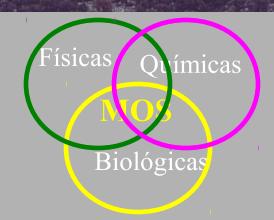


DIVANICA E MANGO DA MATERIA ORGANICA DO SOLO



Tony Jarbas F. Cunha Eng^o Agr^o D. Sc. Pedologia/MOS

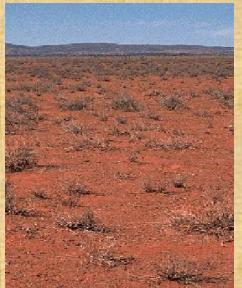
Introdução:

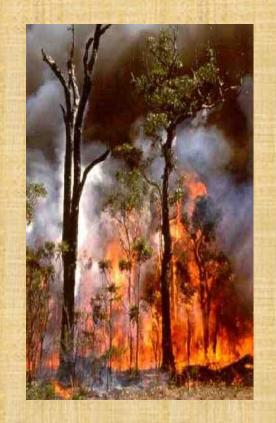
Degradação ambiental

Convencional

Morro abaixo

Degradação ambiental





QUIMADAS

DEGRADAÇÃO

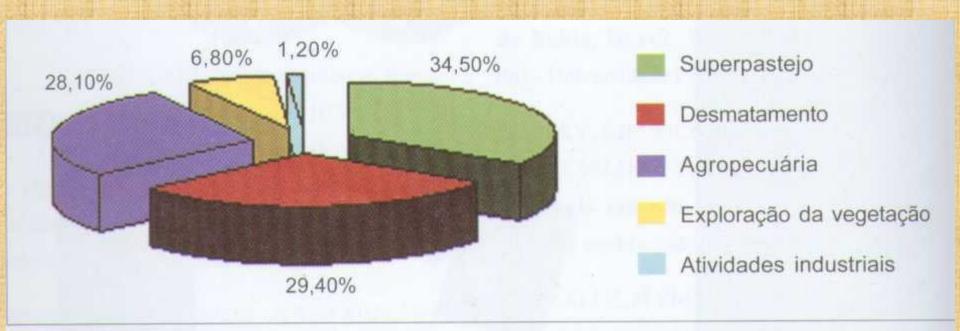
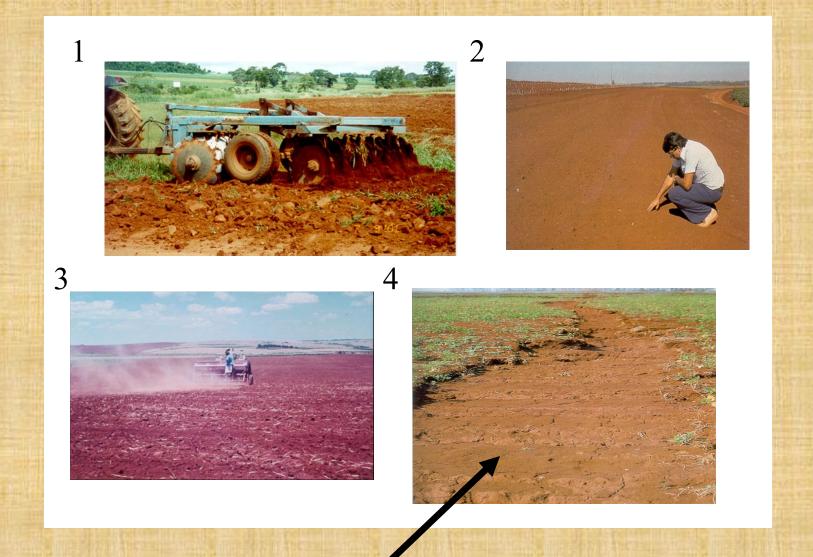


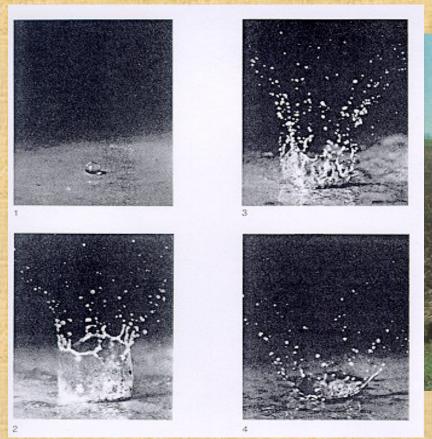
Gráfico 1 - Principais atividades responsáveis pela degradação do solo FONTE: Dados básicos: Oldeman (1994).

Agricultura no Brasil

(adaptado de Manzatto et al., 2002)


Milhões de hectares (% área total)

• Agricultura	50,0
COLUMN TO THE RESIDENCE OF THE PARTY OF THE	

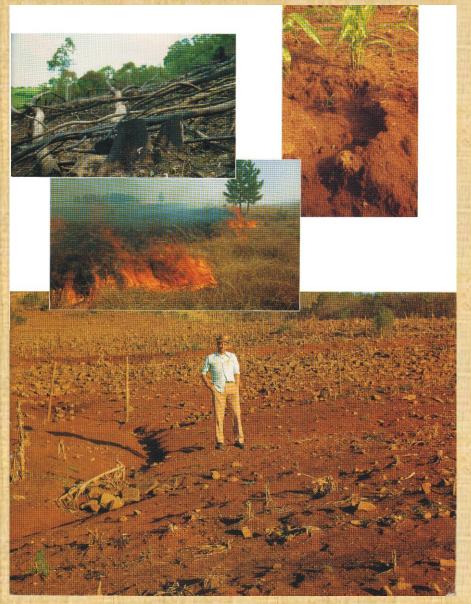

Culturas anuais (ex. milho, feijão, soja) 42,5 (18%)

Culturas perenes (ex. café, citrus) 7,5 (3%)

Agricultura ocupa 6,25% do Brasil

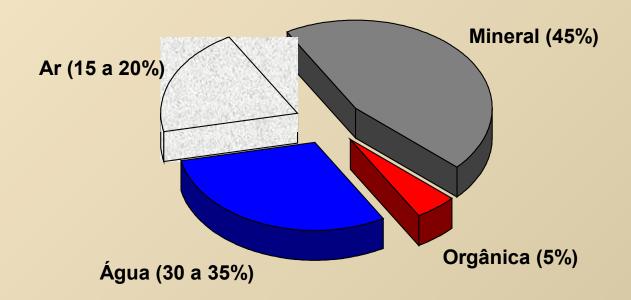
Gota de chuva de 3.2-mm θ a 9 m s⁻¹

Fonte: Mitchell, J.K. - USDA


- Selamento superficial do solo
- Diminuição da infiltração da água no solo
- Acúmulo de água na superfície do solo
- Enxurrada
- Erosão

Fonte: Denardin, E. - Embrapa

USO INADEQUADO



A EROSÃO EMPOBRECE O SOLO E O HOMEM

Proporção das fases sólida, líquida e gasosa no horizonte A de um solo considerado como "ideal".

Soils	AREA	RELATIVE	
Augoou oo	274 974 49	4.26	
ALISSOLOS	371.874,48 1.713.853,49	4,36 19,98	
ARGISSOLOS	232.139,19	2,73	
CAMBISSOLOS	•	, in the second	
CHERNOSSOLOS	42.363,93	0,53	
ESPODOSSOLOS	133.204,88	1,58	
GLEISSOLOS	311445,26	3,66	
LATOSSOLOS	3.317.590,34	38,73	
Luvissolos	225.594,90	2,65	
NEOSSOLOS	1.246.898,89	14,57	
Nitossolos	119.731,33	1,41	
PLANOSSOLOS	155.152,13	1,84	
PLINTOSSOLOS	508.539,37	5,95	
VERTISSOLOS	169.015,27	2,01	
ÁGUA	160.532,30	1,88	
TOTAL	8.547.403,50	100,00	

59%

HORIZONTES SUPERFICIAIS EM FUNÇÃO DO TEOR DE MOS

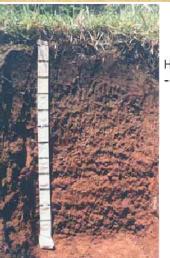

Foto 16 - Perfil de PLINTOSSOLO ARGILÚVICO Distrófico típico. Poconé - MT.

Foto 18 - Perfil de ARGISSOLO AMARELO Distrófico abrúptico. São Mateus - ES.

Foto 19 - Perfil de GLEISSOLO MELÂNICO Distrófico típico. Nova Xavantina - MT.

oto 15 - Perfil de ARGISSOLO VERMELHO utrófico típico. Juscimeira - MT.

Horizonte A fraco

Foto 17- Perfil de CAMBISSOLO HÚMICO Tb Distrófico típico. Campinápolis - MT.

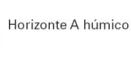
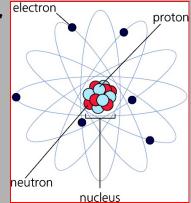
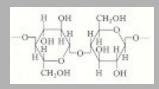



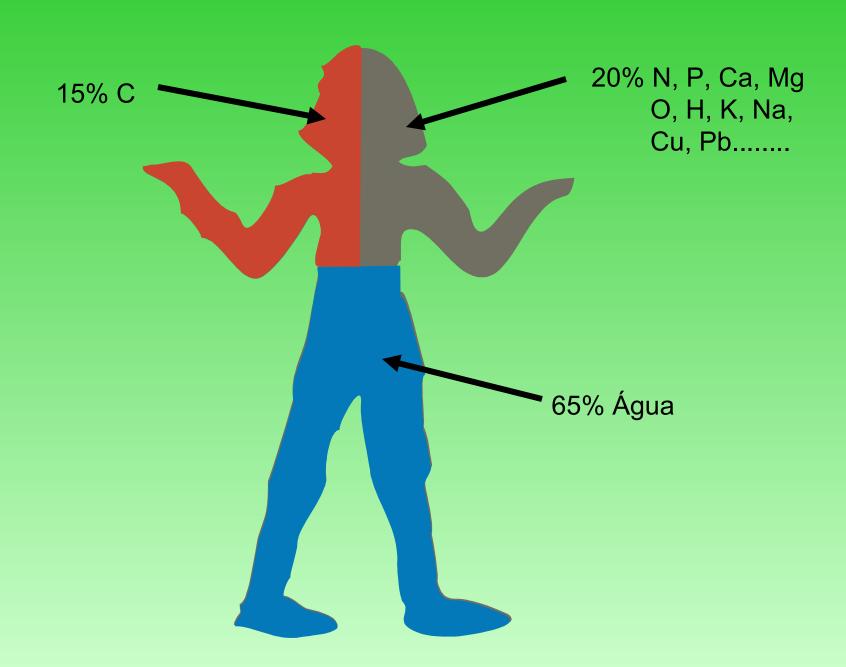
Foto 14-Perfil de LATOSSOLO AMARELO Distrófico típico (Terra Preta do Índio). Parintins - AM.

