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From Heuser et al., page 20; Numerical Simulations of the Role of Land Surface Conditions on the Climate of  Mt. Kilimanjaro Region

Figure 1: Kilimanjaro Ice Extent: February 1993 and February 2001

CLIVAR is an international research programme dealing with 
climate variability and predictability on time-scales from 
months to centuries.  CLIVAR is a component of the World 
Climate Research Programme (WCRP). WCRP is sponsored by 
the World Meteorological Organization, the International 
Council for Science and the Intergovernmental Oceano-
graphic Commission of UNESCO.
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Editorial

WCRP is considering its future.  Hence, a key issue discussed 
by the Joint Scientific Committee (JSC) for WCRP when it 
met in Arcachon, France, last April was how to evolve the 
structure of WCRP to meet changing science priorities and 
societal needs and how to transition the work undertaken 
by the WCRP projects (CliC, CLIVAR, GEWEX and SPARC) 
to meet the challenges of the 21st century. The programme’s 
evolution is seen as taking place on two time horizons – firstly 
to 2013 (the approximate previously declared “sunset dates” 
of the projects) and secondly into the next decade beyond. 
Consequently, all four of the WCRP core projects and the 
WCRP Working Groups have been asked to contribute to (a) 
developing a near-term “implementation” plan for WCRP 
against the priorities set out in the WCRP Strategic Plan 2005-
2015 (subtitled “Coordinated Observation and Prediction of 
the Earth System”, COPES [http://wcrp.ipsl.jussieu.fr]);  (b) 
the development of an “accomplishments” document setting 
out WCRP’s achievements for presentation, for example, at 
the upcoming World Climate Conference-3 (WCC-3) and 
other climate fora and (c) identifying how WCRP should 
evolve in the longer-term, beyond the 2013 timeframe.  
To gather in the needed views and inputs, CLIVAR together 
with the other components of WCRP, has been asked to 
prepare a response to a number of detailed questions 
including:
1. What will be the key science issues your project aims to 

address over the coming years, to 2013?
2. What elements of this science do you see as needing to be 

taken forward beyond thet?
3. What new science do you see WCRP needing to address 

beyond 2013 in the context of your project?

4. How is your project addressing the unifying cross-cutting 
foci of WCRP

5. What will be the major key legacy items of your project by 
2001, and beyond?

CLIVAR is addressing these requests by asking its panels 
and working groups to identify what they see as the 
“imperatives” and  “frontiers of research on climate 
variability and predictability and the research infrastructure 
needed to support them”.  At the same time the ICPO 
is developing a draft response to the detailed questions 
from the JSC and which the panel responses will feed into.  
The resulting document will then be made available for 
community comment and further input before sending 
it to the JSC early in the New Year.  Further subsequent 
community discussions can be expected, refining the 
document for CLIVAR’s input to JSC-30 when it meets 
in Baltimore in April 2009. Outcomes of JSC-30 and the 
way forward for CLIVAR science will provide the focus 
for the discussions at CLIVAR SSG-16 in May. Overall this 
activity is a key opportunity for the CLIVAR community to 
influence the future of WCRP and its structure, to the benefit 
of international coordination of climate science.  I hope to 
report on progress in future issues of “Exchanges”.
This edition of Exchanges contains papers on various aspects 
of CLIVAR science demonstrating it’s breadth.  We welcome 
further such inputs for future editions (see front cover).  In 
addition, I would be pleased indeed to receive community 
requests for further “themed” editions such as we have 
had in the past. 

