade de gemas de apenas 4%. Em fevereiro de 2002, a brotação foi 68,77% e a fertilidade de 5%. Os melhores resultados foram obtidos na poda de abril de 2002 quando

houve 79,58% de brotação e 21% de fertilidade (Quadro 1). Pode-se observar que a frutificação depende de uma boa brotação das gemas, sendo, portanto, de grande importância a realização do manejo adequado para induzir brotações satisfatórias e consequentemente, se obter a produtividade desejada.

As médias de brotação e fertilidade de gemas de todos os cinco ciclos estudados foram de 70,0% e 12%, respectivamente.

Na Figura 2, pode-se observar que em três épocas de poda (dezembro de 2000, junho de 2001 e fevereiro de 2002), as porcentagens de fertilidade foram baixas desde a gema 1 até a gema 10, variando de 1,3 a 20,5%. No entanto, nas podas de outubro de 2001 e abril de 2002, ocorreu um aumento da fertilidade a partir da 7ª até a 10ª gema da vara. Isto demonstra que a posição das gemasfertéis é muito variável em função da época da poda, influenciada pelas condições climáticas do ciclo anterior.

Perlette

A fertilidade de gemas na variedade Perlette variou de 14,3 à 22,0% entre as cinco épocas de poda, com uma média de 17%. Observou-se uma variação menor entre as brotações e fertilidade de gemas entre as diferentes épocas de poda do que àquelas da variedade Superior Seedless. Quando a poda foi realizada nos meses de junho de 2001 e abril de 2002, obtiveram-se as maiores fertilidades de gemas, ou seja, 22 e 19,3%, respectivamente. Foram obtidos 61,6% de brotação em dezembro de 2000, com um valor médio para as cinco épocas de poda de 76,6% (Quadro 1). As porcentagens de brotação obtidas foram satisfatórias em todas as épocas de poda.

Observa-se na Figura 2, que as porcentagens de fertilidade de gemas mais baixas aparecem nas gemas basais em todas as épocas de poda, com uma tendência de crescimento, principalmente a partir da 7ª gema da vara, atingindo valores máximos que variaram de 23,7% (7ª gema) na poda de fevereiro de 2002 à 43,8 % (9ª gema) na poda de junho de 2001.

Thompson Seedless

Quando as podas foram realizadas em dezembro de 2000 e fevereiro de 2002, foram observadas porcentagens de fertilidade de gemas muito baixas, isto é, 7,4 e 4,0%, respectivamente. No ciclo iniciado em dezembro de 2000, obteve-se uma brotação média de apenas 30,9%, o que contribuiu para os baixos valores de fertilidade neste ciclo. Nas demais épocas de poda, a brotação variou de 59,8 à 82,1%, com um média para as cinco épocas de poda de 65,6% (Quadro 1), que pode ser considerado uma brotação satisfatória.

Os valores mais altos de fertilidade de gemas ocorreram nos ciclos iniciados em junho de 2001 (19%) e abril de 2002 (26,3%). A fertilidade média para as cinco épocas de poda foi de 13,5% semelhante àquela obtida na cultivar Superior Seedless (12%).

Na Figura 2, observa-se uma tendência de aumento da fertilidade desde as gemas basais até as gemas apicais, sobretudo a partir da 6ª gema, e nas podas de junho de 2001 e abril de 2002. Na poda de junho

de 2001, a fertilidade variou de 3,3 na 1ª gema à 45,3% na 9ª gema, enquanto em abril de 2002, esta variação foi de 7,9 na 1ª gema à 58% na 10ª gema da vara.

Catalunha

As menores porcentagens de fertilidade de gemas nesta variedade foram observadas nos ciclos iniciados em dezembro de 2000, outubro de 2001 e fevereiro de 2002, respectivamente, 7,9; 9,1 e 6,2% repetindo o comportamento obtido nas demais variedades estudadas (Quadro 1). Em dezembro de 2000, obteve-se também uma brotação abaixo da média, e, como consequência, baixa fertilidade de gemas nesta época de poda. A poda realizada em abril de 2002 foi a que promoveu maior fertilidade de gemas (17,1%) com o maior valor na 9ª gema (38,6%) e o menor na 3ª gema (4,9%).

