AVALIAÇÃO DE PROGÊNIES DE MAMONA (Ricinus communis L.) PARA PRODUÇÃO E RENDIMENTO DE SEMENTE EM CONDIÇÕES DE SAFRINHA NO ESTADO DE SÃO PAULO

Amadeu Regitano Neto, Centro de Grãos e Fibras, IAC, regitano@iac.sp.gov.br

Tammy Aparecida Manabe Kiihl, Centro de Grãos e Fibras, IAC, tammy@iac.sp.gov.br Lilia

Sichmann Heiffig, Centro de Grãos e Fibras, IAC, lilia@iac.sp.gov.br

Edson Perito Amorin, Embrapa - CNPMF, edson@cnpmf.embrapa.br

Nilza Patrícia Ramos, Embrapa - CNPMA, npramos@cnpma.embrapa.br

Ângelo Savy Filho, Centro de Grãos e Fibras, IAC, savy@iac.sp.gov.br

RESUMO: Foi instalado um ensaio de avaliação de 73 progênies do Programa de Melhoramento de mamona do Instituto Agronômico para dias para florescimento dos racemos, produção de grãos e rendimento de grãos, em Campinas-SP, em fevereiro, e avaliado na safrinha de 2007, em blocos casualisados com três repetições, incluindo sete testemunhas comerciais. A análise de variância e a distribuição de médias para produção de grãos evidenciaram a larga variabilidade e o potencial dos materiais para o melhoramento. As progênies mais produtivas foram: PB72II com 804,07 g; PB05II com 755,20 g; TS38 com 716,13 g; PB08II com 714,67 g e PB48 com 698,00 g, e não foram melhores que a testemunha mais produtiva, IAC 2028 com 1019,67 g. Os rendimentos no processamento das sementes foram bastante variados e refletiram a ocorrência de déficits hídricos de severidade moderada, com alto número de sementes chochas ou não granadas. Os resultados mostraram o elevado potencial para o melhoramento do conjunto de progênies estudado e a possibilidade de plantio da cultura da mamona em condição de safrinha no Sudeste do Brasil.

Palavras-Chave: *Ricinus communis*; Produção de grãos; Rendimento; Safrinha; Bioenergia; Biodiesel.

INTRODUÇÃO

A mamoneira (*Ricinus communis* L.) é uma planta oleaginosa que se destaca pela sua importância econômica e social. O óleo de mamona tem estrutura química peculiar, dada pelo ácido graxo ricinoléico, que predomina em sua composição, tornando-o altamente valioso para a indústria química (SAVY FILHO, 2005).

A produção de mamona no Brasil, de aproximadamente 124 mil toneladas de grãos, se concentra no estado da Bahia, com 82% da produção nacional. A produtividade nacional de cerca de 800 kg ha⁻¹ é fortemente influenciada pela produtividade média desse estado (CONAB, 2008).

A baixa produtividade observada nos estados do Nordeste é devida a fatores que incluem além dos rigores do clima, a utilização de sementes não melhoradas, caracterizadas por uma mistura de genótipos locais. Atualmente, encontram-se registradas no Ministério da Agricultura e Abastecimento somente 19 cultivares de mamona, entre os quais alguns que não são mais produzidos comercialmente.

O Instituto Agronômico - IAC tem contribuído com o lançamento de variedades melhoradas de polinização aberta que promoveram a introdução da característica de indeiscência dos frutos, que possibilita a colheita mecanizada (BANZATO et al, 1963), e a redução do ciclo e do porte da cultura.

O Programa de Melhoramento Genético de Mamona do IAC têm produzido progênies, derivadas de cruzamentos dirigidos, selecionadas e mantidas pelo método genealógico.

O propósito deste trabalho foi avaliar o tempo para o início do florescimento dos racemos (dias), a produção de grãos (g) e o rendimento em grãos (%) do descascamento das bagas de 73 progênies de mamona.

