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ABSTRACT: The study of soil property relationships is of great importance in agronomy aiming for a
rational management of environmental resources and an improvement of agricultural productivity.
Studies of this kind are traditionally performed using static regression models, which do not take into
account the involved spatial structure. This work has the objective of evaluating the relation between
a time-consuming and “expensive” variable (like soil total nitrogen) and other simple, easier to measure
variables (as for instance, soil organic carbon, pH, etc.). Two important classes of models (linear state-
space and neural networks) are used for prediction and compared with standard uni- and multivariate
regression models, used as reference. For an oat crop cultivated area, situated in Jaguariuna, SP, Brazil
(22º41’ S, 47º00’ W) soil samples of a Typic Haplustox were collected from the plow layer at points
spaced 2 m apart along a 194 m spatial transect. Recurrent neural networks and standard state-space
models had a better predictive performance of soil total nitrogen as compared to the standard regression
models. Among the standard regression models the Vector Auto-Regression model had a better
predictive performance for soil total nitrogen.
Key words: soil attributes, prediction models, spatial transect, latent variables

REDES NEURAIS E MODELOS DE ESPAÇO DE ESTADOS PARA O
ESTUDO DA RELAÇÃO ENTRE PROPRIEDADES DO SOLO

RESUMO: O estudo da relação entre as propriedades do solo é de grande importância na área
agronômica objetivando um manejo racional dos recursos naturais do meio ambiente e um aumento na
produtividade agrícola. Tradicionalmente este estudo tem sido realizado usando modelos de regressão
estática os quais não levam em consideração a estrutura espacial envolvida. Este trabalho teve o
objetivo de avaliar a relação entre uma variável de determinação mais cara e demorada (por exemplo,
nitrogênio total do solo) e outras de mais barata e rápida determinação (p.e., carbono orgânico do
solo, pH, etc.). Duas importantes classes de modelos (espaço de estados linear e redes neurais) são
usadas para predição e comparadas aos modelos de regressão uni- e multivariados aqui usados como
referência. Para tal, em uma área experimental cultivada com aveia, situada em Jaguariúna, SP (22º41’ S
e 47º00’ W), amostras de um solo classificado como Latossolo foram coletadas na camada arável ao
longo de uma transeção espacial de 194 m, eqüidistantes de 2 m. Os modelos de rede neural recorrente
e de espaço de estados padrão tiveram uma melhor performance preditiva da variável nitrogênio
total do solo quando comparados aos modelos de regressão padrão. Entre os modelos de regressão
padrão o Autoregressivo Vetorial teve um melhor desempenho preditivo da variável nitrogênio total
do solo.
Palavras-chave: atributos do solo, modelos de predição, transeção espacial, variáveis latentes

INTRODUCTION

The relationships among soil properties can be
of great advantage in agronomy as a tool for a more
rational and adequate management of environmental
resources and improvement of agricultural productiv-
ity. The development of models which simulate soil

processes expanded rapidly in the last years. They are
meant for the improvement and understanding of im-
portant processes and act as a tool for clarifying prob-
lems related to agricultural activities and the environ-
ment (McBratney et al., 2002). An example of this is
the application of the state-space methodology to de-
scribe relations between soil and plant (Wendroth et
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al., 2001; 2003; Dourado-Neto et al., 1999; Li et al.,
2001; Stevenson et al., 2001; Timm et al., 2003a;
2003b; 2004).

Recently the artificial neural networks were
also introduced for studying spatial relationships among
such agronomic variables (Pachepsky et al., 1996;
Schaap et al., 1998; Minasny et al., 1999; and more
recently Nemes et al., 2003).