Horizonte A antrópico

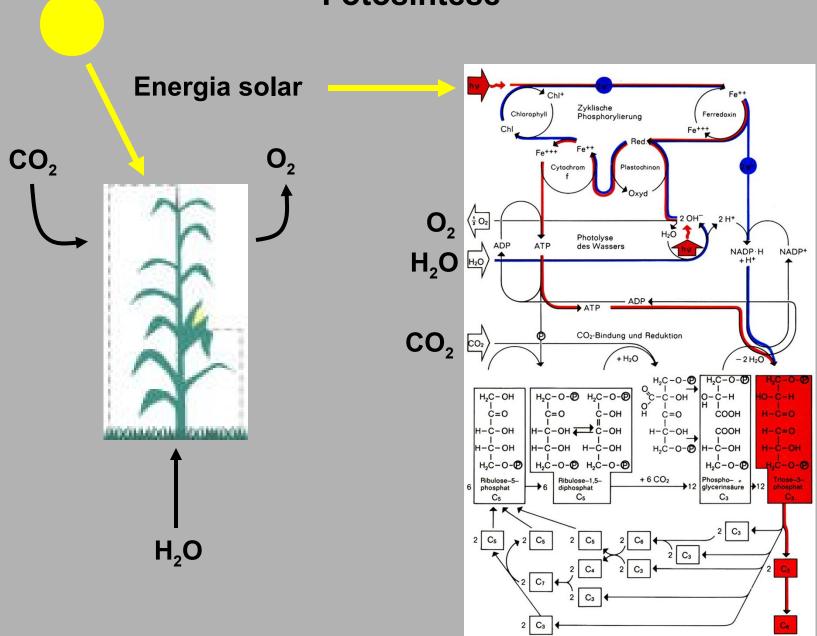
Carbono – um elemento bastante singular



Há aprox. 2 bilhões de anos: Apenas ligações simples (CO₂, CH₄, HCO₃-, CaCO₃)


Em algum momento há 1,5 - 2 bilhões de anos: Formação de moléculas maiores e mais ricas em C (Aminoácidos, Açúcares, Proteínas etc.)

Requisito para o surgimento da vida.


H₂N-C-C CH₃ OH

Carbono – Elemento fundamental de todos os seres vivos

Fotosíntese

Definição

A MOS consiste numa mistura de resíduos de plantas e animais, em vários estádios de decomposição, de substâncias sintetizadas microbiologicamente e/ou quimicamente a partir da quebra de produtos e de corpos vivos ou mortos de microrganismos e pequenos animais e de seus compostos remanescentes

(Schnitzer & Khan, 1978. *Soil Organic Matter*. Elsevier, Amsterdan, p. 1–64).

1990 - Atual 1975 - 1990 1850 - 1935 eríodo

C e N derivado dos resíduos culturais, Biomassa microbiana, balanço de gases de efeito estufa e sequestro de C

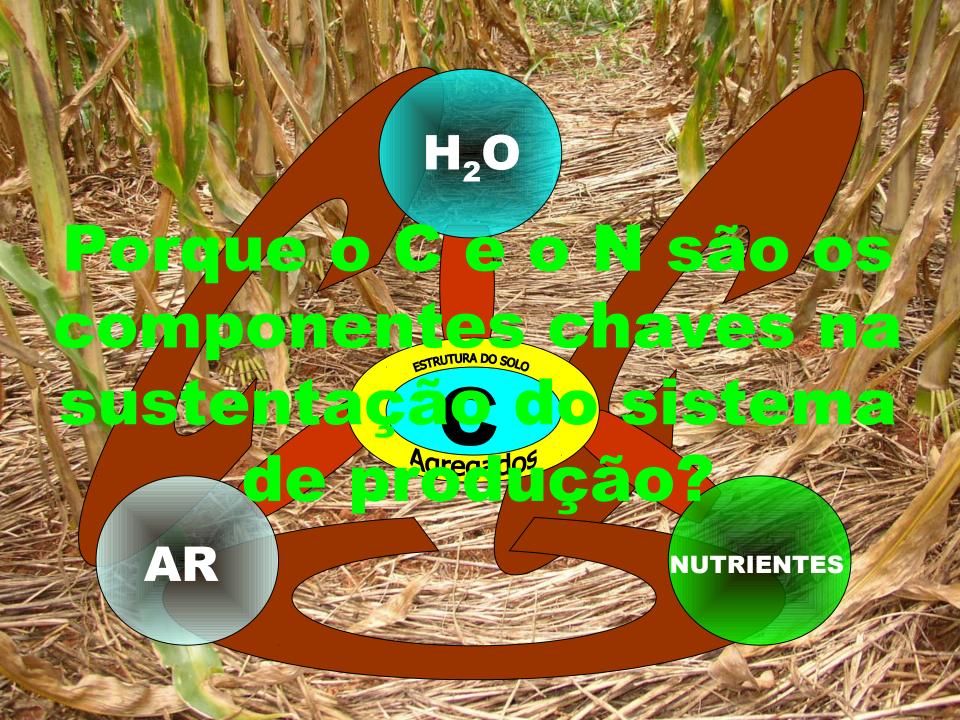
Modelos de agregados, fracionamento granulométrico, modelos de ciclagem de C

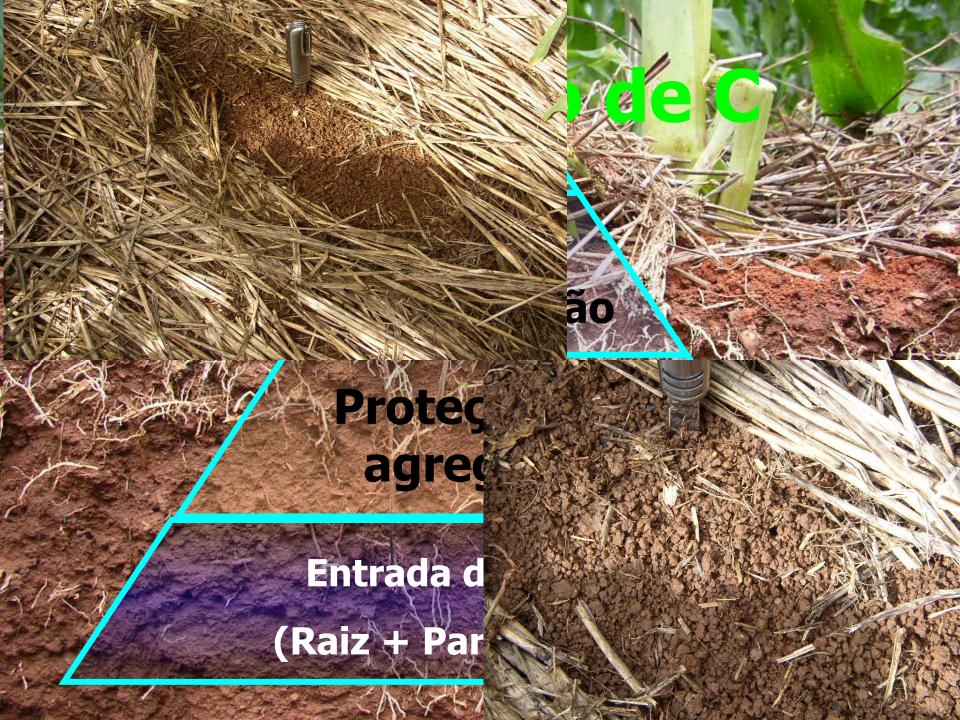
Enfoque nos reservatórios da MOS afetados por sistemas de manejo do solo

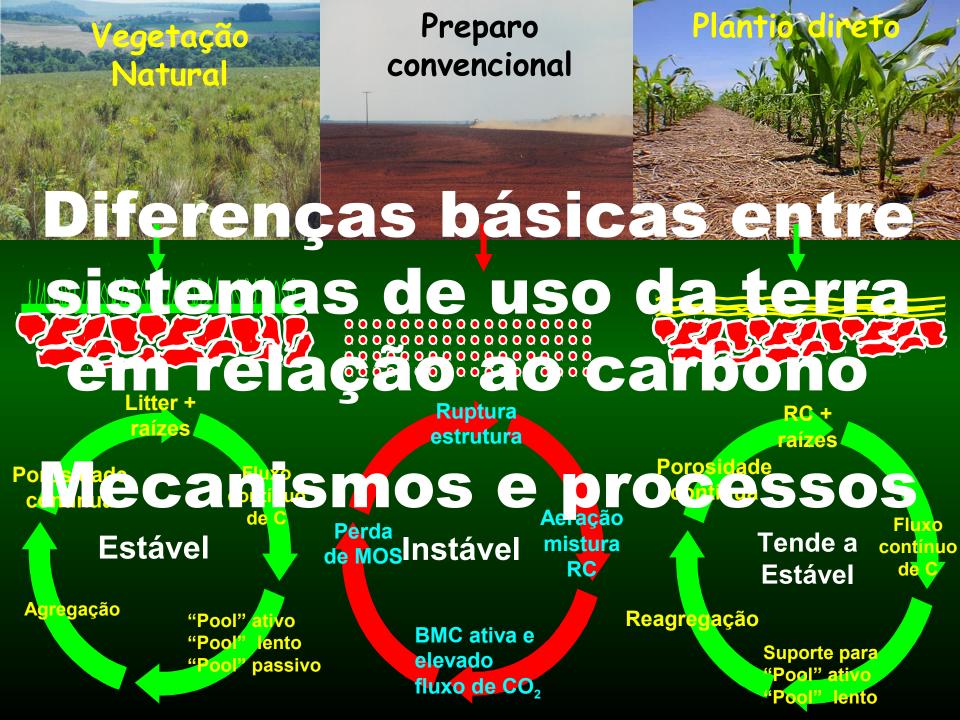
1955 - 1975 Desenvolvimento de técnicas e metodologias PENAR EPRIO ESTUCIO

Funções e modelos da estrutura do Humus (Métodos químicos – Fracionamento de substâncias húmicas)

