Desempenho agronômico de progênies F₄ de melancia de frutos pequenos e de diferentes padrões.

<u>Flávio de França Souza¹</u>; Elton Bill A. de Souza²; Allyne Christina G. Silva²; Lucas Rommel de S. Neves³; Manoel Abilio de Queiróz⁴; Rita de Cássia S. Dias⁵; Zenildo Ferreira Holanda Filho¹.

RESUMO

O presente trabalho teve como objetivo avaliar 15 progênies F₄ de melancia. O ensaio realizado na Estação Experimental da Embrapa Rondônia, em Porto Velho – RO. Avaliaram-se as cultivares 'Kodama', 'Sugar Baby', 'Charleston Gray' e 15 progênies F₄, do cruzamento entre 'Kodama' e 'Sugar Baby'. Utilizou-se o delineamento de blocos casualizados com três repetições e parcelas de oito plantas. Os tratamentos foram avaliados quanto a precocidade, prolificidade, produtividade e aspectos externos e internos de fruto. Houve predomínio dos frutos de casca verde médio (73,6%) de padrão listrado (53,7%) ou rendilhado (41,1%) e de polpa vermelho-intenso (37,5%) ou amarela (35,3%). As progênies apresentaram frutos pequenos (2,80 a 5,24kg), arredondados, com alto teor de açúcar (10,4 a 12,7 °Brix) e casca fina. Verificou-se maior precocidade (78,5 a 83,2 dias para colheita), baixa prolificidade (1,0 a 2,0 frutos/planta) e produtividade mediana (12,9 a 23,3 t/ha). Os genótipos avaliados mostraram-se promissores como fontes de progênies para a obtenção de novos cultivares de melancia de frutos pequenos e com diferentes padrões de frutos.

Palavras-chave: Citrullus lanatus, melhoramento genético, interação aditiva.

ABSTRACT

Agronomic performance in F₄ lines of "ice box" watermelon.

The present work aimed to evaluate 15 watermelon F₄ lineages. The assay was carried out at Embrapa Rondônia, in Porto Velho – RO. It was used a randomized block design with three replications and plots of eight plants. The cultivars 'Kodama', 'Sugar Baby', 'Charleston Gray' and 15 F₄ lines originated from the crossing between 'Kodama' and 'Sugar Baby' were evaluated with regard to earliness, prolificacy, yield and external and internal appearance of fruit. There was predominance of medium-green (73.6%), striped (53.7%) or penciled (41.1%) fruit rind and dark red (37.5%) or yellow (35.3%) fruit flesh. The lines had presented small (2.80 to 5.24kg) and rounded fruit, with high content of sugar (10.4 to 12.7 °Brix) and fine rind. It was verified bigger earliness (78.5 to 83.2 days

¹Embrapa Rondônia, C.P. 406, 78.900-970 Porto Velho - RO. E-mail: <u>flaviofs@cpafro.embrapa.br;</u>; ²Faculdade São Lucas, Porto Velho - RO; ³Universidade Federal de Rondônia, Porto Velho - RO; ⁴DTCS-UNEB, Juazeiro - BA; ⁵Embrapa Semi-Árido, Petrolina - PE.

to harvest), less prolificacy (1.0 to 2.0 fruit/plant) and medium yield (12.9 the 23.3 t/ha). The genotypes were promising as sources of lines for attainment of new "ice box" watermelon cultivars with different fruit patterns.

Key words: Citrullus lanatus, genetic breeding, additive interaction

INTRODUÇÃO

Estudos de análise genética em melancia [Citrullus lanatus (Thunb.) Matsum & Nakai] têm mostrado que prolificidade, tamanho de frutos e teor de açúcares são caracteres que apresentam variância genética aditiva (Ferreira, 1994; Souza et al., 2002), portanto, podem ser melhorados por meio de seleção em populações sob endogamia progressiva. Em 2002, iniciou-se um programa de melhoramento genético na Embrapa Rondônia visando à obtenção de cultivares de melancia com características de fruto distintas daquelas comuns aos principais genótipos comerciais disponíveis no mercado brasileiro e com algum diferencial agronômico para beneficiar aos produtores.

O presente trabalho teve como objetivo avaliar 15 progênies F₄ do programa de melhoramento genético de melancia da Embrapa Rondônia.

MATERIAL E MÉTODOS

O experimento foi instalado em junho de 2004, na Estação Experimental da Embrapa Rondônia, em Porto Velho - RO. Foram utilizadas as cultivares 'Kodama', 'Sugar Baby', 'Charleston Gray' e de 15 progênies F₄, obtidas por meio de autofecundação em populações segregantes do híbrido 'Kodama x Sugar Baby'. Utilizou-se o delineamento de blocos casualizados com três repetições, parcelas com oito plantas e espaçamento de 2,5m x 1,0m. As plantas foram avaliadas quanto a: cor da casca; padrão da casca; cor da polpa; número de dias para maturação; peso médio do fruto; teor de sólidos solúveis; diâmetro longitudinal e transversal do fruto e espessura da casca na região do pedúnculo.