Standard regression equations, expressing re-
lationships between soil properties, were proposed by
Vereecken et al. (1989) and Wösten et al. (1999) who
used them with sand and clay contents, organic car-
bon, and soil bulk density data to solve for the param-
eters of the Van Genuchten (1980) soil water reten-
tion equation. Two important aspects of the use of
these equations are: i. they can only make estimations
inside the used range to derive them, and ii. these tra-
ditional statistical tools (regression models) do not con-
sider the spatial structure of the observations, assum-
ing that they are spatially independent of each other.
Based on these two mentioned aspects, this work has
the objective of evaluating relationships among a time-
consuming and expensive to be measured variable (soil
total nitrogen N) and two other more easily measur-
able and more readily available soil properties (soil or-
ganic carbon C and pH), using statistical models which
involve non-observable or latent variables such as lin-
ear state-space models (with a non-directly observable
state vector) and artificial neural networks (both feed-
forward and recurrent nets).

MATERIAL AND METHODS

July 1998 an oat crop (Avena strigosa) field
experiment (5 ha) was installed in Jaguariuna, SP, Brazil
(22°41’ S and 47°00’ W), on a soil classified as a
Typic Haplustox (420 g kg-1 of sand, 160 g kg-1 of silt,
and 420 g kg-1 of clay content) (Embrapa, 1999). The
conventional tillage practice (one plowing and two
harrowing operations) was used to establish the crop.
A spatial soil sampling scheme of a 194 m spatial
transect was adopted, located in the middle of two con-
secutive contour lines. Soil samples were collected be-
tween rows in the plow layer (0-0.20 m), at points
spaced 2 meters apart, total of 97 observations of each
variable. Samples were air dried, ground to pass a 2
mm sieve and analyzed for soil total nitrogen (STN)
by the Kjeldahl method (Bremner, 1960), for soil or-
ganic carbon (SOC) (Walkey & Black, 1934), and for
pH (Tomé Jr., 1997).

For predicting STN values from SOC and pH,
two main classes of models were considered, both in-
volving latent variables such as state-space models
(both standard and space-varying state-space models)

and artificial neural networks (both feed-forward and
recurrent neural networks). Their performances are
compared between themselves, but also with another
class of simple models considered as a reference, in-
cluding vector and non-vector auto-regressive and non-
linear (non-parametric) regression models. Among the
one-dimensional models the AR (1) models introduced
in this section are considered with correlated errors
and among the vector ones, the vector auto-regres-
sive models – VAR, in their standard and non-standard
versions. For the non-linear regression models the Gen-
eralized Additive Model – GAM (Hastie et al., 2001)
is here implemented via splines and lowess smoothers.
Some theoretical aspects of each class of model used
here are described below.

Prediction Models
Class I: Regression Models
Regression with 1st order auto-regressive error

In this type of regression model, for depen-
dent data (spatial series y

i
 and x

i
, i = 1,…,n) we have

at sample points i:

y
i
 = x

i
β + υ

i

υ
i
 = ϕ

1
υ

i-1
 + ε

i
(1)

ε
i
 ~ N( 0, σ² )

where xi = (1, xi), β is a vector of regression coeffi-
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’s are non-correlated. When

the coefficient ϕ1 is null we have the standard linear
regression model. The regression coefficient estimates
are corrected due to spatial auto-correlation using the
method of the generalized least squares (Greene, 2003).
Here, the response variable yi is the soil total nitrogen
(STN) and the regressor x

i
 is the soil organic carbon

(SOC).

Vector Auto-Regression – VAR model
The VAR Model for a set of variables consists

of a regression of each variable in the system at point
i against the lagged versions of all variables (Greene,
2003). For two variables yi and xi, we have
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where the α’s, β’s, θ’s, γ’s and λ’s are model coeffi-
cients, m is the auto-regressive order (in the applica-
tion, m = 1) and the ε’s are non-correlated errors (as
for instance, gaussian white noise as before).

An alternative version (corrected VAR) is also
considered, where y

i
 is the soil total nitrogen at point

i and xi is the soil organic carbon at point i+1, which
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results in a lagged regressor with index i and not i-1
as in the original VAR model.