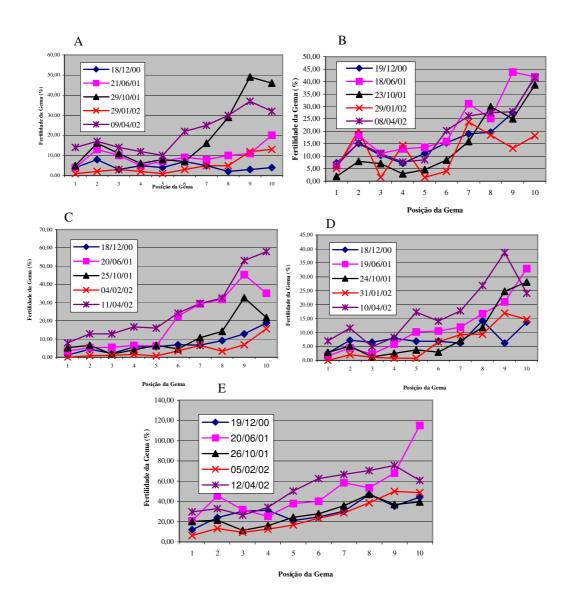
A média de porcentagem de brotação e fertilidade de gemas para as cinco épocas de poda estudadas foi de 62,4 e 10,7%, respectivamente.

Em todas as épocas de poda, a fertilidade aumentou desde as gemas basais até as gemas apicais da vara, podendo-se observar na Figura 2 que a fertilidade foi crescente sobretudo a partir da 6º gema.

Marroo Seedless

A variedade Marroo Seedless destacou-se entre todas as variedades pela sua maior fertilidade de gemas. Nas podas realizadas em junho de 2001 e abril de 2002 foram obtidas as maiores porcentagens de brotação, 94,1 e 82,4% respectivamente, correspondendo a uma fertilidade de gemas de 50% (Quadro 1), valor que pode ser considerado satisfatório.

Assim como nas demais variedades, as podas de dezembro de 2000, novembro de 2001 e fevereiro de 2002 não favoreceram a fertilidade de gemas, obtendo-se valores médios porcentuais de 30,0; 28,1 e 24,8 respectivamente para as três épocas de poda. A média geral para as cinco épocas de poda foi de 71,9% de brotação e 36,7% de fertilidade de gemas.


As gemas localizadas na porção basal da vara apresentaram, de maneira geral, fertilidade de gemas mais elevada que nas outras variedades estudadas. Este é um comportamento positivo desta variedade, pois permite a realização de podas médias, com 6 a 8 gemas. Os menores valores de fertilidade de gemas obtidos variaram de 6,5% (1ª gema) na poda de fevereiro de 2002 até 26,5% (3ª gema) em abril de 2002. A tendência de fertilidade crescente desde a base da vara até o ápice é confirmada nesta variedade conforme pode ser observado na Figura 2, sendo que os valores máximos variaram de 46,6% (8ª gema) na poda de dezembro de 2000 à 115,1% (10ª gema) em junho de 2001.

Quadro 1. Valores médios para brotação e fertilidade de gemas para cinco épocas de poda (2000-2002), em cinco variedades de uvas sem sementes, Petrolina-PE.

	Superior Seedless		Perlette		Thompson Seedless		Catalunha		Marroo Seedless	
Épocas de poda	Brot	Fert	Brot	Fert	Brot	Fert	Brot	Fert	Brot	Fert
	%		%		%		%		%	
12/2000	49,21	4,6	61,6	17,5	30,9	7,4	31,9	7,9	50,2	30,0
06/2001	75,63	9,6	75,6	22,0	82,1	19,0	66,9	13,2	94,1	49,7
10/2001	77,19	19,3	75,3	14,3	59,8	10,8	56,1	9,1	63,1	28,1
02/2002	68,77	4,8	79,2	14,9	77,3	4,0	84,8	6,2	69,9	24,8
04/2002	79,58	21,4	86,1	19,3	77,8	26,3	72,3	17,1	82,4	50,9

Tabela 2. Médias mensais e anuais de temperatura média, insolação e radiação solar global durante os anos 2000-2002, Campo Experimental de Bebedouro, Petrolina, PE.

ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	MÉDIA
Temperatura média (°C)													
2000	25,1	24,8	25,1	24,8	23,7	23,4	24,7	25,7	26,9	25,8	25,8	25,5	25,0
2001	26,1	26,5	25,7	25,5	26,1	23,8	23,7	23,6	25,7	27,3	28,1	27,7	25,8
2002	24,6	25,7	26,6	25,9	25,2	24,0	24,1	24,5	26,1	27,1	27,7	27,0	25,7
Insolação (horas)													
2000	7,1	6,7	6,4	6,5	7,2	6,0	7,2	8,0	7,5	9,1	7,6	7,4	7,2
2001	8,8	6,5	6,9	7,8	8,2	6,1	7,3	7,2	8,5	8,8	9,4	7,5	7,8
2002	5,1	8,7	7,4	7,3	7,2	6,6	6,9	8,6	8,4	9,5	9,9	7,3	7,6
Radiação solar global													
2000	444,8	439,9	409,2	381,4	353,4	319,2	358,9	415,2	420,3	482,0	430,0	422,2	406,7
2001	423,3	405,9	372,8	368,3	347,9	275,0	324,4	346,0	420,4	445,8	475,6	410,0	384,6
2002	364,1	424,3	389,2	380,3	334,0	308,3	316,1	381,8	427,2	463,8	424,2	392,9	384,6

Figura 2. Porcentagens de fertilidade de gemas de acordo com a posição da gema na vara, em cinco épocas de poda nas variedades de uvas sem sementes Superior Seedless (A), Perlette (B), Thompson Seedless (C), Catalunha (D) e Marroo Seedless (E).

Referências Bibliográfica

BALDWIN, J. G. The relation between weather and fruitfulness of the Sultana vine. **Australian Journal of Agricultural Research**, East Melbourne, n. 15, p. 920-928, 1964.

BOLIANI, A. C., PEREIRA, F. M. Avaliação fenológica de videiras (*Vitis vinifera* L.) cultivares Itália e Rubi, submetidas à poda de renovação na região oeste do estado de São Paulo. **Revista Brasileira de**

Fruticultura, Jaboticabal, v. 18, n. 2, p. 193-200, 1996.

BUTTROSE, M. S. Climatic factors and fruitfulness in grapevines. **Horticultural Abstracts**, Farnham Royal, v. 44, n. 6, p. 319-26, 1974.

BUTTROSE, M. S. Fruitfulness in grapevines: the response of different cultivars to light, temperature and day lenght. **Vitis**, Geneva, NY, v. 9, p. 121-125, 1970.

BUTTROSE, M. S. Fruitfulness in grapevines: effects of changes in temperature and light regimes. **Botanical Gazette**, Chicago, n. 130, p. 173-179, 1969.

DE FINA, A. L., RAVELO, A. C. Fenologia. In: DE FINA, A. L.; RAVELO, A. C. **Climatologia y fenologia agricolas**. Buenos Aires: EUDEBA, 1973. p. 201-209.

FERRI, C. P. Caracterização agronômica e fenológica de cultivares e clones de videira (*Vitis* spp) mantidos no Instituto Agronômico, Campinas, SP. 1994. 89f. Dissertação (Mestrado em Fitotecnia) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.

HIDALGO, L. Caracterizácion macrofísica del ecosistema medio-planta en los viñedos españoles. Madrid: Inst. Nac. de Investigaciones Agrarias, 1980. 255 p. (Comunicaciones I.N.I.A. – Producción Vegetal; 29)

LAVEE, S.; REGEV, U.; SAMISH, R. M. The determination of induction and differentiation in grapevines, **Vitis**, Geneva, NY, n. 6, p. 1-13, 1967.

LEÃO, P. C. de S.; PEREIRA, F. M. Estudo da brotação e da fertilidade das gemas de cultivares de uvas sem sementes nas condições tropicais do Vale do Submédio São Francisco. **Revista Brasileira de Fruticultura**, Jaboticabal, v. 23, n. 1, p. 30-34, 2001.

LEÃO, P. C. de S.; SILVA, E. E. G. da. Caracterização fenólogica e requerimentos térmicos de variedades de uvas sem sementes no Vale do São Francisco. **Revista Brasileira de Fruticultura**, Jaboticabal, v.25, n.3, p.379-382, 2003.

LORENZ, D. H.; EICHHORN, K. W.; BLEIHOLDER, H.; KLOSE, R.; MEIER, U.; WEBER, E. Phenological growth stages of the grapevine (*Vitis vinifera* L. ssp. *vinifera*) – Codes and descriptions according to the extended BBCH scale. **Australian Journal of Grape and Wine Research**, v. 1, p. 100-3, 1995.