RESULTADOS E DISCUSSÃO

Ampla variabilidade fenotípica foi observada entre e dentro das progênies. Com relação ao padrão externo dos frutos (Tabela 1). Foram verificados frutos de casca verde escura (17,8%), verde médio (73,6 %) e verde clara (8,6%), com padrão rendilhado (41,1%), listrado (53,7%) e uniforme (5,2%), formando combinações que originaram cinco tipos principais (Figura 1), a saber: verde claro ou médio com estrias finas (tipo 'Pérola'); verde claro ou médio com listras finas (tipo 'PE-14'); verde médio com listras largas (tipo

'Kodama'); verde escuro com listras largas (tipo 'Nova'); verde escuro uniforme (tipo 'Sugar Baby'). Com relação ao aspecto interno, foram verificados frutos de polpa vermelho-intenso (37,5%), vermelho-claro (7,1%), rósea (0,8%), branca (1,6%), amarela (35,3%) e laranja (17,7%).

Em geral, as progênies foram mais precoces do que a cultivar padrão e os genitores, o que é uma característica vantajosa em cultivos comerciais (Tabela 2). Todas as progênies apresentaram peso médio de fruto maior que 'Kodama' e semelhante ao de Sugar Baby, demonstrando haver predominância de frutos pequenos. O teor de sólidos solúveis nas progênies variou de 10,4 a 12,7 °Brix, o que corresponde ao valor encontrado nos materiais comerciais. Além disso, 60% das progênies apresentaram polpa mais doce que os genitores e à cultivar padrão, 'Charleston Gray'. Maior prolificidade e produtividade foram verificadas em Cpafro 74.305, Cpafro 34.305 e Cpafro 74.205.

Os genótipos avaliados mostraram-se promissoras como fontes de progênies para a obtenção de novos cultivares de melancia de frutos pequenos e com diferentes padrões de frutos.

LITERATURA CITADA

FERREIRA, M.A.J.F. Análise dialélica em melancia *Citrullus lanatus* (Thunb.) Matsum. Jaboticabal: UNESP. 1996. 83p. (Tese de mestrado).

SOUZA, F.F.; QUEIROZ, M.A. Avaliação de populações segregantes de melancia visando à obtenção de linhagens prolíficas e de frutos pequenos. **Horticultura Brasileira**, v. 20, n. 2, julho, 2002. Suplemento 2.

Figura 1. Aspecto interno (esquerda) e externo (direita) de frutos de progênies F₄ de melancia.

Tabela 1. Avaliação qualitativa de frutos em progênies F₄ de melancia. Porto Velho, 2004.

Genótipos	Cor da casca (%)			Padrão da casca (%)			Cor da polpa (%)					
	VES	VMD	VCL	LIS	RED	UNI	VMI	VMC	ROS	BRA	AMA	LAR
Kodama	0,0	100,0	0,0	100,0	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0
Sugar Baby	96,7	3,3	0,0	3,3	60,0	36,7	96,7	3,3	0,0	0,0	0,0	0,0
Cpafro 34.105	0,0	100,0	0,0	57,7	42,3	0,0	0,0	0,0	0,0	0,0	17,9	82,1
Cpafro 34.204	0,0	86,2	13,8	55,2	44,8	0,0	0,0	3,6	0,0	0,0	21,3	75,0
Cpafro 34.205	0,0	100,0	0,0	83,3	16,7	0,0	33,3	0,0	0,0	0,0	33,3	33,3
Cpafro 34.305	0,0	96,7	3,3	60,0	36,7	3,3	100,0	0,0	0,0	0,0	0,0	0,0
Cpafro 35.105	81,8	18,2	0,0	95,6	0,0	4,4	18,2	0,0	0,0	0,0	50,0	31,8
Cpafro 37.103	0,0	100,0	0,0	100,0	0,0	0,0	40,7	11,1	0,0	22,2	0,0	25,9
Cpafro 45.106	0,0	100,0	0,0	0,0	100,0	0,0	0,0	0,0	0,0	7,4	55,6	37,0
Cpafro 45.202	0,0	96,6	3,4	0,0	96,5	3,5	0,0	0,0	0,0	0,0	100,0	0,0
Cpafro 45.203	0,0	14,3	85,7	0,0	100,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0
Cpafro 45.206	75,9	24,1	0,0	0,0	96,5	3,5	0,0	0,0	0,0	0,0	93,1	6,9
Cpafro 74.105	0,0	100,0	0,0	53,6	39,3	7,1	100,0	0,0	0,0	0,0	0,0	0,0
Cpafro 74.203	0,0	77,8	22,2	51,9	48,1	0,0	3,7	81,5	11,1	0,0	3,7	0,0
Cpafro 74.205	71,4	14,3	14,3	0,0	71,4	28,6	51,7	27,6	3,4	0,0	0,0	17,2
Cpafro 74.305	0,0	96,5	3,5	93,1	6,9	0,0	100,0	0,0	0,0	0,0	0,0	0,0
Cpafro 55.203	0,0	96,7	3,3	0,0	96,7	3,3	18,5	0,0	0,0	0,0	70,4	11,1
C. Gray	0,0	95,8	4,2	0,0	100,0	0,0	100,0	0,0	0,0	0,0	0,0	0,0
(%)	17,8	73,6	8,6	41,1	53,7	5,2	37,5	7,1	0,8	1,6	35,3	17,7