Additive Models – GAM
The additive regression model, as well as its

generalized version GAM (Generalized Additive Model),
has a more flexible predictor than the linear regression,
keeping only the assumption of additivity (but not lin-
earity), given by
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where α is a sort of intercept, m is the number of pre-
dictors (in the application, m = 2) and the ε’s are non-
correlated random errors with zero mean and constant
variance as before. The f

i
’s are smooth functions (with

continuous derivatives) that are specified in practice
by typical smoothers such as cubic splines or the
“lowess” – locally weighted scatterplot smoothers
(Cleveland, 1979), which are estimated through a
backfitting algorithm (Hastie et al., 2001).

Class II: Artificial Neural Networks
Feedforward Neural Networks

A feedforward neural network model (Haykin,
1999) can be interpreted as a special case of non-lin-
ear regression (of a more complex type involving la-
tent structures) where the regression coefficients are
the network weights, the independent variables are the
network inputs, the response variable is the network
desirable output, and the fitted (predicted) response is
the network output.

Consider a network with n = 2 inputs x1 and
x2 (soil organic carbon and lagged soil total nitrogen),
k neurons in the intermediate layer, and one output y
which is the predicted soil total nitrogen response. A
network with two layers for this system can be rep-
resented through the scheme (architecture) shown in
Figure 1, where the weights w

ji
 (j=1,…,k, i=0,1,2) are

related do the connection between the inputs and the
intermediate network layer, and W

j
 (j=0,1,…,k) for the

connection between the intermediate layer and the out-
put.

For each intermediate neuron the weighted sum
of the inputs is calculated and then a non-linear dif-
ferentiable function g (called link or activation func-
tion) is applied, given for example by the sigmoidal
function g(x)= (1+e-x)-1. For the output neuron, another
link function h (now given by the identity or linear
function) is applied to the weighted sum of outputs
from the intermediate neurons, resulting in the input-
output relation
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where p (“pattern”) is the observation index.
The process of estimating the network weights

(called training or learning process) is based on the
minimization of the (quadratic) error function (E),
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where y
p
 and pŷ  (given by equation 4) are the ob-

served and predicted values of STN at point p. Con-
sidering the usual method of “backward error propa-
gation” (Haykin, 1999) using gradient algorithms
through the software MATLAB version 6.1
(MathWorks Inc., 2003).

In order to avoid a possible model overfitting
it is important to define an adequate stopping rule for
the iterative algorithm of optimization, and the known
rule of “early stopping” (Haykin, 1999) is considered
here, based on the performance of prediction, and not
fitting performance. In this way, the data set (sample)
is divided in 3 parts: a training sub-sample (which is
used to estimate the weights), an intermediate or vali-
dation sub-sample for implementing the stopping rule,
and a test sub-sample for measuring the network pre-
dictive performance.

The size of the test sub-sample was defined
in two different cases: the last 10 and the first 10
points of the transect. In each case, the validation
sub-sample was defined with 10 points, in sequence,
before the test points (after the training sub-sample
with 77 points). In summary, the 3 sub-samples
were defined respectively with sizes of 77, 10 and
10 in the first case (and 10, 10 and 77 in the second
one), covering the total of 97 observations of the
transect.

On the other hand, the backpropagation algo-
rithm was initialized several times according to the
usual criteria of choosing random numbers around zero
(Haykin, 1999). In this way, different initial weights
were considered as well as different numbers k of neu-
rons in the intermediate layer (between 1 and 10), re-
sulting in an optimal choice (better predictive results)
of k = 2.Figure 1 - Feedforward neural network for the studied system.
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Recurrent Neural Networks
The structure of a recurrent network is based

on a feedforward network with an important modifi-
cation given by the introduction of feedback, which
extends greatly the network ability of modeling the data
dependence in time or space. The outputs from the
intermediate or the output layer are reintroduced as
network inputs after lagging. In this paper the more
common type of recurrent network is considered,
known as Elman network (Haykin, 1999), where the
outputs from the intermediate layer are lagged and re-
introduced as network inputs, as shown in Figure 2.