Caracterização de compostos orgânicos

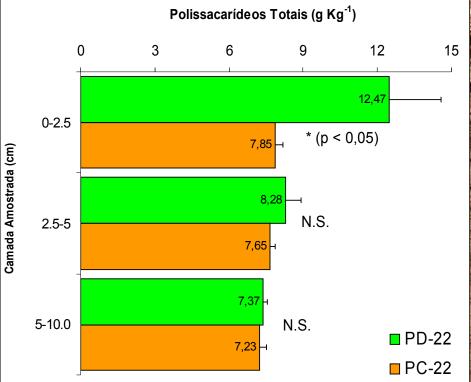

Beneficios da MOS em atributos do solo

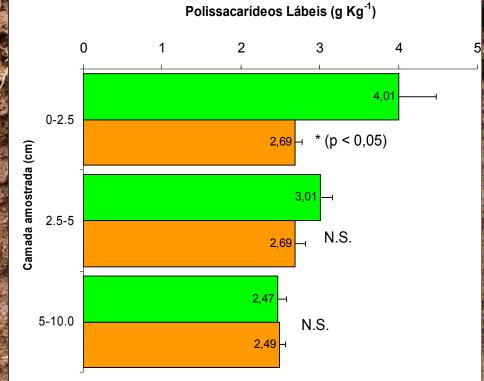

Schnitzer, 1978 and 1998; Jenkinson, 1976; Cerri, 1986; Parton et al., 1987; Jastrow, 1998


Identificação de grupos funcionais, Estrura e modelos do Humus

Desenvolvimento da química

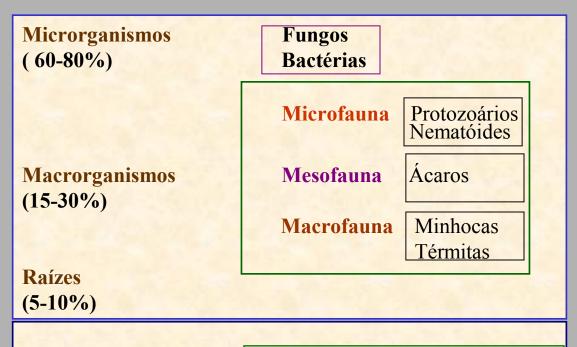
Primeiros trabalhos





Polissacarídeos no solo

Composição da matéria orgânica do solo


→ **VIVA**raramente > 4% de C
orgânico

MOS

MORTA

± 98% do C orgânico

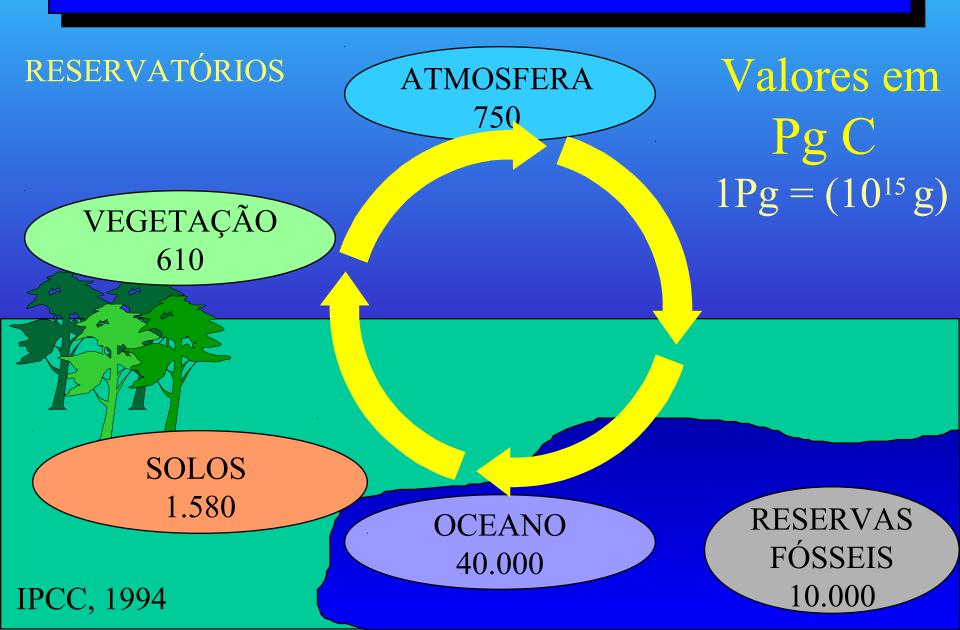
Esquema: Pedro Machado (EMBRAPA-CNPS)

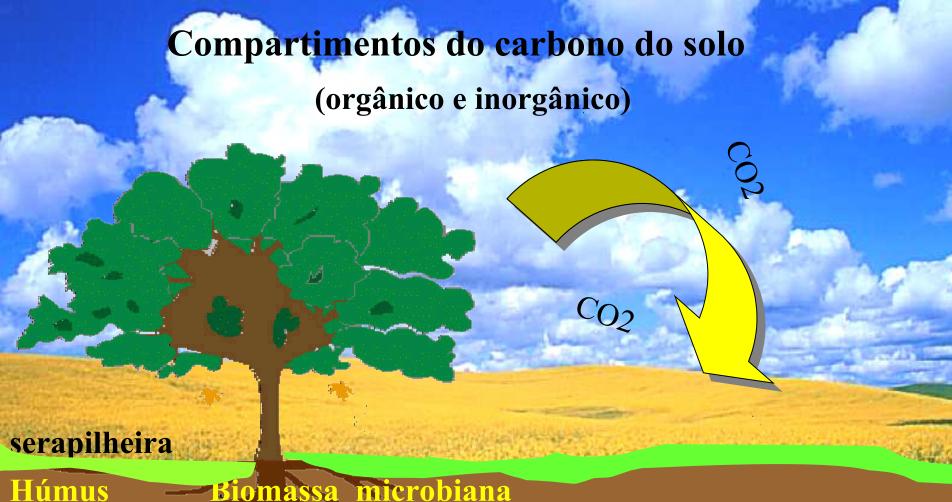
Matéria Macroorgânica Resíduos ve estádios de

(80-90%)

Resíduos vegetais de diferentes estádios de decomposição

Substâncias não húmicas (30%)


*Lipídeos *Ácidos o


- *Ácidos orgânicos de baixo peso molecular
- * Proteínas
- * Pigmentos

Substânçias húmicas (70%)

- * Ácidos húmicos
- * Ácidos fúlvicos
- * Huminas

CICLO GLOBAL DO CARBONO

Biomassa microbiana

Rizodepositos

Frações leves

Material de origem

Calcário Minerais

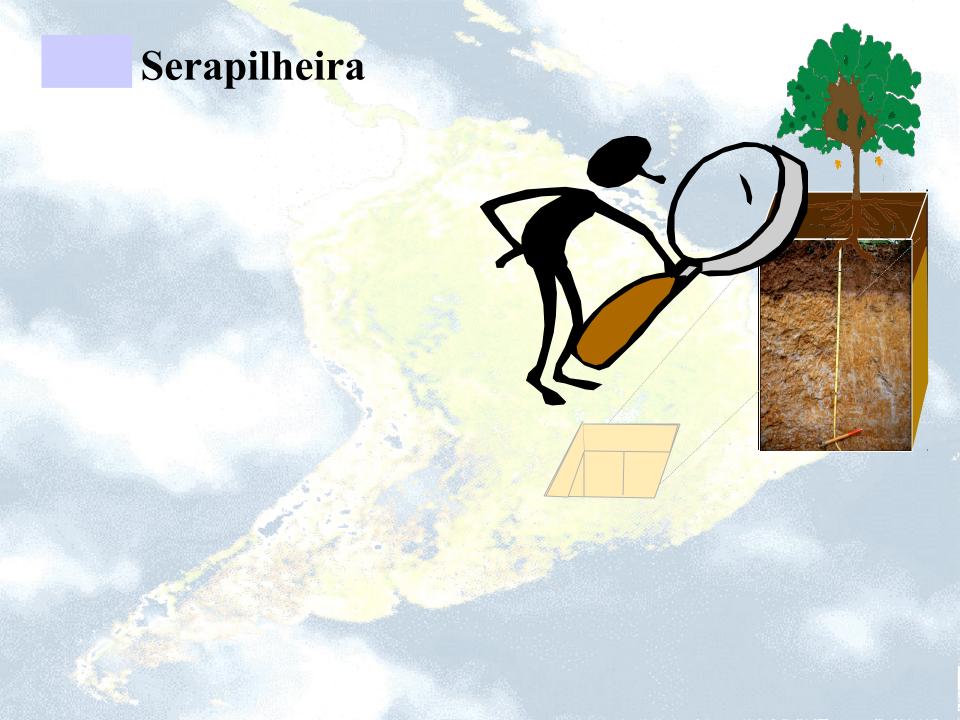
Dolomita Calcita (CaCO₃)

Mármore Dolomita (CaCO₃.

 $M\sigma CO$

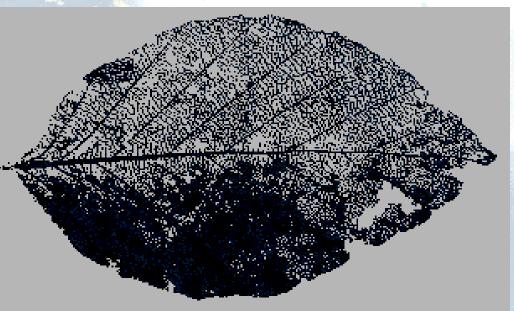
Intemperismo

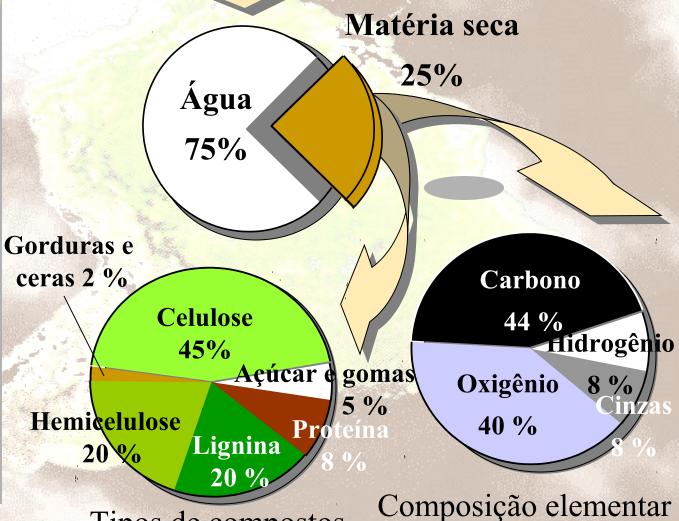
 $CaCO_3 + H_2CO_3 \rightarrow Ca^{2+} + 2HCO_3$

