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Characterization of the peptide content in snake venoms can be an important tool for the investiga-

tion of new pharmacological lead compounds. For this purpose, single-step analysis of crude

venoms has recently been demonstrated using mass spectrometry (MS) techniques. Reproducible

profiles of ions in MS and MS/MS spectra may also be used to compare venoms from different spe-

cies. In this work matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

(MALDI-TOFMS) was used to obtain mass patterns of the major peptides (<8kDa) found in

pooled venoms from the genera Bothrops and Crotalus. Venoms from five different Bothrops spe-

cies (B. jararaca, B. insularis, B. alternatus, B. jararacussu, and B. neuwiedi) and three Crotalus spe-

cies (C. viridis, C. adamanteus and C. durissus terrificus) were analyzed. In agreement with other

reports, venoms from Bothrops species contained a variety of peptides in the range m/z 1000–

1500, and in some samples larger components (m/z 7000–8000) were detected. In the Crotalus spe-

cies venoms were rich in peptides ranging fromm/z 1000–1500 and 4000–5500. MS/MS experiments

on the low molecular mass peptides (m/z 1000–1500) confirmed the presence of ten new bradyki-

nin-potentiating peptides among venoms from genera Bothrops and Crotalus. In order to determine

whether additional peptides could be identified after partial purification, B. jararaca venom was

subjected to size-exclusion chromatography on Sephacryl S-200, and two distinct low molecular

mass pools were analyzed further by MALDI-TOFMS. No additional peptides were detected

from the pool with masses below 2000Da but a substantial improvement with better resolution

was observed for the pool with masses above 7000Da, indicating that complex samples such

as crude snake venoms can be analyzed for low molecular mass peptides using a single-step

procedure. Copyright # 2005 John Wiley & Sons, Ltd.

Snake venoms contain a large number of biologically active

substances.1 However, they also contain a number of small

protein and peptide components whose biological functions

are still undetermined. Several peptides and small proteins

from snake venoms have been purified in recent years,

including the bradykinin-potentiating peptides (BPPs),

disintegrins and myotoxins. BPPs are proline-rich peptides

composed of 5 to 13 amino acid residues with a pyroglutamic

acid residue at the N-terminus. These molecules inhibit the

angiotensin-converting enzyme, thus potentiating the activ-

ity of bradykinin and causing hypotensive effects.2,3 Disinte-

grins are low molecular mass (6–8 kDa) cysteine-rich

peptides cointaining an Arg-Gly-Asp (RGD) motif, isolated

from the venoms of various Viperidae. These molecules

recognize integrin receptors on cell surfaces; they are potent

inhibitors of platelet aggregation and act as modulators of

neutrophil function.4–6 Myotoxins such as crotamine are

basic polypeptides with molecular mass of 4.5–5.0 kDa that

cause muscle necrosis after snake envenomation. These tox-

ins can induce membrane depolarization-dependent muscle

contractions by increasing the Naþ permeability of skeletal

muscle membranes.7,8

The heterogeneity of venoms may account for differences

in the clinical symptoms observed in snake-bite accidents.

Extensive tissue necrosis, coagulopathy and arterial
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Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfei-
çoamento de Pessoal de Nı́vel Superior (CAPES), Laboratório
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hypotension are a frequent finding inBothrops envenomation.

On the other hand, accidents involving Crotalus species

are associated with neurotoxic symptoms, severe muscle

necrosis, paralysis, and a moderate effect on blood

coagulation.1,2,4,9,10

Characterization of the peptide content of snake venoms

has a number of potential benefits for basic research, clinical

diagnosis, development of new therapeutic agents and

production of antiserum. In order to analyze in detail the

peptides and small proteins of crude samples, techniques

such as chromatography and electrophoresis have been

employed.2,11 More recently, it has been demonstrated that

mass spectrometry customized for proteomics needs is a

powerful tool for analysis of complex mixtures of proteins

and peptides, in particular crude venoms. Thus, matrix-

assisted laser desorption/ionization time-of-flight mass

spectrometry (MALDI-TOFMS) has shown intraspecific

geographic variations in Trimeresurus stejnegeri venoms.12

Tandem mass spectrometry (MS/MS) has become the

fastest technique for determining the primary structures

of a diversity of peptides and their post-translational

modifications.13,14

The aim of the present work was to investigate directly

by MS the peptide content of crude snake venoms, prior to

any purification step, in order to avoid loss of minor

components or interference of any kind. MALDI-TOFMS

and de novo sequencing analysis yielded ten new BPP

sequences among venoms from the two genera investigated.

Taken together, the results indicate the usefulness of this

single-step approach for low molecular mass compounds in

complex samples such as raw venoms and secretions.