With this more general network topology the
data auto-dependence structure (spatial auto-correla-
tion) is better modeled because it is not limited to the
standard auto-regressive structures given by the
feedforward networks.

These recurrent networks were implemented
in this work through the MATLAB software, consid-
ering an extension of the backpropagation algorithm
used for feedforward networks, known as “Back
Propagation Through Time” – BPTT, which is one of
the estimation methods most used in practice for this
type of network.

Class III: State-Space Models
Standard Model

In the state-space analysis, the system state
vector at a point p = i is related to the system state at
point i - 1 according to the state equation, given by

xi = Φ xi-1 + wi  (6a)

where xi is the state vector (set of state or latent vari-
ables) at point i; Φ is a matrix of coefficients, and wi,
i = 1,2,…,N are the system noise of perturbations, i.e.,

a random vector with zero mean, constant variance,
null covariances and normally distributed. This is the
structure of a first order vector auto-regressive pro-
cess for the state vector, which is embedded in the
so called observation equation,

yi = Ai xi + vi  (6b)

where the vector of observations y
i
 is related do the

state vector x
i
 through a matrix A

i
 (usually an identity

matrix, as in Shumway, 1988), and the observation
noises v

i
 have zero mean and constant variance, are

non-correlated and normally distributed. The noise
terms w

i
 and v

i
 are supposed to be independent of each

other. For the application, the state vector x
i
 represents

the true values (not observed or latent, that is, free of
measurement error) of soil total nitrogen (STN) and
soil organic carbon (SOC).

The state vector and the parameters in the ma-
trix Φ are estimated through a recursive procedure
based on the Kalman Filter with the EM algorithm (see
Shumway & Stoffer, 2000), and can be implemented
through the software ASTSA, developed by Shumway
(1988).

Alternative State-Space: Regression with Varying
Coefficients

The varying coefficients regression is a par-
ticular case of the dynamic linear model of West &
Harrison (1997). In this model, the state equation de-
scribes the evolution of the regression coefficients θ
through a vector random walk,

θi = θi-1 + wi  (7a)

where w
i
 ~ N (0;W) are non-correlated (white noise).

Figure 2 - Elman's recurrent neural network for the studied system.
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The regression coefficients vector θ is related to the
observable response variable y through the observa-
tion equation,

y
i
 = F

i
θ

i
 + v

i
 (7b)

where Fi is a known matrix containing the regressors,
which reduces to a vector for unidimensional re-
sponses, and v

i
 are non-correlated errors with zero

mean, constant variance and normal distribution.
For the application of the model, y

i
 is the soil

total nitrogen (STN
i
), SOC

i
 is the soil organic carbon

at point i, and F
i
 = (1,STN

i-1
,SOC

i
), The parameter se-

quential estimation is made through the Kalman Filter,
using the software BATS (Pole et al., 1994).

The prediction performance of the models is
evaluated in terms of the distance between the ob-
served and predicted values of soil total nitrogen STN.
The statistical measures considered were the Mean
Square Error – MSE and the Mean Absolute Percent-
age Error – MAPE.

The MSE measure is given by the following
expression:

(8a)

where N is the total number of observations, y
i
 is the

observed variable at point i and iŷ  is the correspond-
ing predicted value.