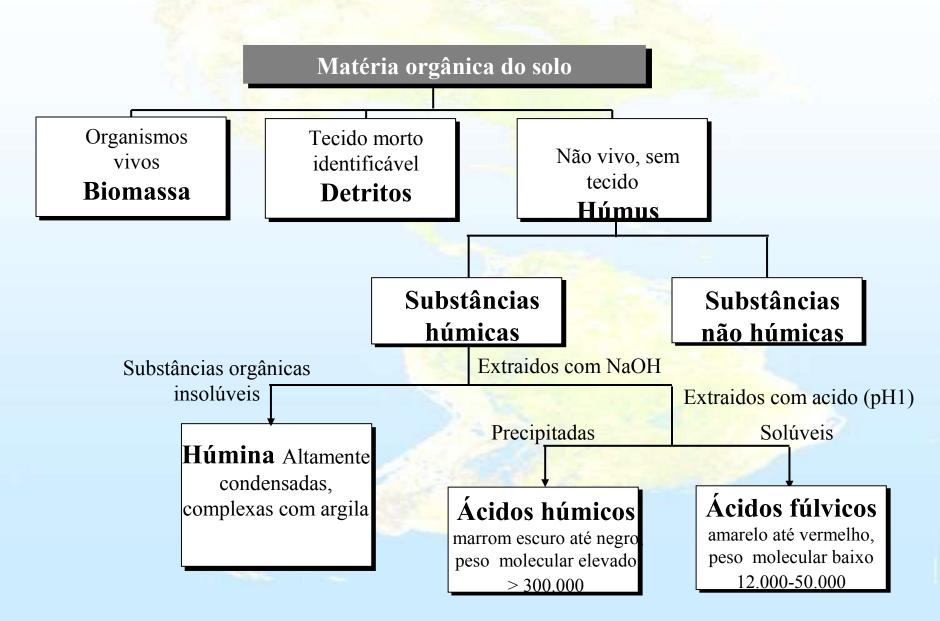

sólido

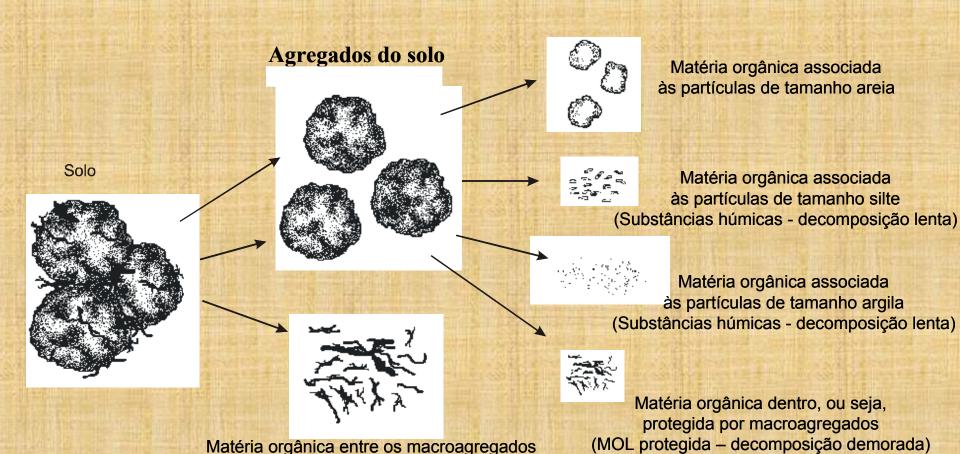
solução

Substâncias não-húmicas


solução





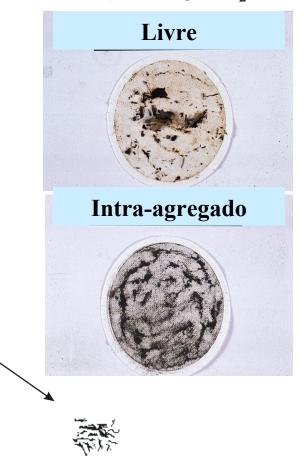

Tipos de compostos

Composição global da matéria orgânica do solo

Localização da matéria orgânica no solo

(MOL desprotegida – fácil decomposição)

Agregados


AGREGADOS DO SOLO

Barreto et al. (26° CLAQ)

Floresta Atlântica:

COM-Secundários

Agregado 8 mm $(0-5 \text{ cm}) = 4 \text{ kg CO}_2 \text{ ha}^{-1} \text{ hora}^{-1}$

Fração Leve Intra-Agregado

Quantificação do carbono do solo

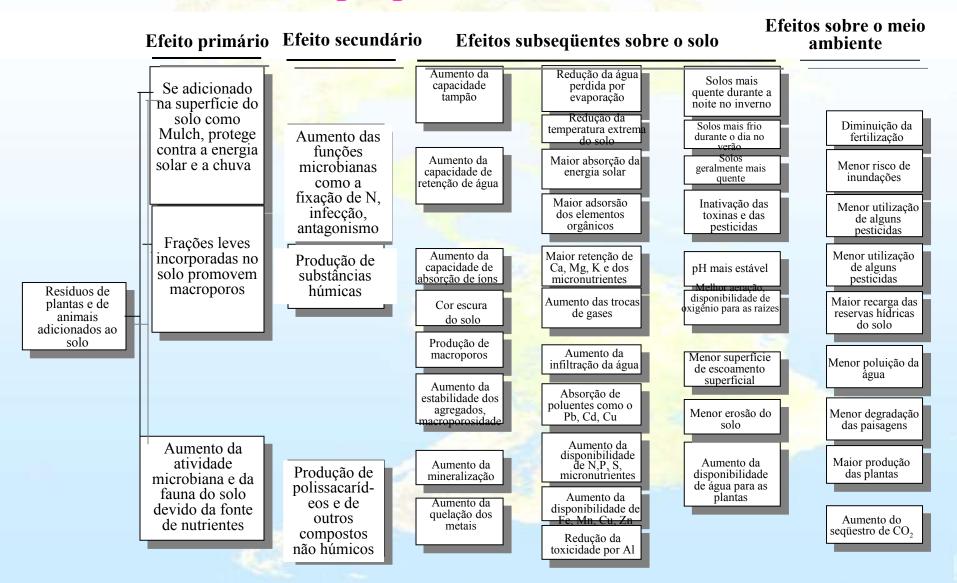
Quantificação de carbono orgânico do solo

- Oxidação por via úmida
- Mais comum no Brasil;
- ➤ Baseia-se na oxidação do carbono (0 a +4) por íons dicromato em meio fortemente ácido:

$$2Cr_2O_7^{=} + 3C^0 + 16H^+ \iff 4Cr^{3+} + 3CO_2 + 8H_2O$$

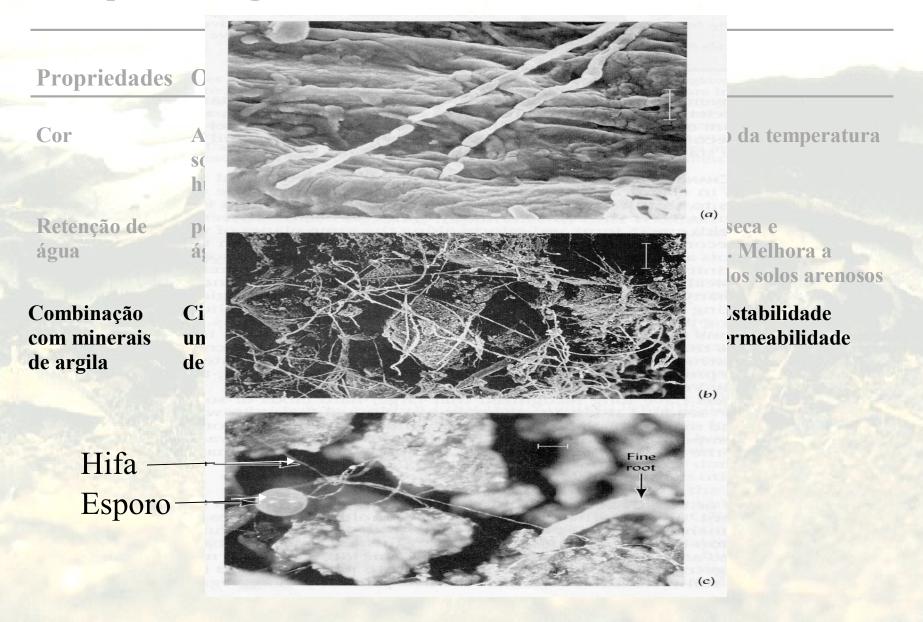
A quantidade de carbono orgânico é obtida indiretamente pela diferença entre a quantidade total de redutor utilizada e a quantidade restante após oxidação do carbono:

$$Cr_2O_7^{=} + 6Fe^{2+} + 14H^{+} \Leftrightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

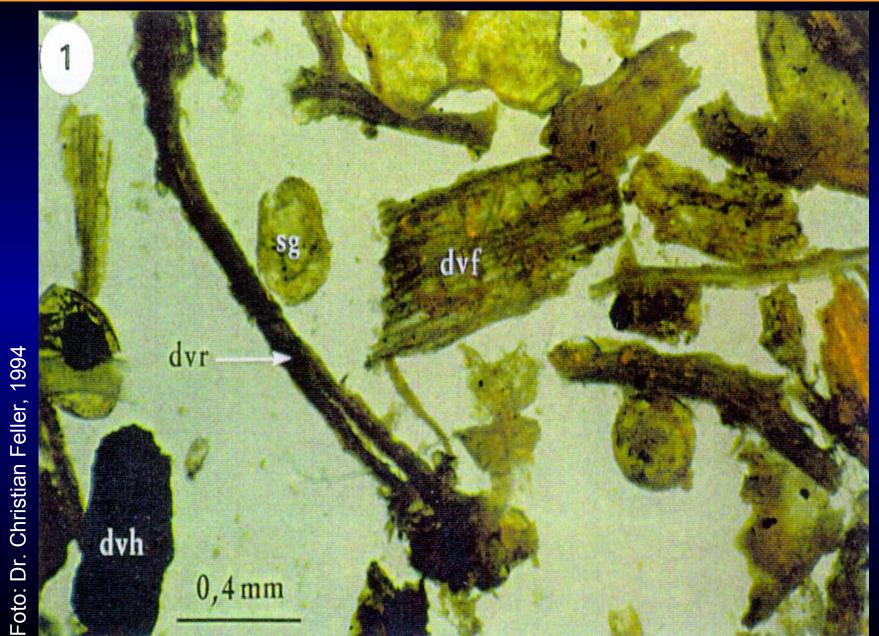

➤ **Problema:** Fator de correção (1,33 - *Jackson*, 1958) devido à oxidação incompleta do carbono, espaço, descarte de resíduo.