Howard Cattle 
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Abstract
For applied climate risk management the probability 
distributions of decision variables such as rainfall, likely 
dates of climatic events (e.g. frost, onset of the wet season), 
crop yields or economic returns can be expressed as 
cumulative distribution functions (CDFs) or probability 
exceeding functions (PEFs). Such functions are usually 
derived from empirical or modelled time-series. For forecast 
purposes in regions impacted by e.g. the El-Nino Southern 
Oscillation (ENSO), such functions can be categorised by 
oceanic or atmospheric indexes (e.g. sea surface temperature 
anomalies, southern oscillation index). These then allow 
objective climate impact assessments.  Although intuition 
suggests that the degree of uncertainty associated with 
CDF estimation could impact decision making, quantitative 
information regarding the uncertainties surrounding 
these CDFs is rarely provided.  Here we propose Cox-
type regression models (CRMs) as a powerful statistical 
framework for making inferences on CDFs in the context of 
seasonal climate risk assessments. CRMs are semi-parametric 
approaches especially tailored for modelling CDFs and 
associated risk measures (relative risks, hazard ratios) and 
are usually applied to time-to-event data in other domains 
(e.g. medicine, engineering, social and political sciences). 
Beyond providing a powerful means to estimate CDFs 
from empirical data, the Cox approach allows for ranking 
and selecting multiple potential predictors and quantifying 
uncertainties surrounding CDF estimates. Well-established 
and theoretically sound methods for assessing skill and 
accuracy of Cox-type forecast systems are also available. 
To demonstrate the power of the Cox approach, we present 
two examples: (i) estimation of the onset date of the wet 
season (Cairns, Australia) and (ii) prediction of total wet 
season rainfall based on historical records (Quixeramobim, 
Brazil). This study emphasises the methodological aspects 
of CRMs and does not discuss the merits or otherwise of 
the ENSO-based predictors. We conclude that CRMs could 
play an important role in making GCM output more relevant 
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for decision makers through the provision of application-
oriented downscaling techniques. 
Introduction
Managers of climate-sensitive industries can incorporate 
probabilistic forecasts of alternative management options as 
long as the associated uncertainties are clearly spelled out 
(Nelson et al., 2007). This is particularly true for agriculture 
and related sectors where proactive adaptation to climate risk 
is becoming increasingly important (Meinke and Stone, 2005; 
Howden et al., 2007). Operational climate risk management 
requires knowledge about the likely consequences of the 
future state of the climate systems. Often variables of 
interest (Y), such as time of onset of the wet season (Lo et 
al., 2007), rainfall, crop yields (Meinke et al., 1996) or return 
on investment (Twomlow et al., 2008) are provided as CDFs 
[P(Y≤y)] or PEFs [P(Y>y)]. Such probabilistic representation 
of decision variables helps risk managers to conduct rapid 
assessments of management options. CDFs/PEFs are 
particularly convenient to summarise time series that are 
not or only weakly auto-correlated. However, if time series 
are moderately to strongly auto-correlated, a CDF/PEF 
summary will result in the loss of some information. The 
decision variables in our study (likely time to wet season 
onset and seasonal rainfall amounts) are at most weakly 
auto-correlated, thus allowing the CDF/PEF representation 
to convey seasonal climate information (Maia et al., 2007).
Here we propose the use of Cox-type regression models 
(CRMs), a statistical approach that includes the Cox 
regression model (Cox, 1972) and its generalizations. 
By using theoretically sound likelihood-based methods, 
CRM allows for estimating CDFs and their uncertainties, 
ranking and selecting multiple risk factors and quantifying 
their impacts on probabilistic outputs of seasonal forecast 
systems. CRMs are semi-parametric approaches especially 
tailored for modelling CDFs and associated risk measures 
(relative risks, hazard ratios) arising from time-to-event 
data in other domains (e.g. medicine, engineering, social 
and political sciences; Allison, 1985).
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Our main objectives are to (i) introduce the Cox approach 
to climate scientists; (ii) demonstrate the power of CRMs 
for statistical climate forecasting and suggest its use for 
downscaling GCM output, (iii) provide methods for 
quantifying the degree of uncertainty of probabilistic 
forecasts and (iv) extend the use CRMs by replacing time-to-
event variables with other quantities of interest (e.g. rainfall). 
Using examples from two locations (Cairns, Australia and 
Quixeramobim, Brazil), we outline in detail the use of these 
techniques, including their potential pitfalls. 
Background
CDFs are commonly used to summarize information from 
studies in biomedical, social and engineering research where 
the objective is to model the time until the occurrence of a 
certain event such as death, equipment/component failure, 
divorce or unemployment. The statistical approaches for 
making inferences about CDFs are referred to as survival 
analysis, reliability analysis or event history analysis in the 
fields of medicine (Collett, 1994), engineering (Crowder et 
al., 1991) and social sciences (Yamaguchi, 1991), respectively. 
Survival analysis comprises many tools, including 
parametric, semi-parametric and non-parametric methods 
for estimating and comparing CDFs (Lawless, 1982). 
Survival analysis also allows for the inclusion of incomplete 
information, referred to as censored data1 . For instance, 
when studying wet season onset, censored data can occur, 
when in dry years the criteria for ‘onset’ is not reached until 
the end of the defined wet season period (Lo et al., 2007). 
Recently, some authors have proposed the use of survival 
analysis as an innovative tool for modelling time-to-event 
variables in natural sciences: Anthony et al. (2007) used 
a CRM to assess the risk of coral mortality in response to 
temperature, light and sediment regime, while Gienapp 
et al. (2005) discuss the utility of survival approaches for 
predicting phenology under climate change scenarios. 
In spite of its traditional use and recent extensions to 
other domains, survival analysis has rarely been used for 
seasonal climate risk assessments (e.g. Maia and Meinke, 
1999; Maia et al., 2007). Here we focus on Cox regression 
models (Cox, 1972) as a methodological framework for 
empirical-statistical seasonal forecasts of climate-related 
variables. However, the approach could equally be applied 
to CDFs generated by other means, such as coupled ocean-
atmosphere models.
The original Cox model assumes proportional hazards (PH), 
a property related to the absence of interaction between 
predictor and predictant. This constitutes the simplest 
Cox-type model and will hereafter be referred to as CoxPH 
model. In the absence of an appropriate time-dependent 
covariate, Cox models simply assume an average effect over 
the range of observed data (Allison, 1995). However, a great 
variety of generalizations for the CoxPH model are available, 
allowing for adequate modelling of non-proportional 
hazards, if necessary.
In summary, the main advantages of using the Cox 
approaches in climate risk assessments include:
• CRMs do not require assumptions regarding the 