MATERIAL E MÉTODOS

Este trabalho foi desenvolvido no campo experimental do IAC, na Fazenda Santa Elisa, na cidade de Campinas, SP. O ensaio foi instalado em 05/fevereiro/2007, em terreno preparado e adubado com 250 kg ha⁻¹ da fórmula 4-14-08, acrescida de micronutrientes FTA, com aplicação de trifluralina em PPI e tratamento de sementes com fungicida Thiram. O delineamento experimental foi em blocos ao acaso com três repetições e foram semeadas 73 progênies experimentais obtidas pelo programa de melhoramento institucional, sendo 42

progênies da seleção PBII e 15 progênies da seleção PB, representando genótipos superiores selecionados para baixa altura de planta de grupos parentais distintos, e 16 progênies selecionadas para tolerância à seca em condições de campo. De forma intercalar foram, também, semeadas sete cultivares comerciais: as variedades IAC 2028, Guarani, IAC 80, IAC 226, e os híbridos Sara, Mara e Lara, utilizados como testemunhas. As parcelas foram de 10 plantas espaçadas de 1 metro entre plantas e de 1,8 metros entre linhas, resultando numa área de 18m².

As parcelas foram avaliadas para dias para florescimento e produção de grãos em condição de campo, durante a safrinha e o inverno de 2007, enquanto o trabalho de processamento e avaliação do rendimento de grãos foi conduzido em condições de laboratório de sementes.

RESULTADOS E DISCUSSÃO

Os resultados das avaliações de produção e rendimento de grãos obtidos das 73 progênies estão sumarizados nas Figuras 1 e 2, que apresentam uma larga faixa de variação, principalmente para produção de grãos. Esses resultados somente apresentam significado quando comparados aos obtidos pelas cultivares testemunhas, uma vez que o ensaio foi conduzido em ambiente de safrinha, onde o déficit hídrico foi importante e contribuiu negativamente para a produção de grãos. As médias de produção obtidas pelas testemunhas são apresentadas na tabela 1 e apontam a variedade IAC-2028 como a mais produtiva e a que apresentou o melhor rendimento de grãos na operação de descascamento, desenvolvida manualmente.

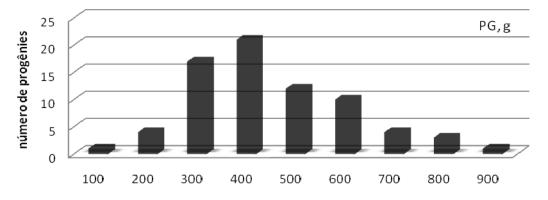


Figura 1: Distribuição da produção de grãos por parcela de 10 plantas de 73 progênies de mamona, em gramas.

5º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel

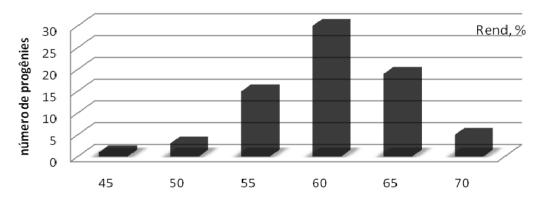


Figura 2: Distribuição do rendimento de grãos no descascamento de 73 progênies de mamona, em porcentagem.

Os dias para o florescimento dos racemos observados para as testemunhas intercalares para até o terceiro racemo são apresentados na Tabela 1, e se prestam a comparações entre os tratamentos.

Tabela 1: Médias das testemunhas para tempo para o florescimento (dias) dos racemos, peso de grãos (g) e rendimento no descascamento (%).