- Oxidação por via seca
- Consiste na oxidação completa do carbono em analisador automático que capta e quantifica todo o CO₂ desprendido em um detetor de condutividade térmica;
- Maior precisão e exatidão;
- ➤ Problema: Amostras moídas (< 0,177 mm); alto custo.
- Métodos alternativos
- > Técnica do infravermelho médio (MIR) e infravermelho próximo (NIR).
- Densidade do solo
- ✓ Poucas promessas.

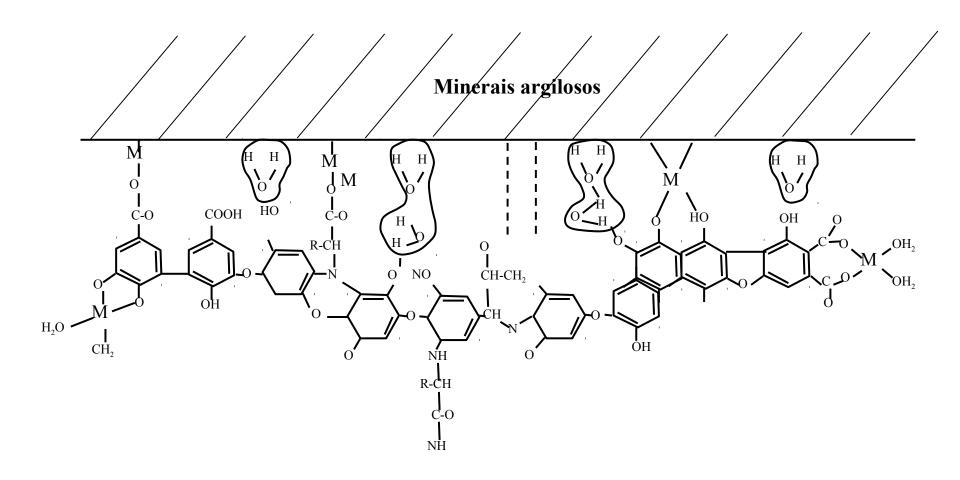
Sensor de carbono total do solo

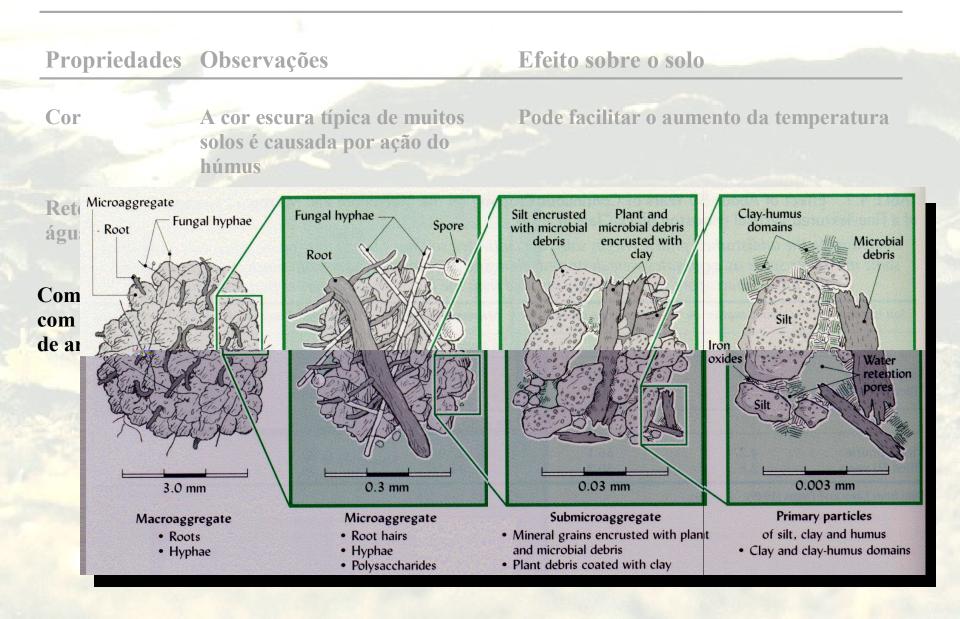


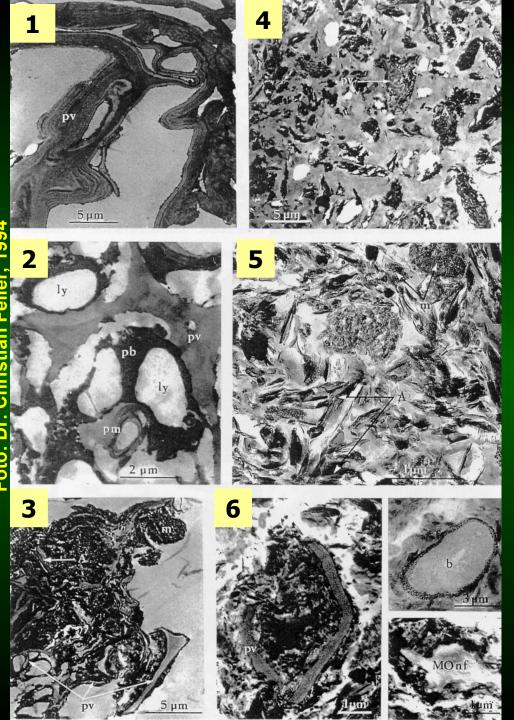
Modos nos quais o carbono orgânico do solo influencia as propriedades do solo.



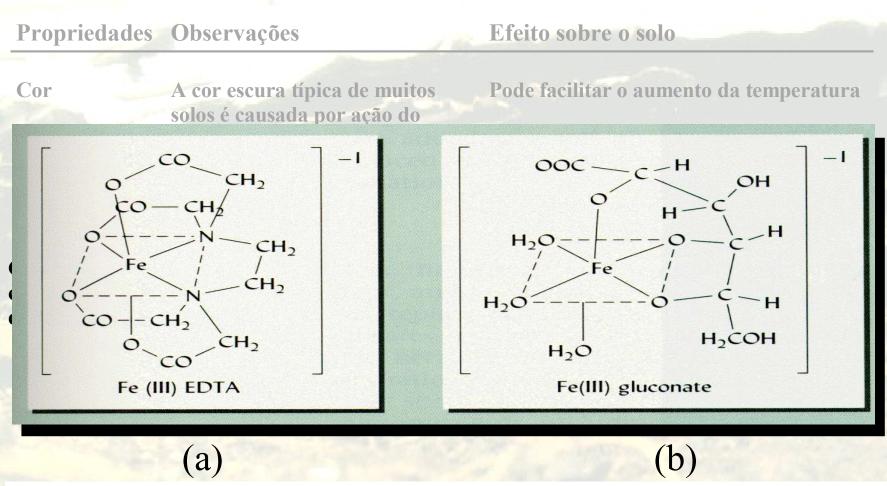
Propriedades	Observações	Efeito sobre o solo
Cor	A cor escura típica de muitos solos é causada por ação do húmus	Pode facilitar o aumento da temperatura
Retenção de água	pode reter 20 vezes seu peso em água	Ajuda na prevenção de seca e aparecimento de fisuras. Melhora a umidade e de retenção dos solos arenosos
Combinação com minerais de argila	Cimentam partículas do solo em unidades estruturais chamadas de agregados	Permite trocas gasosas, Estabilidade estrutural, Aumenta a permeabilidade


Propriedades	Observações	Efeito sobre o solo
Cor	A cor escura típica de muitos solos é causada por ação do húmus	Pode facilitar o aumento da temperatura
Retenção de água	pode reter 20 vezes seu peso em água	Ajuda na prevenção de seca e aparecimento de fisuras. Melhora a umidade e de retenção dos solos arenosos
Combinação com minerais de argila	Cimentam partículas do solo em unidades estruturais chamadas de agregados	Permite trocas gasosas, Estabilidade estrutural, Aumenta a permeabilidade




C nas frações granulométricas (camada 0-10 cm)

200-2000 µm


- Macroagregado de 200-2000 μm (tecido vegetal pouco biodegradado);
- 2. Microagregado de 50-200 μm (tecido vegetal decomposto);
- 3. Microagregado 20-50 μm organo-mineral;

4. Microagregado 2-20 μm;

- 5. Fração argila (0-2 μm);
- 6. Complexo organo-argila

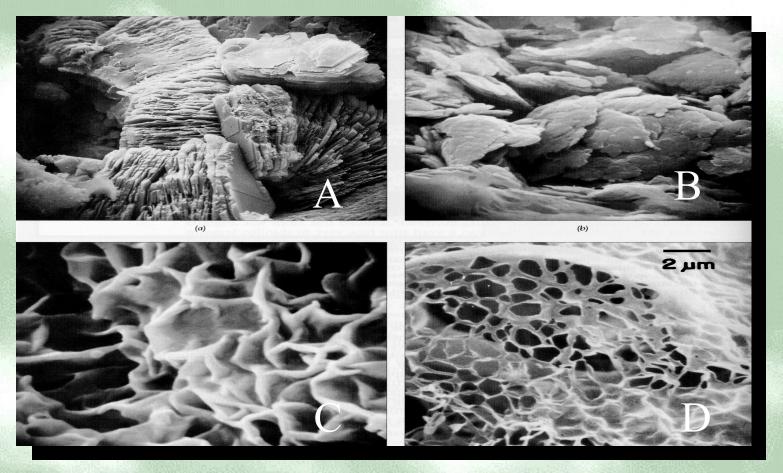
Propriedades	Observações	Efeito sobre o solo
Cor	A cor escura típica de muitos solos é causada por ação do húmus	Pode facilitar o aumento da temperatura
Retenção de água	pode reter 20 vezes seu peso em água	Ajuda na prevenção de seca e aparecimento de fisuras. Melhora a umidade e de retenção dos solos arenosos
Combinação com minerais de argila	Cimentam partículas do solo em unidades estruturais chamadas de agregados	Permite trocas gasosas, Estabilidade estrutural, Aumenta a permeabilidade
Quelação	Forma complexos estáveis com Cu ²⁺ , Mn ²⁺ , Zn ²⁺ , e outros cátions polivalentes	Aumenta a disponibilidade de micronutrientes para plantas superiores

> Definição: um tipo de composto químico no qual um ion metálico é firmemente combinado com uma molécula orgânica por meio de múltiplas ligações químicas.