type of underlying probability distributions of the 

climate-related variable being modelled (in contrast 
to, for instance, ordinary least squares multiple linear 
regression, logistic regression or parametric survival 
analysis);

• the validity of proportional hazards assumption can be 
tested and, if needed, CoxPH models can be generalised 
to more flexible Cox-type non-proportional hazard 
models;

• estimates of probabilities of exceeding [P(Y>y)] can be 
simultaneously obtained for multiple thresholds (y), an 
advantage compared to the alternative approach based 
on, for instance, logistic regression (Lo et al., 2007) where 
PEFs were composed by individual estimates of [P(Y>y)] 
arising from logistic functions, estimated one at a time.

• the influence of many potential predictors on climate risks 
can be investigated simultaneously - the contribution of 
each potential predictor can be objectively evaluated via 
likelihood tests;

• methods for assessing model skill and predictive 
accuracy are readily available.

For demonstration purposes we use CRMs to estimate time 
to wet season onset in Northern Australia, based on the state 
of two ENSO-based predictors prior to the commencement 
of the wet season. We then extend the method beyond 
its usual application to time-to-event data by assessing 
the probabilities of exceeding threshold values of rainfall 
amounts for the wet season in North-eastern Brazil based 
on similar predictors.
Further, we provide associated uncertainties for estimated 
CDFs (predictive accuracy) that might guide decision 
makers in their choice between alternative decisions that 
could be based on this information. To our knowledge, this 
study is the first using CRMs to analyse the linkage among 
oceanic/atmospheric indexes and climate risks thereby 
extending the methods to the domain of seasonal climate 
risk assessments.
Data and Methods
To demonstrate the utility of the approach, we present two 
examples where we investigate the influence of predictors 
based on oceanic/atmospheric phenomena such as the 
Southern Oscillation and warming/cooling of surface water 
in the Pacific basin (El Niño/La Niña) on rainfall-related 
variables:
Example I. For Cairns (Northern Australia, 16.93°S, 145.78°E) 
we quantify the influence of the Southern oscillation Index 
(SOI)  (mean of June to August monthly SOI, JJA SOI) and 
the first rotated principal component (SST1) of large scale 
SST anomalies (JJA SST1) on time to onset of the wet season 
(Drosdowsky and Chambers, 2001). We adopted one of 
the criteria presented by Lo et al. (2007) for defining wet 
season onset: the date at which 15% of the long term mean 
of total summer rainfall (September to April) is first reached 
(after 1 September and before 31 March). We used a high 
quality, daily rainfall data set (Haylock and Nicholls, 2000) 
to calculate the time to wet season onset for each year (1948 
to 2004). The monthly SOI series is available at
www.bom.gov.au/climate/current/soihtm1.shtml.
Example II. For Quixeramobim (Northeastern Brazil, 
5.08°S, 38.06°W) we quantify the influence of SST anomalies 
(average Oct - Feb) in the Niño 3.4 region (SST3.4, 5°N to 5°S; 
170-120° W) and SOI (average Dec- Feb) on the wet season 