The MAPE measure is given by
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RESULTS AND DISCUSSION

The spatial distributions of soil total nitrogen
STN (Figure 3A), soil organic carbon SOC (Figure 3B)
and soil pH (Figure 3C), for the 0-0.20 m layer, along
the 194 m spatial transect, indicate the range of varia-
tion of STN along the spatial transect of 0.99 g kg-1

(minimum value at point 9) to 1.54 g kg-1 (maximum
at point 77), with a mean value of 1.26 g kg-1. N is
the nutrient of the highest dynamics in the soil (Tomé
Jr., 1997), i.e., it changes in a fast and intensive way
to different forms (mineral, organic, etc.) and these
transformations are influenced by a high number of
factors such as soil temperature, water content, aera-
tion, drying and wetting cycles, type of organic ma-
terial, microorganisms, soil pH, soil management, etc.
Due to this complexity, according to Tomé Jr. (1997),
there is no laboratory methodology capable to integrate
this high number of factors to yield a soil available N
index for plants grown on different soils and environ-

ments, a view point that strengthens our objective of
relating it to dependent variables.

The spatial distribution of the SOC along of
transect presents (Figure 3B) mean, maximum and
minimum values of 20.65, 27.2 and 16.05 g kg-1, re-
spectively. It can also be seen that there is a great os-
cillation of SOC at the initial part of transect, passing
to a relative spatial stability at the middle part, and again
an oscillation at the end. According to Mello et al.
(1984), knowing SOC of a soil sample it is possible
to estimate soil organic matter through the factor 1.72
(it is considered that the humidified organic matter in
the soil contains a mean value of 58% of carbon). Us-
ing this factor we calculated the spatial distribution of
soil organic matter SOM (gC kg-1 of soil). The range

Figure 3 - Spatial distribution of the soil total nitrogen STN (A),
soil organic carbon SOC (B) and soil pH in water (C)
data set along the 194 m spatial transect at points
spaced 2 m apart.
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of variation of SOM was 27.6 g kg-1 to 46.8 g kg-1,
with a mean value of 35.5 g kg-1. This mean value of
SOM is somewhat higher in relation to the 25 to 30 g
kg-1 range of SOM for clayey soils under conditions
of tropical and subtropical climates (high temperatures
and excessive humidity) as in most parts of Brazil
(Tomé Jr., 1997).

From the SOC (Figure 3B) and STN (Figure
3A) data sets, the spatial distribution of the C/N ratio
was calculated along the transect. Its mean is 16 with
a coefficient of variation (CV) of 19.3%. This rela-
tively high C/N value can be attributed to the fact that
the field was covered by dense natural vegetation which
was incorporated into the soil. According to Sikora &
Stott (1996), the average C/N ratio for mineral soils
is of approximately 10; and ratios above this value can
indicate recent additions of dung or plant residues.
Great deviations of the 10 C/N ratio can also indicate
a state of unbalance which reflects the SOC and STN
dynamics and consequently the energy availability (C)
for soil microbiological processes and mineral N avail-
ability (ammonium and nitrate) for the plants and soil
microorganisms.

Soil pH (Figure 3C) varied from a minimum
of 4.0 to a maximum of 5.3. According to Tomé Jr.
(1997), this soil is classified as a high acid (≤ 5.0) to
a mean acid (5.0 ≤ pH ≤ 5.9) and comments that the
plants in nutrient solution support pHs from 3.0 to 3.9
without damage to their development if nutrients in
solution are kept available by chemical means. In the
soil, however, pH values lower than 4.5 or higher than
7.5 are restrictive to the plant growth because these
values indicate the existence of several unfavorable
conditions to plants such as lack of calcium Ca and
magnesium Mg, high contents of aluminum Al, high
fixation of phosphorus P (pH value lower than 4.5)
and micronutrient deficiency and/or salt excess (pH
value higher than 7.5). Based on the above discussion
and on an analysis of Figure 3C it is possible to verify
that the observed soil pH values along of the spatial
transect do not present restrictions to the development
of the oat crop because there is a predominant range
of observed pH values above pH of 4.5. We observed
only five values lower than this limit, i.e., points 19,
22 and 58 (pH 4.4), point 84 (pH 4.1) and point 95
(pH 4.0).