MANDELLI, F. Comportamento fenológico das principais cultivares de *Vitis vinifera* L. para a região de Bento Gonçalves, RS. 1984. 125f. Dissertação (Mestrado em Agrometeorologia) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.

MAY, P. The effect of direction of shoot growth on fruitfulness and yield of Sultana vines. **Australian Journal Agricultural Research**, East Melbourne, v. 17, p. 491-502, 1966.

MAY, P.; ANTCLIFF, A J. The effect of shadding on fruitfulness and yield in the Sultana. **Journal of Horticultural Science**, Ashford, n. 38, p. 85-94, 1963.

MURRIEDA, A. L. Effecto de la longitud de poda en la fructificacion de vid *Vitis vinifera* L., cultivares Thompson Seedless y Málaga Roja. **Agricultura Tecnica en Mexico**, v. 12, n. 1, p. 39-51,1986.

PEDRO JÚNIOR, M. J.; SENTELHAS, P. C.; MARTINS, F. P. Previsão agrometeorológica da data de colheita para a videira 'Niágara Rosada'. **Bragantia**, Campinas, v. 53, n. 1, p. 113-119, 1994.

PEDRO JÚNIOR, M. J.; SENTELHAS, P. C.; POMMER, C. V.; MARTINS, F. P.; GALLO, P. B.; SANTOS, R. R. dos; BOVI, V.; SABINO, J. C. Caracterização fenológica da videira 'Niagara Rosada' em diferentes regiões paulistas. **Bragantia**, Campinas, v. 52, n. 2, p.153-160, 1993.

RIVES, M. Vigour, pruning cropping in the grapevine (*Vitis vinifera* L.). I. A literature review. **Agronomie**, n. 20, p. 79-91, 2000.

SANSAVINI, S.; FANIGLIULO, G. Fertilità delle gemme e influenza della potatura sullafruttificazione delle uve apirene "Centennial Seedless" e "Sugraone". **Rivista di Frutticoltura**, n. 2, p. 55-60, 1998.

SILVA, A. C., PEREIRA, F. M., MARTINS, F. P. Comportamento de cultivares americanas de videira na região de Jundiaí - SP. **Científica**, Jaboticabal, v. 18, n. 1, p. 61-70, 1990.

SOMMER, K. J.; ISLAM, M. T.; CLINGELEFFER, P. R. Light and temperature effects on shoot fruitfulness in *Vitis vinifera* L. cv. Sultana: influence of trellis type and grafting. **Australian Journal of Grape and Wine Research**, n. 6, p. 99-108, 2000.

SRINIVASAN, C., MULLINS, M.G. Physiology of flowering in the grapevine - a review. **American Journal of Enology and Viticulture**, Reedley, v. 32, p. 47-63, 1981.

TERRA, M. M.; PIRES, E. J. P.; NOGUEIRA, N. A. M. **Tecnologia para produção de uva Itália na região noroeste do Estado de São Paulo**. 2. ed. Campinas: CATI, 1998. 58p. (CATI. Documento Técnico; 97).

TONIETTO, J., CZERMAINSKI, A. B. C. Brotação e fertilidade das gemas da videira 'Cabernet Franc'. **Revista Brasileira de Fruticultura**, Cruz das Almas, v. 15, n. 1, p. 185-192, 1993.

VALOR, O., BAUTISTA, D. Brotacion y fertilidad de yemas en tres cultivares de vid para vino. **Agronomia Tropical**, Maracay, v. 47, n. 3, p. 347-58, 1997.

WAGNER, C. M.; IRALA, P. B.; CAMARGO, U. A.; OLIVEIRA, P. R. D.; GARRIDO, L. da R., MACHADO, C. A. E.; BERND, R. B.; REVERS, L.F. Teste de similaridade entre as cultivares Catalunha e Thompson Seedless utilizando marcadores SSR. In: CONGRESSO BRASILEIRO DE VITICULTURA E ENOLOGIA, 10. 2003, Bento Gonçalves. **Anais**... Bento Gonçalves: Embrapa Uva e Vinho, 2003. P 180 (Embrapa Uva e Vinho. Documentos; 40)

Agradecimentos

Ao BNB (Banco do Nordeste do Brasil) pelo apoio financeiro.