1In the context of survival analysis, ‘censored data’ means that some 
units of observation have incomplete information regarding time-
to-event.
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(MAMJ) rainfall amount (1950 to 2007, from Funceme, 
Ceará’s state meteorological agency; www.funceme.br). SST 
anomaly data for the same period, are available at www.
cpc.noaa.gov/data/indices/sstoi.indices. 
For both cases, PEFs and associated uncertainties were 
estimated via CoxPH models, where the probability of T 
exceeding a particular value t, given a predictor value of 
x is given by
PEF(t, x) = [PEF0(t)] exp(x.β)

where t  is the time to event, PEF0(t) is the baseline survival 
function, and β is the unknown model parameter that 
quantifies the influence of the predictor on the P(T>t). 
The derivative of PEF(t,x) with respect to t is the so called 
hazard function h(t, x) that represents the instantaneous 
failure rate at each time t, for X=x. Under the proportional 
hazards assumption, the hazard ratio [h(t, xi)/ h(t, xj)] is 
supposed to be constant over time for any pair (xi, xj) of 
predictor values.
Here we adopt a terminology more adequate for climate 
studies, using PEF(t, x)  instead the classical notation S(t, 
x). Further, by replacing the time variable T=t  with any 
other quantity Y=y (as in the case of Quixeramobim, where 
rainfall is the predictant) we can use CRMs for modelling 
PEFs for important climate dependent variables such as 
water stress, crop yields or even economic measures (e.g. 
farm income). For such variables, the hazard function h(t,x) 
cannot be interpreted as an instantaneous failure rate, but the 
methods for estimating PEFs and associated uncertainties 
remain valid. Confidence bands for PEFs were calculated 
following methods described in Allison (1995). Here we only 
present a model for a single predictor, although the model 
can easily be generalized for multiple predictors. 
Results and Discussion 
Table 1 shows parameter estimates and respective likelihood 
tests for CoxPH models used to quantify the average (over 
time) influence of: (a) June - August average SOI or SST1 on 
time to onset of the wet season at Cairns (models A1 and A2, 
respectively) and (b) December – February SOI or October – 
February SST3.4 anomalies on the seasonal rainfall (MAMJ) 
at Quixeramobim (model B1 and B2, respectively). 

Table 1: Parameter estimates and respective standard errors (SE) for 
CoxPH models fitted for quantifying the influence of atmospheric/
oceanic predictors on the PEFs for time to onset of the wet season 
at Cairns, Northern Australia (models A1 and A2) and wet season 
rainfall amount at Quixeramobim, North-eastern Brazil (models B1 
and B2). 

Model Predictor b SE exp(b) p*
A1 SOI 0.065 0.017 1.067 0.0002
A2 SST1 -0.757 0.199 0.469 0.0001
B1 SOI -0.028 0.014 0.972 0.0421
B2 SST3.4 0.862 0.143 3.920 0.0478

* Nominal significance levels arising from the maximum likelihood 
chi-square tests for the hypotheses β = 0 (no predictor influence). 
Estimates for β  and the hazard ratio (HR) are denoted by b and 
exp(b), respectively. 