The lowest CV was for soil pH and the larg-
est for soil organic carbon SOC, i.e., the spatial dis-
tribution of the SOC presents the largest dispersion in
relation to its mean (=20.65 g kg-1). The spatial varia-
tion of STN values in relation to its mean (=1.26 g
kg-1) was 7.6%. It can be seen that under a global point
of view, the complete data set presents a low range
of variation in relation to their means, i.e., CV ranged

from 4.5 to 10.8%, which indicates a certain spatial
homogeneity, all variables presenting low spatial vari-
ability. On the other hand, a local point-to-point fluc-
tuation of each variable along the spatial transect is
possible to be observed. This observed local variation
is due to the fact that soil spatial variability can occur
at different levels, related to different factors, such as
changes in soil parent material, climate, relief, organ-
isms and time, i.e., related to the processes of soil for-
mation and/or effects of management practices adopted
for each agricultural use (McGraw, 1994). This ob-
served point-to-point fluctuation of all series due to soil
heterogeneity, i.e., soil natural spatial variability, may
suggest the use of local models (e.g. state-space mod-
els) instead of global models (e.g. standard multiple
regression) which ignore the local spatial variability of
the data set leading to an incomplete analysis of soil
property relationships (Wendroth et al., 1998; Nielsen
& Wendroth, 2003).

The dispersion diagrams (also called scatter
plots) between the STN and SOC (Figure 4A) and
STN and pH (Figure 4B) show that there is no (linear
or nonlinear) relation between STN and pH indicating
that this relation can not be expressed by dynamic lin-
ear systems (e.g. state-space models) and neural net-
work models (no-linear models); on the other hand,
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Figure 4 - (A) Dispersion diagram between the soil total nitrogen
STN and soil organic carbon SOC data set showing a
strong linear dependence between the variables; and
(B) Dispersion diagram between the soil total nitrogen
STN and soil pH data set showing a non-correlation
structure (nor linear nor non-linear) between the
variables.
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Figure 4A shows the linear relation (R2 coefficient of
0.5787) between the STN and SOC collected at the
same spatial point on the transect.

The STN and SOC dependence in relation to
their nearest neighborhood using the simple and par-
tial autocorrelation functions ACF is shown in Figure
5. Using the t test at the 5% probability, the simple
ACF of STN data (Figure 5A) manifests significant
correlation up to 3 lags or 6 m, i.e., observations sepa-
rated by a distance of less than 6 m would be expected
to yield small variations of STN values along most
parts of the transect. According to Nielsen &
Wendroth (2003), the ACF is a primary diagnostic
measure that indicates if we will be able to obtain a
spatial or temporal interpretation of on-site sampled
data. From Figure 5B an auto-regressive process of
1st order for the STN series is suggested, i.e., the cal-
culated partial auto-correlation coefficient (PACF) in-
dicates a spatial dependence of 1 lag or 2 m using the
t test at the 5% probability. For the SOC series (Fig-
ure 5C), it can be observed that the adjacent observa-
tions of SOC are independent among themselves at dis-
tances larger than 4 m or 2 lags indicating that obser-
vations separated by a distance of large than 4 m
would be expected to yield different values of SOC
ignoring the additional information on the spatial cor-
relation structure.

The spatial dependency between the STN and
SOC data sets in their neighborhood can be calculated
by the cross-correlation function (CCF). From the
CCF magnitude it is possible to express how strong
the spatial dependence is between the variables which
are being used (Reichardt & Timm, 2004). Here, we
identify (Figure 5D) a covariance structure between
STN and SOC up to 6 m in both directions using the
t test at 5% of probability. Therefore, we recognize
the potential for describing their distributions across
the transect of observations by the standard state-space
model (Shumway & Stoffer, 2000) and the space-
varying state-space model (West & Harrison, 1997).
The analysis of Figure 4A looks promising for the use
of neural network models, suggested by a possible
non-linear relation between the STN and SOC. From
this figure we can see that the slope in the extremes
of the dispersion diagram is higher than the slope in
the middle and therefore the relation can be expressed
as a segmented linear one, what is a global non-linear
relation.