Fórmula estrutural para dois íons quelados, etilenodiaminatetra-acetato férrico (Fe-EDTA) (a) e gluconato férrico (b). Em ambos o quelatos, o ferro é protegido e ainda pode ser usado pelas plantas.

Propriedades	Observações	Efeito sobre o solo
Cor	A cor escura típica de muitos solos é causada por ação do húmus	Pode facilitar o aumento da temperatura
Retenção de água	pode reter 20 vezes seu peso em água	Ajuda na prevenção de seca e aparecimento de fisuras. Melhora a umidade e de retenção dos solos arenosos
Combinação com minerais de argila	Cimentam partículas do solo em unidades estruturais chamadas de agregados	Permite trocas gasosas, Estabilidade estrutural, Aumenta a permeabilidade
Quelação	Forma complexos estáveis com Cu ²⁺ , Mn ²⁺ , Zn ²⁺ , e outros cátions polivalentes	Aumenta a disponibilidade de micronutrientes para plantas superiores
Solubilidade em água	A insolubilidade é devida a associação com argila. Também, sais de cátions divalente e trivalente são insolúveis com o humus	Pequena quantidade de matéria orgânica é perdida por lixiviação

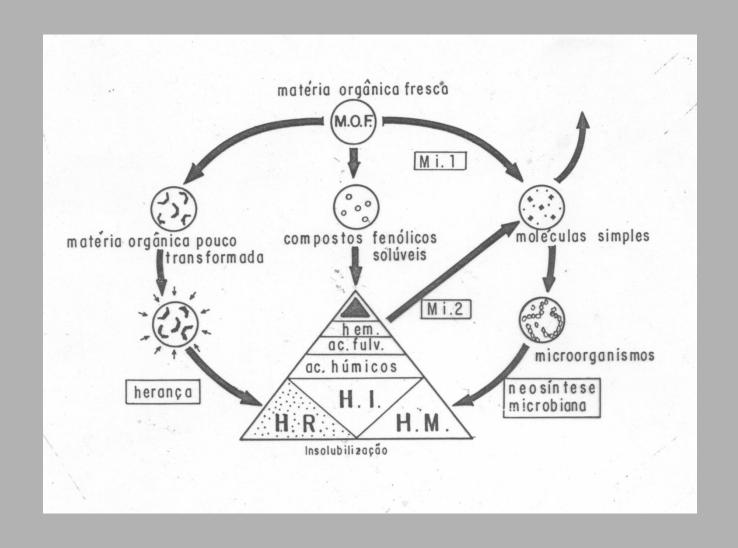
Área superficial específica (ASE) e capacidade de troca de cátions (CTC).


Partícula	ASE m ² g ⁻¹	CTC cmol _c kg ⁻¹
Matéria Orgânica	800 – 900	200 – 300
Montmorilonita	600 – 800	80 – 150
Vermiculita	500 – 800	100 – 150
Micas	40 – 150	10 – 40
Óxidos	<u>-</u>	2 – 4
Caulinita	7 – 30	0 –1
* adaptado de McBride, 1994.		

Propriedades	Observações	Efeito sobre o solo
Poder tampão	Regula faixas de transição ligeiramente ácida, neutra e alcalina	Ajuda a manter uma reação uniforme no solo
Troca de cátions	Acidez total das frações isoladas do húmus na faixa de 300 a 1400 cmoles/kg,	Aumenta a capacidade de troca de cations (CTC) do solo. De 20 a 70% da CTC de muitos solos é devido o húmus.
Mineralização	Decomposição do humus produz CO ₂ , NH ₄₊ , NO ³⁻ , PO4 ³⁻ e SO4 ²⁻	Fonte de nutrientes para o crescimento das plantas

Propriedades	Observações	Efeito sobre o solo
Poder tampão	Regula faixas de transição ligeiramente ácida, neutra e alcalina	Ajuda a manter uma reação uniforme no solo
Troca de cátions	Acidez total das frações isoladas do húmus na faixa de 300 a 1400 cmoles/kg,	Aumenta a capacidade de troca de cations (CTC) do solo. De 20 a 70% da CTC de muitos solos é devido o húmus.
Mineralização	Decomposição do humus produz CO ₂ , NH ₄₊ , NO ³⁻ , PO4 ³⁻ e SO4 ²⁻	Fonte de nutrientes para o crescimento das plantas
Associação con xenobióticos	n Afeta a bioatividade, a persistência e a biodegradabilidade dos pesticidas	Modifica a taxa de aplicação dos pesticidas para um controle efetivo

Definição: compostos estranhos ao sistema biológico. Freqüentemente é referido a compostos resistentes à decomposição.


Cristais de três minerais de argilas silicatadas e um fotomicrógrafo de ácido húmico encontrado no solo (a) caulinita de Illinois com aumento de aproximadamente 1900 vezes (nota-se o cristal hexagonal à direita superior), (b) mica finamente granulada de Wisconsin com aumento de aproximadamente 17,600 vezes, (c) Montmorilonita (grupo dos esmectitas) de Wyoming com aumento de aproximadamente 21,000 vezes, (d) ácido fúlvico (um ácido húmico) da Geórgia com aumento de aproximadamente 23,000 vezes.

Substâncias não húmicas:

incluem todas que possuem características químicas definidas

Substâncias húmicas:

não exibem *características químicas* ou físicas *específicas* como os compostos orgânicos bem definidos apresentam. São mais *resistentes à degradação química e biológica*

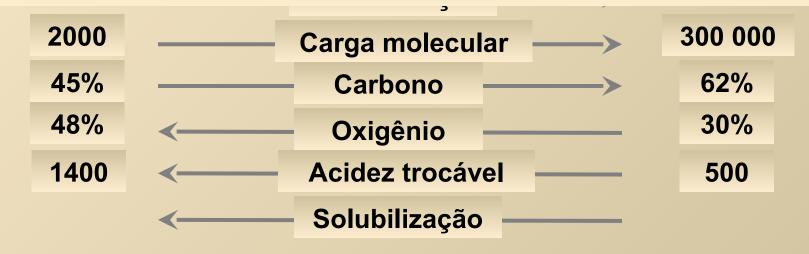
Teorias de humificação: Gabriel de A. Santos - UFRRJ/Dep Solos

Frações Húmicas do solo

Baseado na solubilidade em base ou em meio ácido, as SH são normalmente divididas em:

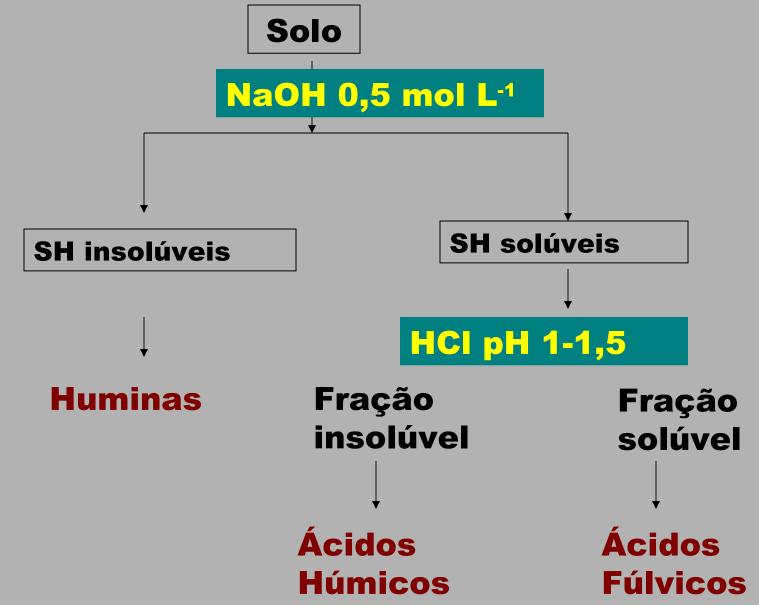
Ácidos Húmicos Ácidos Fúlvicos Huminas

A denominação atual foi proposta por Olsen (1919) e o esquema geral de fracionamento homologado pela (2001) foi proposto por Achard 1786.

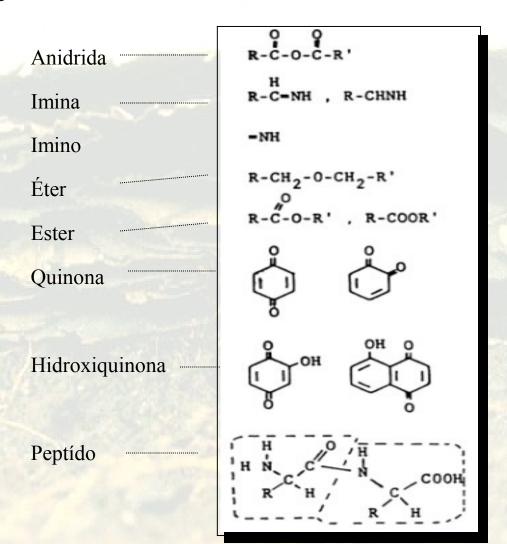


Ac. Fúlvico

Ac. Húmico

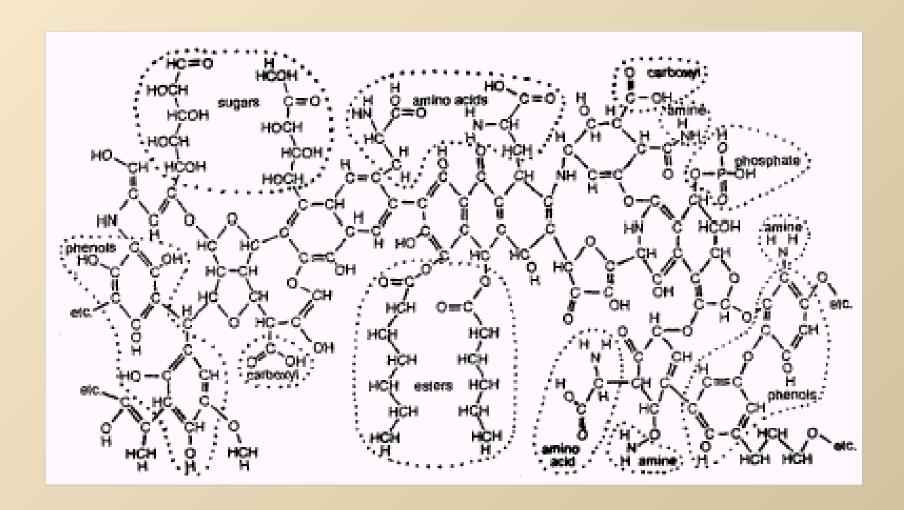

Humina

As diversas frações das substâncias húmicas impõe ao solo características distintas em função do predomínio de uma ou de outra fração.