¹VES= verde escuro; VMD= verde médio; VCL= verde claro; LIS= listrado; RED= rendilhado; UNI= uniforme; VMI= Vermelho intenso; VMC= vermelho claro; ROS= Róseo BRA= Branca; AMA= Amarelo; LAR= Laranja.

Tabela 2. Avaliação quantitativa de progênies F₄ de melancia. Porto Velho, 2004.

Genótipos	MAT	PMF	TSS	DL/DT	ECP	NTF	PTF	NFP	PROD
	(dias)	(kg)	(brix)		(cm)	(um)	(kg)	(uni)	(kg/ha)
Kodama	81,1 a	1,71 d	11,1 b	1,136 b	0,50 d	22,0 a	39,8 с	2,8 a	16,6 c
Sugar Baby	81,9 a	3,92 b	11,1 b	1,041 b	0,93 c	13,3 b	53,1 b	1,7 b	22,1 b
Cpafro 34.105	82,3 a	4,63 b	12,7 a	1,046 b	0,90 c	10,3 c	41,3 c	1,3 c	17,2 c
Cpafro 34.204	83,2 a	5,24 b	11,8 a	1,038 b	1,10 b	12,3 b	56,0 b	1,5 c	23,3 b
Cpafro 34.205	81,0 a	4,27 b	12,0 a	1,054 b	0,87 c	10,7 c	45,3 c	1,4 c	18,9 c
Cpafro 34.305	79,3 b	3,62 c	12,0 a	1,057 b	1,03 b	14,3 b	51,1 b	1,8 b	21,3 b
Cpafro 35.105	80,2 b	4,90 b	10,7 b	1,078 b	0,97 c	7,7 c	35,1 c	1,0 c	14,6 c
Cpafro 37.103	81,2 a	5,22 b	10,4 b	1,026 b	1,20 b	9,3 c	41,2 c	1,2 c	17,2 c
Cpafro 45.106	79,1 b	4,07 b	11,1 b	1,037 b	1,00 c	10,0 c	43,7 c	1,2 c	18,2 c
Cpafro 45.202	78,5 b	3,32 c	11,5 a	1,029 b	1,07 b	9,7 c	34,7 c	1,2 c	14,5 c
Cpafro 45.203	82,7 a	3,52 c	11,4 b	1,026 b	1,00 c	9,7 c	34,8 c	1,2 c	14,5 c
Cpafro 45.206	79,3 b	3,73 c	11,6 a	1,033 b	0,93 c	11,7 b	43,7 c	1,5 c	18,2 c
Cpafro 74.105	79,6 b	2,71 c	12,1 a	1,068 b	0,87 c	12,7 b	35,7 c	1,6 c	14,9 c
Cpafro 74.203	79,0 b	4,41 b	11,6 a	1,013 b	1,00 c	12,7 b	50,1 b	1,6 c	20,8 b
Cpafro 74.205	78,5 b	4,07 b	11,3 b	1,051 b	1,13 b	13,3 b	52,0 b	1,7 b	21,7 b
Cpafro 74.305	79,8 b	3,08 c	12,1 a	1,059 b	0,90 c	15,7 b	47,9 b	2,0 b	19,9 b
Cpafro 55.203	81,7 a	2,80 c	10,6 b	1,020 b	0,50 d	14,3 b	30,9 с	1,8 b	12,9 c
C. Gray	83,6 a	8,10 a	11,2 b	1,877 a	2,00 a	8,7 c	75,6 a	1,1 c	31,5 a
Média	80,2	4,07	11,5	1,094	1,00	12,1	45,1	1,5	18,8
CV (%)	4,6	16,3	4,1	7,6	10,2	23,6	22,3	23,2	22,4

MAT= Numero de dias para a maturação; PMF= Peso médio de fruto; TSS= Teor de sólidos solúveis; DLF= Diâmetro longitudinal de fruto; DTF= Diâmetro transversal dos frutos, DL/DT= Relação diâmetro longitudinal/ diâmetro transversal; ECP= Espessura da casca na região do pedúnculo; NFP= Número de frutos por parcela; NTF = Número total de frutos; PTF= Peso total de frutos.

2 Médias seguidas da mesma letra, na linha, não diferem estatisticamente a, pelo teste de Scott & Knott a 5% de

probabilidade.