Therefore, this brief descriptive and explor-
atory data analysis of both STN and SOC series (Fig-
ures 3 to 5) suggests that the soil total nitrogen at each
point could be reasonably predicted by the soil organic
carbon at the same spatial point and by the soil total
nitrogen at the nearest neighbor.
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Figure 5 - (A) Simple auto-correlation function ACF for soil total nitrogen STN observations; (B) Partial auto-correlation function
PACF for soil total nitrogen STN observations indicating a 1st order auto-regressive process; (C) Simple auto-correlation
function ACF for soil organic carbon SOC observations; and (D) Cross-correlation function CCF between the soil total
nitrogen STN and soil organic carbon SOC data set.
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Model performances
The models were adjusted in two versions. For

the first version, the last 10 transect points of STN
were omitted in order to make their prediction (Table
1). For the second, the first 10 points of STN were
omitted with the same objective (Table 2). As already
mentioned, the statistical measures considered for com-
parisons between models were the MSE (equation 8a)
and the MAPE (equation 8b).

It can be seen that among the models without
latent variables, i.e., among the true regression mod-
els, the original VAR model gives the worst results (in-
dependent of the statistical measure considered, MSE
= 0.00713 and MAPE = 0.0639) since, in this case,
unlike other models it uses the lagged SOC as a re-
gressor variable and not the SOC value at the same
point, which has a stronger linear relation with STN
as shown in Figures 4A and 5D. The corrected VAR
shows the best results among the regression models,

for which the minimum values of MSE (=0.00350) and
MAPE (=0.0395) were found. This model has the SOC
as a more appropriate predictor measured at the same
point in space, which is consistent because this model
although being a global model (i.e., the coefficients of
equations 2a and 2b are fixed and constants along the
space), is presented as a bi-dimensional system com-
posed of two equations which treat the dynamics of
the relation between STN and SOC in the soil in a more
adequate way, i.e., there is no a hierarchy between vari-
ables, both being treated in the same way, considered
as random variables. The standard linear regression
model (scalar model) is, also, a global model. It, how-
ever, is presented as a unidimensional system with a
hierarchical treatment between STN and SOC variables
(only the variable STN is considered a random vari-
able). Therefore, both statistical performance measures
(MSE = 0.00388 and MAPE = 0.04031) gave higher
values as compared to the corrected VAR model. The

Table 1 - Predictive performance (10 last transect points) of standard regression, of state-space and of neural network
models, for soil total nitrogen STN.

sledomnoitciderP
serusaemlacitsitatS

ESM EPAM

tnetaltuohtiw
elbairav

noissergeRralacS
raenildradnatS 88300.0 10340.0

rorre)1(RA 98300.0 97240.0

noisserger-otuArotceV
RAVdradnatS 31700.0 09360.0

RAVdetcerroC 05300.0 50930.0

noissergercirtemarap-oN
senilps/MAG 53400.0 95340.0

ssewol/MAG 16300.0 48040.0

tnetalhtiw
elbairav

skrowtenlaruenlaicifitrA
drawrofdeeF 31300.0 72730.0

tnerruceR 97200.0 99530.0

sledomecaps-etatS
dradnatS 69000.0 20320.0

cimanyD 88200.0 06930.0

Table 2 - Predictive performance (10 first transect points) of standard regression, of state-space and of neural network
models, for soil total nitrogen STN.