^{*} Adaptado de Stevenson, 1982.

Extração das Substâncias Húmicas

Alguns grupos estruturais importantes de moléculas orgânicas


Amino	-NH ₂
Amina	R-C-NH ₂
álcool	R-C-NH ₂ R-CH ₂ OH
aldeido	H R-C=0 , R-CHO
carboxil	r-с-он, r-соон
Ion carboxilico	R-C () (R-C00
Enol	R-CH-CH-OH
Cetona	,0 R-C-R', R-CO-R'
Acido Keto	о R-C-СООН
Carbonil insaturado	н н н -C=C-C=O

Mecanismos de associação entre grupos funcionais da matéria orgânica e minerais do solo.

Mecanismos	Grupamentos funcionais envolvidos
Troca de cátions	Amino, NH ligado a anel aromático, N heterocíclico
Protonação	Amino, N heterocíclico, carbonila, carboxilato
Troca de ânions	Carboxilato
Ligação com a água	Amino, carbonila, carboxilato, OH alcoólico
Ligação com cátions	Carbonila, aminas, carboxilatos, OH alcoólico
Troca de ligantes	Carboxilato
Pontes de hidrogênio	Amino, carbonila, carboxila, OH fenólico
Interações de van der Waals	Unidades orgânicas carregadas
* Adaptado de Sposito, 1989.	

Molécula orgânica composta por vários grupos funcionais que interagem com os minerais do solo.

Estrutura química de um ácido húmico

C. Núcleo do ácido fúlvico

HÚMUS

- Palavra latina para solo

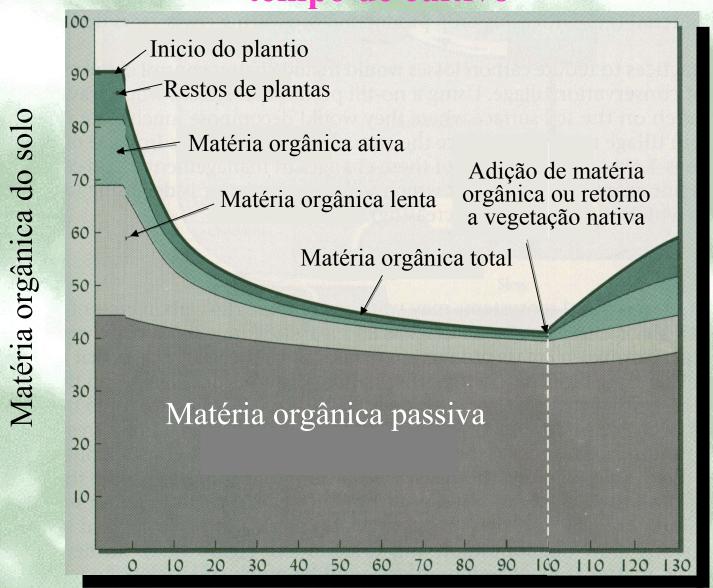
Definição

Mistura complexa e recalcitrante de substâncias orgânicas amorfas e coloidais de cor marrom ou marrom escuro, modificadas a partir de tecidos originais ou sintetizadas de substâncias orgânicas por vários organismos do solo.

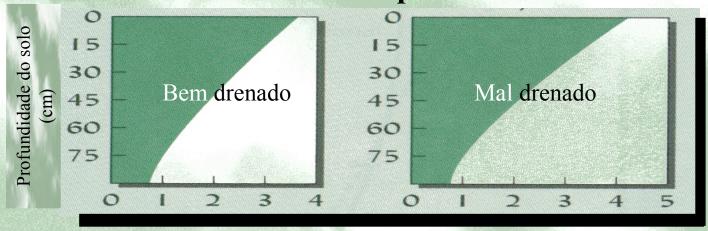

Características

- Cor escura
- Altamente coloidal
- 1 a 3% decomposto/ano
- Rico em lignina
- Rico em proteína
- Relação C:N próxima de 10

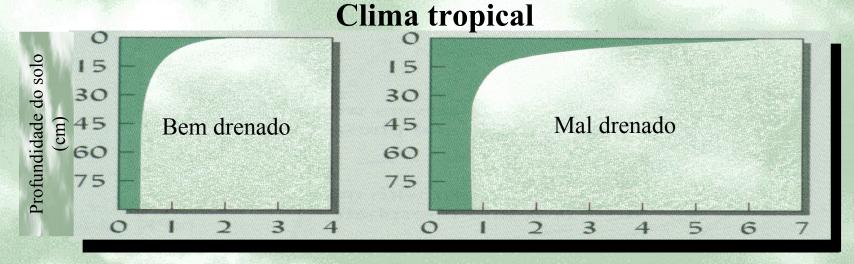
Fatores que afetam o conteúdo de húmus


- Tempo
- Clima
- Vegetação
- Material de origem
- Topografia
- Efeitos do manejo do solo

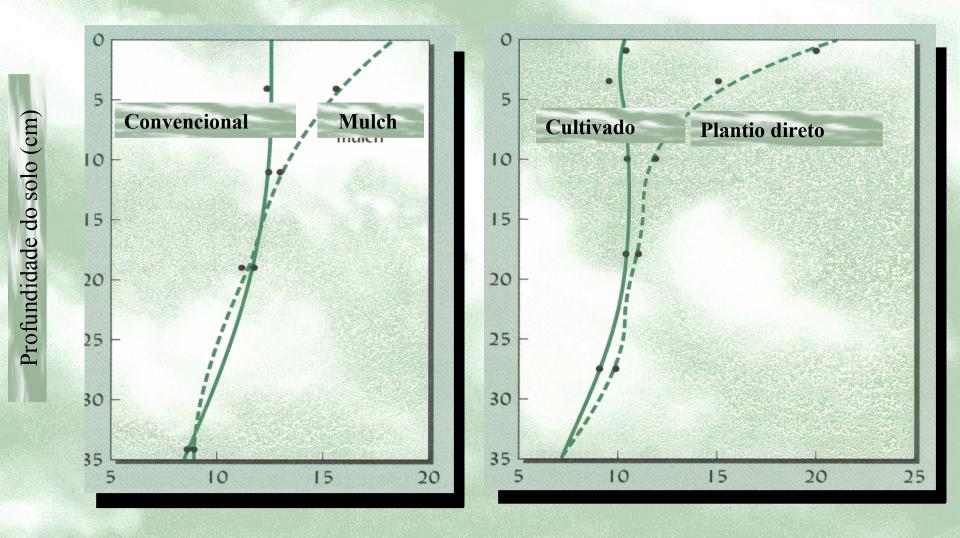
DECOMPOSIÇÃO DA MAT. ORG. EM SOLOS BRASILEIROS


Fonte: Silva et al. (1994)

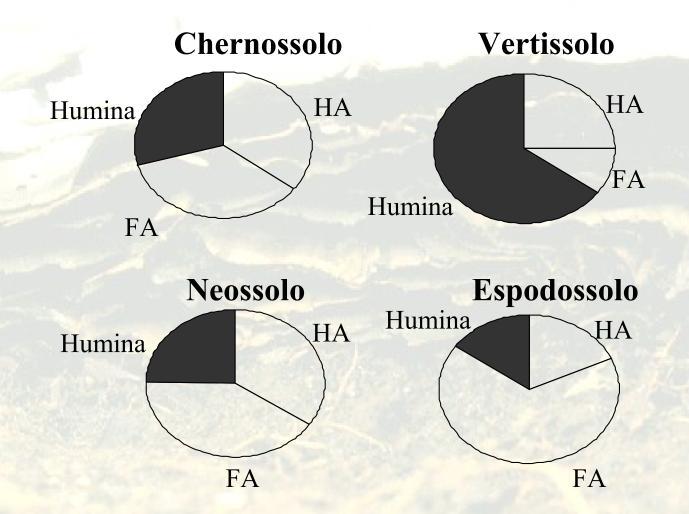
Dinamica dos compartimentos da MOS em função do tempo de cultivo



Tempo após o início do cultivo (anos)


Clima temperado

Matéria orgânica do solo (%)



Matéria orgânica do solo (%)

Teor de carbono orgânico do solo (g kg⁻¹)

Distribuição no solos

Distribuição do húmus no solo para quatro grandes grupos de solo. Valores de FA são para a fração fúlvica ácida.

Comportamento do material orgânico incorporado ao solo

- 6.1. Fatores que controlam a decomposição de restos orgânicos no solo
 - 6.1.1. Umidade
 - 6.1.2. Oxigênio
 - 6.1.3. pH do solo
 - 6.1.4. Relação C/N do material orgânico
 - 6.1.5. Conteúdo de lignina e polifenois de materiais orgânicos
 - 6.1.6. Temperatura
 - 6.1.7. % de argila
 - 6.1.8. Tipo de argilo minerais
 - 6.1.9. Acessibilidade

Conteúdos de carbono e nitrogênio e C/N de alguns materiais orgânicos associados aos solos.

Material orgânico	% C	% N	C/N
Serragem	50	0,005	600/1
Palha de trigo	38	0,5	80/1
Milho	40	0,7	57/1
Resíduos de cana-de-açúcar	40	0,8	50/1
Colheita de cobertura de centeio	40	1,1	37/1
Grama fertilizada	40	1,3	31/1
Colheita de cobertura de centeio, fase vegetativa	40	1,5	26/1
Feno de alfafa maduro	40	1,8	25/1
Esterco de curral curtido	41	2,1	20/1
Composto maduro	40	2,5	16/1
Feno de alfafa jovem	40	3,0	13/1
Cobertura de vesca colhida	40	3,5	11/1
Lodo de esgoto municipal digeridos	31	4,5	7/1
Microorganismos do solo			
Bactéria	50	10,0	5/1
Actinomicetos	50	8,5	6/1
Fungos	50	5,0	10/1
Matéria orgânica do solo			
Horizonte Ap de Molisol	56	4,9	11/1
Horizonte A1 de Ultisol	52	2,3	23/1
Horizonte B médio	46	5,1	9/1

QUADRO 2 - Estimativa da FBN em diversas leguminosas produtoras de grãos

Espécies leguminosas produtoras de grãos	N ₂ fixado (kg de N ha ⁻¹ ano ⁻¹ ou ciclo)
Amendoim (Arachis hypogaea)	33-297
Caupi (Vigna unguiculata)	73-240
Ervilha (Pisum sativum)	17-244
Feijão (Phaseolus vulgares)	4-165
Feijão-mungo (Vigna radiata)	63-342
Grão-de-bico (Cicer arietinum)	41-270
Lentilha (Lens culinaris)	35-192
Soja (Glycine max)	17-450

FONTE: Dados básicos: Moreira e Siqueira (2002).