In Figure 1 (page 16) we show PEF estimates derived from 
fitted CoxPH models for some specific SOI (-15, 0, and +15) 

Figure 2: Probability of exceeding functions for MAMJ rainfall at 
Quixeramobim (Brazil) with respective 95% confidence limits for 
preceding (October – February) SST3.4 values, estimated via CPH 
models (as Figure 1B1 and 1B2, page 16).

and SST anomaly values (-1.5, 0 and 1.5) at both locations. 
PEFs could also be easily obtained for any other predictor 
value. 
Using the hazard ratio (HR) estimates from Table 1, we 
objectively quantify the influence of predictors on PEFs 
for the climate-related variables. When the HR estimate 
is grater than one (positive b), for each unitary increase in 
the predictor, the baseline PEF, PEF0(y) is powered by the 
corresponding hazard ratio. As PEF0(t) has a value between 
0 and 1, this results in a decrease in Prob(Y>y). 
This occurs for model A1 (Cairns, SOI), for which increases 
in SOI lead to lower probabilities of late onset and model 
B2 (Quixeramobim, SST), where increases in SST3.4 lead 
to lower probabilities of rainfall exceeding a threshold y, 
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respectively. Conversely, if HR is lower than one (models A2 
and B1), unitary increases in predictors lead to increases in 
Prob(Y>y). These results are consistent with the well known 
influences of ENSO on the North Australia, where La Niña 
conditions (positive SOI, negative SST1) favour an earlier 
than normal start of the wet season (Lo et al., 2007) and on 
North-eastern Brazil, where El Niño conditions (negative 
SOI, positive SST3.4 anomalies) lead to low probabilities of 
substantial wet season rainfall (Coelho et al., 2002). 
So far, the PEFs in Figure 1 do not contain any uncertainty 
estimates. In a final step we expand the risk analysis arising 
from Model B2 (Quixeramobim, predictor -SSTs.4) by 
providing their respective 95% asymptotic confidence bands 
(Figure 2). The width of the confidence limits depends on the 
series length, the signal strength of the predictor SST3.4 and 
the predictor value at which the PEF was evaluated.
Given that the main objective of this paper is to show the 
power of the Cox approach for the generation of seasonal 
forecasts, we used its simplest form, which assumes 
proportionality of hazards. Such model might be not able to 
adequately reproduce some patterns of ENSO influence. In a 
subsequent step we will refine the risk modelling process by 
using more flexible non-proportional hazard (NPH) models 
able to capture nonlinear and possible disproportional 
influences of ENSO on rainfall-related variables. The use 
of such models for climate risk assessment as well as a 
complete evaluation of their skill and predictive accuracy 
forms part of our ongoing research.
Concluding remarks
In this paper we demonstrate the power of survival 
analysis, a statistical approach commonly for risk modelling 
in domains such as medicine, engineering and social 
sciences. So far these techniques have been undervalued in 
the domain of climate science, a situation that is likely to 
continue given the strong focus on dynamical modelling 
without due attention to the provision of probabilistic 
forecasts of decision variables such as crop or pasture 
yields, income or environmental indices, to name just a few. 
However, particularly for the emerging field of adaptation 
science, simple, yet locally relevant evaluation techniques 
are needed. The current trend towards ever increasing 
complexity in GCM-based modelling without an equal 
attention to the information needs of decision makers is 
unlikely to produce such decision-relevant outcomes (Pielke 
and Sarewitz, 2002). 
It has been suggested that using GCMs to predict the 
driving forces of climate variability might be more robust 
than carrying the prediction through to highly complex 
variables such as rainfall (Stone et al., 2000). Given the 
additional benefit that can be derived from such simple, 
statistical procedures, we suggest to combine the approaches 
suggested here with GCM-derived estimates of predictors 
such as SSTs or SOI to be used as input into statistical models. 
Such ‘downscaling’ techniques would enable the provision 
of information at spatial and temporal scales relevant for 
decision makers – usually at station to regional scale with 
a time horizon of up to several years. For practitioners, 
these are the spatial and temporal scales that really matter 
and where decisions are made. The statistical techniques 
presented here also intrinsically account for trends in 
empirical data. This means that non-stationarity in, for 
instance, SSTs or SOI values that might be a consequence 