sledomnoitciderP
serusaemlacitsitatS

ESM EPAM
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elbairav

noissergeRralacS
raenildradnatS 38400.0 56640.0

rorre)1(RA 57400.0 10640.0
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RAVdradnatS 31700.0 09360.0
RAVdetcerroC 32400.0 85340.0

noissergercirtemarap-oN senilps/MAG 39700.0 38550.0

tnetalhtiw
elbairav

skrowtenlaruenlaicifitrA
drawrofdeeF 44300.0 89830.0

tnerruceR 31200.0 72820.0

sledomecaps-etatS
dradnatS 41300.0 29140.0
cimanyD 70400.0 98540.0
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GAM model (in its best performance version, i.e., the
lowess) presented a MSE of 0.00361, slightly higher
than the corrected VAR (MSE of 0.00350), however,
similar values as compared in terms of the MAPE mea-
sure (=0.04084). Such performance of this model is
due to the fact it incorporates non-linear (Figure 4A)
and local characteristics, i.e., it does not ignore the
spatial correlation structure between the STN and SOC
variables along the transect taking into consideration
the information the variables carry in function of their
neighborhood.

Among the models with latent variables, the
standard state-space model (linear and local charac-
teristics), independent of the statistical measure con-
sidered, presented the best prediction performance for
the 10 last transect points (MSE = 0.00096 and MAPE
= 0.02302) followed by the non-linear recurrent neu-
ral network model (MSE = 0.00279 and MAPE =
0.03599). Such performance can be due to the fact
that the state-space model expresses the local linear
behavior of the 10 last STN values of the transect (Fig-
ure 3A). The recurrent neural network takes into ac-
count the local characteristic of the spatial dependence
structure between STN and SOC data (Figure 5D) by
data feedback (Figure 2) expressing in this way the
point-to-point spatial variability of STN. On the other
hand, the feedforward neural network is a non-linear
and global model which does not express this point to
point fluctuation (Figure 3A). In the same way, the
static linear regression models, intensively used in
agronomy, are global models whose regression coef-
ficients are mean values which do not change along
space, therefore not expressing the point to point fluc-
tuations of the variable under study. This can lead to
misunderstandings that might induce inadequate pro-
cedures of soil management (Nielsen & Alemi, 1989).
Beyond this, the response of the variable is not unique
along the experimental transect, frequently yielding low
coefficients of determination when compared to the
dynamic models, as shown by Timm et al. (2003b;
2004).

In Table 2 we considered only one version of
the GAM models (GAM/splines) because the other ver-
sion (GAM/lowess, implemented by the SAS software)
has a restriction with respect to the regression value
for prediction (it must be inside the interval of used
data), which is not satisfied for these particular data
sets. Observing Table 2, the best predictive perfor-
mance of the corrected VAR model (MSE = 0.00423
and MAPE = 0.04358) can also be seen for the 10 first
STN values of the spatial transect in relation to the
other regression models without latent variables. The
best performance, however, to predict STN among the
latent variable models (and among all models) was

given by the recurrent neural network (MSE =
0.00213 and MAPE = 0.02827).

Tables 1 and 2 also indicate that the use of dy-
namic linear models (state-space models) which take
into account the local spatial dependence structure, as
well as the feedforward (no-linear and global charac-
teristics) and recurrent (no-linear and local character-
istics) neural networks give the best STN predictions
of the 10 last and 10 first STN values of the spatial
transect, i.e., the statistical measured values of MSE
and MAPE were lower when compared to the regres-
sion models (without latent variables) considered as
standard methods for comparison studies. Both state-
space and neural network models have in their essence
the philosophy of the use of state variables which are
not observed directly during the different processes
which occur simultaneously in the complex atmo-
sphere-plant-soil system, although they belong to the
used algorithms for practical implementation of these
models.

CONCLUSIONS

The relationships between soil total nitrogen
(STN) and soil organic carbon (SOC) analyzed using
two important classes of latent models (state-space and
neural networks) and their predictive performances
compared with standard regression models, show that
latent variable models had a better performance as
compared to those without latent variables. The recur-
rent neural network had a better performance as com-
pared to the feedforward neural network. The stan-
dard state-space model had a higher predictive capac-
ity as compared to the regression with varying coef-
ficients. The corrected VAR model gave the best pre-
dictive performance of STN values among the mod-
els without latent variables.
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