QUADRO 3 - Produção de massa verde e estimativa da FBN de algumas leguminosas forrageiras

Leguminosas	Massa verde (t ha ⁻¹)	Estimativa de N ₂ fixado
Calopogônio (Calopogonium mucunoides)	15-40	64-450
Caupi (Vigna unguiculata)	12-47	73-240
Centrosema (Centrosema pubenses)	16-35	93-398
Crotalária (Crotalaria juncea)	15-60	146-221
Feijão-de-porco (Vicia sp.)	14-30	57-190
Guandu (Cajanus cajans)	9-70	7-235
Leucena (Leocaena leucocephala)	60-120	200-300
Mucuna-preta (Stizolobium aterrimum)	10-40	157
Siratro (Macroptilium atropurpureum)	14-28	70-181

FONTE: Dados básicos: Calegari, (1995), Moreira e Siqueira (2002).

Resíduos orgânicos

- Adubo animal: gado de corte e de leite, avícola, suínos, cavalo
- *Lodo de esgoto*: lodo primário, lodo ativado, lodo aeróbico e lodo anaeróbico, composto de lodo.
- Resíduos vegetais compostados:
- Resíduos da Indústria de papel: restos da indústria de papel
- *Outros resíduos:* retos de comida, industrial, produtos florestais.

Composição percentual de resíduos animais frescos

Fonte	N	Р	K	Ca	Mg	S	Fe
Gado leiteiro	0.53	0.35	0.41	0.28	0.11	0.05	0.004
Gado de corte	0.65	0.15	0.3	0.12	0.11	0.09	0.004
Cavalo	0.7	0.1	0.58	0.79	0.14	0.07	0.01
Galinha	1.5	0.77	0.89	0.3	0.88	0	0.1
Ovelha	1.28	0.19	0.93	0.59	0.19	0.09	0.02
Porco	0.58	0.15	0.42	0.57	0.08	0.14	0.02

Potencial dos compostos orgânicos para reabilitar solos degradados

Material	Tipos	Características	Função na recuperação
Resíduos de plantas	Palha Folhas Galhos Serragem	Rico em MO degradável	Estimula a biota Melhora propriedades físicas
Esterco	Gado de corte Gado de leite Ave Suino Cavalo	Rico em MO degradável Fonte de nutrientes	Estimula a biota Adição de nutrientes
Lodo de esgoto	Anaeróbio Aeróbio Lodo ativado Indústria papel	Fonte de nutrientes	Estimula a biota Adição de nutrientes Aumento do pH
Compostos	Adubo Lodo de esgoto	Rico em MO estável, Fonte de nutrientes	Estimula a biota Adição de nutrientes Melhora propriedades físicas
Resíduo sólido municipal	Folhagem/jardim	Rico em MO degradável Fonte de nutrientes	Estimula a biota Adição de nutrientes

Condicionadores do solo

Definição:

substâncias que melhoram as propriedade físicas do solo

Classificação:

- ⇒ Orgânicos ou Inorgânicos
 - Orgânicos: composto, biosólido (lodo de esgoto), esterco, madeira, serragem, serapilheira, papel, restos culturais, resíduos animais etc
 - Inorgânicos: gesso, calcário, cinzas, pirita, fosfogesso, argilas, zeolitas, terras diatomaceas etc
- ⇒ Sintéticos ou Não sintéticos

Outros condicionadores e seus principais benefícios

Condicionadores do solo	Principais benefícios
A base de algas	Melhoram a estrutura do solo
Enzimas	Melhoram a estrutura do solo Removem sais ou outros elementos tóxicos
Hormônios (bioestimulantes)	Promovem o crescimento das raizes
Humus	Melhoram a estrutura do solo Retenção de nutrientes
Ácidos húmicos	Melhoram a estrutura do solo Retenção de nutrientes Estimulam o crescimento
Compostos inoculados	Compostos orgânicos inoculados com vários microorganismos. Em alguns são adicionados nutrientes e são também classificados como fertilizantes. Melhoram a estrutura do solo, melhoram a retenção de nutrientes e aumentam a MO do solo.

Polímeros (PVA,PAM) Aumentam a retenção de água

Melhoram a estrutura do solo

Cerâmica porosa Aumentam a retenção de água

Aumentam a aeração

Zeolitas Aumentam a CTC

Melhoram a estrutura do solo

Plantas marinhas Aumentam a MO do solo

Aumentam a retenção de nutrientes

Agem como bioestimulante

O MANEJO RACIONAL DA MATÉRIA ORGÂNICA DO SOLO É UM DOS PRIMEIROS PASSOS PARA A SUSTENTABILIDADE AGRÍCOLA.

DESACELERAR A DEGRADAÇÃO DA MATÉRIA ORGÂNICA INCLUI:

- REDUZIR O REVOLVIMENTO DO SOLO;
- MELHORAR A RECICLAGEM DOS RESÍDUOS;
- AUMENTAR A QUANTIDADE DE CARBONO ORGÂNICO FIXADO E INCORPORADO NO SOLO;
- MANTER OS NUTRIENTES NO CICLO BIOLÓGICO;
- DIMINUIR AS PERDAS DE SOLO, ÁGUA E NUTRIENTES DO SISTEMA;
- INTRODUZIR PLANTAS NO PROGRAMA DE ROTAÇÃO COM MAIORES CAPACIDADES PRODUTIVAS DE BIOMASSA, OU SEJA, COM MAIORES PRODUÇÕES DE RESÍDUOS,
- MANTER A SUPERFÍCIE DO SOLO SEMPRE COBERTA, ETC.

PRÁTICAS DE MANEJO DO SOLO

QUE ACELERAM A MINERALIZAÇAO DA MATERIA ORGANICA:

- PREPARO CONVENCIONAL;
- USO DE ENXADA ROTATIVA;
- BAIXA DENSIDADE DE PLANTAS POR UNIDADE DE ÁREA;
- SOLO DESCOBERTO, ETC.
 - MOTIVO ESTIMULAM A ATIVIDADE MICROBIOLÓGICA

QUE AMENIZAM A DEGRADAÇÃO DA MATÉRIA ORGÂNICA:

- PLANTIO DIRETO;
- ROTAÇÃO DE CULTURAS;
- ADUBAÇÃO VERDE;
- COMPOSTAGEM;
- ROÇADA DE ERVAS INVASORAS;
- ALTA DENSIDADE DE PLANTAS;
 - MOTIVO MELHORAM A RECICLAGEM DOS RESÍDUOS VEGETAIS E PROTEGEM O SOLO CONTRA A

Otimizar as práticas agrícolas

Ações

- Reduzir: emissões
- Aumentar: sequestro dos gases atmosféricos

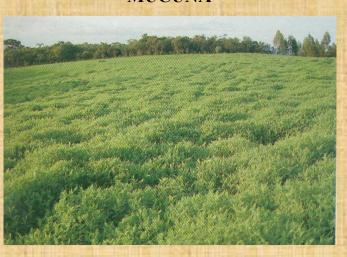
Recomendações práticas

- Reduzir: arações e gradagens
- Aumentar: produtividade agrícola retorno de resíduos culturais
- Reabilitar solos degradados

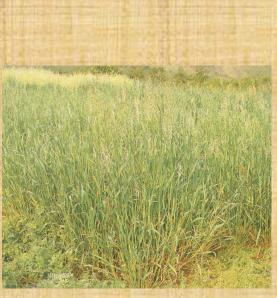
Redução esperada: 400-800 TgC.ano-1

Limitação

• Capacidade finita do solo em armazenar C equilíbrio atingido entre 50-100 anos


VANTAGENS DA ADUBAÇÃO VERDE

- 1. Proteger o solo das chuvas de alta intensidade
- 2. Aumentar a infiltração e retenção de água no solo
- 3. Aumentar o teor de matéria orgânica ao longo dos anos
- 4. Diminuir as oscilações de temperatura no solo e também a evaporação (disponibilidade de água)
- 5. Fazer a reciclagem de nutrientes
- 6. Diminuir as perdas dos nutrientes por lixiviação (caso no N e do K)
- 7. Aumentar a quantidade de N atraves da fixação biológica pelas leguminosas
- 8. Auxiliar no controle da população de ervas invasoras
- 9. Romper camadas adensadas e promover a aeração e estruturação do solo preparo biológico


ALGUNS TIPOS DE ADUBOS VERDES

MUCUNA

ERVILHACA

AVEIA PRETA

CROTALÁRIA

NABO FORRAGEIRO

Gerenciamento, uso e conservação de recursos produtivos Mudança institucional Desenvolvimento REQUISITOS e difusão de Organização social PARA UMA tecnologias Desenvolvimento dos **AGRICULTURA** apropriadas, recursos humanos acessíveis e MENOS IMPACTANTE Pesquisa participativa baratas Políticas agrárias compatíveis Mercados e preços variáveis Incentivos financeiros Proteção ambiental Estabilidade política

Figura 2 - Inter-relação entre os requisitos para uma agricultura menos impactante ao meio ambiente

FONTE: Dados básicos: Altieri (2000).

Otimizar as práticas agrícolas

Ações

- Reduzir: emissões
- Aumentar: sequestro dos gases atmosféricos

Recomendações práticas

- Reduzir: arações e gradagens
- Aumentar: produtividade agrícola retorno de resíduos culturais
- Reabilitar solos degradados

Redução esperada: 400-800 TgC.ano-1

Limitação

• Capacidade finita do solo em armazenar C equilíbrio atingido entre 50-100 anos

Otimizar as práticas agrícolas

Ações

- Reduzir: emissões
- Aumentar: sequestro dos gases atmosféricos

Recomendações práticas


- Reduzir: arações e gradagens
- Aumentar: produtividade agrícola retorno de resíduos culturais
- Reabilitar solos degradados

Redução esperada: 400-800 TgC.ano-1

Limitação

• Capacidade finita do solo em armazenar C equilíbrio atingido entre 50-100 anos

ESTUDOS SOBRE MANEJO ORGÂNICO DO SOLO NO VALE DO SÃO FRANCISCO DESENVOLVIDOS PELO CPATSA

ESTUDOS SOBRE MANEJO ORGÂNICO DO SOLO NO VALE DO SÃO FRANCISCO DESENVOLVIDOS PELO CPATSA