Cultivares	Florescimento (dias)			Peso de Grãos	Rendimento no
	Racemo	Racemo	Racemo	(g)	descascamento (%)
	Primário	Secundário	Terciário	ν.Ε.	` '
IAC 2028	75,0	108,0		1019,67	64,69
IAC 226	59,7	103,0		863,27	54,10
Guarani	71,0	89,0		742,07	62,08
IAC 80	77,7	119,0		532,37	36,18
Sara	29,7	47,7	62,5	605,47	69,08
Mara	45,3	77,7		525,00	57,42
Lara	35,3	47,0		414,60	62,94

As médias de florescimento, produção de grãos e rendimento das progênies mais produtivas: PB72II, PB05II, TS38, PB08II, PB48, PB77II e PB65II são apresentadas na Tabela 2, e em nenhum caso foi maior que a melhor testemunha.

Como era de se esperar, em condições de safrinha, o enchimento de grãos ficou comprometido para várias progênies que floresceram em período anterior a um veranico, dando origem a rendimentos de grãos baixos, como se nota na progênie PB72II, com rendimento de menos de 50%, devido ao elevado número de sementes chochas ou não granadas.

Tabela 2: Maiores médias de progênies para tempo para o florescimento (dias) dos racemos, peso de grãos (g) e rendimento no descascamento (%).

	Florescimento (dias)			Rendimento no
Cultivares	Racemo Primário	Racemo Secundário	Peso de Grãos (g)	descascamento (%)
PB72II	63,0	102,5	804,07	49,03
PB05II	66,0	108,0	755,20	59,00
TS38	66,7	100,5	716,13	62,50
PB08II	74,3	108,0	714,67	60,30
PB48	60,7	91,3	698,00	58,16
PB77II	62,3	96,3	672,79	53,37
PB65II	65,3	98,0	671,07	46,73

Como era de se esperar, em condições de safrinha, o enchimento de grãos ficou comprometido para várias progênies que floresceram em período anterior a um veranico, dando origem a rendimentos de grãos baixos, como se nota na progênie PB72II, com rendimento de menos de 50%, devido ao elevado número de sementes chochas ou não granadas.

As análises de variância para os caracteres de produção de grãos e rendimento de grãos são apresentadas nas Tabelas 3 e 4 para médias de parcelas e seus coeficientes de variação foram da ordem de 43,3 e 10% respectivamente. Os testes F se mostraram altamente significativos (P<0,01), evidenciando a elevada variabilidade presente entre as progênies avaliadas.

Tabela 3: Quadro da ANAVA em blocos ao acaso para produção de grãos total de parcelas de 10 plantas, em gramas.

F.V.	G.L.	S.Q.	Q.M.	F
Blocos	2	60707,86	30353,93	
Genótipos	73	5409685,85	75134,52	2,55**
Resíduo	144	4243752,53	29470,50	
Total	218	9714146,24		

Tabela 4: Quadro da ANAVA em blocos ao acaso para rendimento de grãos no descascamento, em porcentagem.

F.V.	G.L.	S.Q.	Q.M.	F
Blocos	2	303,42	151,71	
Genótipos	73	5344,36	74,23	2,06**
Resíduo	144	5199,93	36,11	
Total	218	10847,71		

CONCLUSÃO

As avaliações conduzidas em 73 progênies evidenciaram o grande potencial desses materiais para o melhoramento visando à produção de grãos e permitem inferir sobre o plantio dessa oleaginosa em condições de safrinha no Sudeste do Brasil, em condições de déficit hídrico, demonstrando também a capacidade de recuperação das plantas de mamona após veranico de severidade média.

REFERÊNCIAS BIBLIOGRÁFICAS

BANZATO, N., ROCHA, J., & CANECCHIO FILHO, V. (1963). Transferência do caráter indeiscência para cultivar IAC-38 de mamoneira. *Bragantia*, v.22, p.291-298.

CONAB. (Maio de 2008). *Acompanhamento da safra brasileira : grãos : oitavo levantamento*. Acesso em 04 de junho de 2008, disponível em Conabweb: http://www.conab.gov.br/conabweb/download/safra/estudo_safra.pdf

SAVY FILHO, A. (2005). *Mamona Tecnologia Agrícola* (1 ed.). Campinas, SP, Brasil: EMOPI