of climate change are captured by the model. This feature 
makes it even more attractive to investigate the feasibility 
of developing a rigorous GCM-CRM interface for provision 
of user-relevant forecasts risks.
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Fundamental advances have been made in understanding 
the basic dynamics and predictability of the El Niño-
Southern Oscillation (ENSO) phenomenon in recent 
decades. The breakthroughs strongly depended on (i) the 
availability of improved observational data sets including 
the TAO-Triton array, satellite altimeter and SST data, ARGO 
floats and drifters, wind-stress products, and numerous 
other atmospheric data sets), (ii) the use of a hierarchy of 
models from simple analog models, through intermediate 
coupled models, to coupled general circulation models, and 
(iii) the insights of researchers over past decades. 
While fundamental advances in our understanding 
have been made, many important questions still remain 
unanswered. For example:
1. Is ENSO a stable, stochastically, excited mode, or a 

deterministic unstable oscillation whose amplitude is 
damped by nonlinearities?

2. What determines the amplitude and skewness of 
ENSO?

3. Why does ENSO vary on decadal timescales?
4. What is the role of westerly wind-bursts (WWBs) in 

triggering/driving ENSO variability?
5. How does ENSO interact with the annual cycle
6. How does ENSO respond to paleo-climate change?
7. How does ENSO respond to global warming?
8. What processes lead to different ENSO “flavours”?
To raise awareness of the advances and the important 
outstanding issues amongst the next generation of climate 
scientists, the CLIVAR Pacific Panel organised a summer 
school on “ENSO: dynamics and predictability” for young 
aspiring international students. The lush jungles of Puna 
on the Big Island of Hawaii provided an ideal setting. This 
region is under the spell of ENSO, and is subject to the 
whims of the Hawaiian volcano goddess Pele. The summer 
school was located a mere 5 miles from where the active and 
spectacular Kilauea Lava flow spills into the ocean.  
Sixteen outstanding students and 6 lecturers from 11 
different countries participated. All students had a strong 
background in meteorology, oceanography or geology. 
The lecturers included 4 members of the CLIVAR Pacific 
Panel (Magdalena Balmaseda - ECMWF, Mike McPhaden- 
NOAA PMEL, Scott Power- Bureau of Meteorology and 
Axel Timmermann - IPRC), Fei-Fei Jin from the University 
of Hawaii and Richard Kleeman from the Courant Institute 
(NYU). Topics covered during 4 hours of daily lectures 
included ENSO theory (Fei-Fei Jin), ENSO phenomenology 
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(Mike McPhaden), ENSO prediction (Magdalena Balmseda), 
paleo ENSO (Axel Timmermann), decadal changes in 
ENSO and the impact of global warming on ENSO (Scott 
Power) and ENSO predictability theory (Richard Kleeman). 
The lectures were complemented by challenging student 
research projects, evening presentations, field excursions to 
the Mauna Loa CO2 observatory and the Volcano National 
Park. Energizing brain fuel consisted of fresh goat milk kefir, 
locally grown vegetables and fruits and freshly caught fish 
from the deep blue Pacific. 
The research projects engaged the students in investigations 
of e.g.: the effect of multiplicative weather “noise” on ENSO 
variability and predictability; the impact of El Niño on 
Antarctic climate; evidence for the origin of a megadrought 
4,200 years ago in existing hydrological paleo-data sets; the 
role of wave dynamics in the dynamics of ENSO using TAO-
Triton data; the termination mechanism for the 2006-2008 
ENSO event; and the nature of warm pool El Nino events. 
Students applied the concepts taught during the lectures to 
their research projects. 
More details on the student projects as well as pdf-files 
for all lectures can be found on: http://iprc.soest.hawaii.
edu/~axel/ENSOsummerschool.html
The summer school was generously supported by WCRP, 
PAGES, NOAA, ARCNESS, the Australian Bureau of 
Meteorology, the International Pacific Research Center and 
Mathworks.
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