EXPERIMENTAL

Venom samples
Pooled venoms from five Bothrops species (B. jararaca, B. insu-

laris, B. jararacussu, B. alternatus, and B. neuwiedi) were kindly

provided by Instituto Butantan (São Paulo, SP, Brazil). Crota-

lus viridis and C. adamanteus were from Latoxan (Valence,

France) and C. durissus terrificus was from CEVAP (Botucatu,

São Paulo, Brazil). Venom samples (3 mg/mL dry weight)

were reconstituted in 20 mM Tris, 150 mM NaCl, pH 8.8, in

the presence of a protease inhibitor cocktail containing

1 mM phenylmethanesulfonyl fluoride (PMSF), 20 mM D-

Phe-Pro-Arg chloromethyl ketone, 3 mM benzamidine and

1 mM ethylenediaminetetraacetic acid (EDTA), and incu-

bated for 60 min at room temperature. Samples (10 mL) of

each venom were desalted using ZipTipC4 (Millipore) and

eluted with 50% (v/v) acetonitrile (ACN) containing 0.1%

(v/v) trifluoroacetic acid (TFA). Venoms with or without

desalting were tested at various concentrations on the MAL-

DI-TOF sample plate. The best resolution was obtained with

0.3 mg/mL and after elution from ZipTipC4 (Millipore). After

these steps all venoms were analyzed at the same concentra-

tion (0.3 mg/mL) and using the same pre-treatment.

Size exclusion chromatography
Crude venom of B. jararaca (800 mg) was fractionated by

size-exclusion chromatography (SEC) on a Sephacryl S-200

column (2.6� 100 cm) equilibrated and percolated with

20 mM Tris-HCl in 150 mM NaCl, pH 8.8. Elution was moni-

tored by absorbance at 280 nm, and fractions corresponding

to molecular mass <10 kDa were divided into two pools.

Samples were further treated with ZipTipC4 as described

above.

MALDI-TOFMS analysis
Peptide mass analyses were performed using a Voyager DE

PRO (Applied Biosystems) MALDI-TOF mass spectrometer.

Samples (1 mL) eluted from ZipTipC4 (described above) were

mixed with 1–3mL of the matrix a-cyano-4-hydroxycinnamic

acid (CHCA) or 3,5-dimethoxy-4-hydroxycinnamic acid (SA)

(10 mg/mL in 50% ACN/0.1% TFA), and then 1mL was

spotted on the plate. Each sample was analyzed in positive

linear and/or reflector ion modes, using external calibration

with angiotensin I (m/z 1,297.51), adrenocorticotropic

hormone (m/z 2094.46, 2466.72 and 3660.19), insulin (m/z

5734.59), thioredoxin (m/z 11 674.48), and apomyoglobin

(m/z 16 952.56). Known venom toxins were also used in

some cases as standard references for internal multipoint cali-

bration. Standard errors of 0.05% and 0.01% were permitted

for MALDI-TOFMS mass measurements in the linear and

reflective modes, respectively. Samples were analyzed in

triplicate using 10 runs in each case with 50 laser shots across

the MALDI spot. Parameters of the acquisition method were:

accelerating grid and guide-wire potentials of 20 000, 18 800

and 10 V, respectively; 400 ns delayed extraction setting.

Spectra were obtained in the ranges m/z 800–10 000 and

800–30 000.

De novo sequencing
MS/MS analyses were performed using an ABI 4700 proteo-

mics analyzer with TOF-TOF optics (Applied Biosystems).

The data were obtained using peptide samples mixed with

a saturated matrix solution of CHCA (1:1 v/v), and spotted

onto an ABI MALDI-TOF/TOF sample plate. The mass spec-

trometry (MS) and tandem mass spectrometry (MS/MS)

experiments were performed in the reflector mode with

external calibration, using the calibration mixture Sequa-

zyme Standard kit (Applied Biosystems). Peptide de novo

sequencing was performed by precursor ion fragmentation

in the presence and absence of N2 as collision-induced disso-

ciation (CID) gas; the collision cell pressure was kept at

2.8� 10�6 Torr. All MS/MS spectra were analyzed manually;

the sequences were determined by precise mass differences

between adjacent b0 ions (confirmed by y0 ions). All leucine

and isoleucine d, v and w ions could be observed and

assigned in the BPP sequences.

RESULTS

In order to determine all possible components present in the

range of 800–10 000 Da, we have developed different strate-

gies of analyses by MALDI-TOFMS and MS/MS. It has

been shown that sample analysis using at least two different

matrices enhances the possibility of ionization of distinct

peptides, thus increasing the number of determined ions.32

Therefore, we analyzed crude venoms directly using

CHCA and SA, which provided better identification of

masses below and above m/z 5000, respectively. All figures
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illustrate the optimum spectra obtained for each sample in a

specified range, using the matrix indicated in the legend.

Representative mass spectra of the five Bothrops venoms

are displayed in Fig. 1. Many similarities and some variations

were observed in both qualitative and quantitative features.

Among Bothrops venoms some peptides were species-

specific, e.g., m/z 1218, 1279 and 1392 for B. insularis; m/z

1175 and 1189 for B. jararacussu; m/z 1059 and 1215 for

B. jararaca; m/z 1053, 1064, 1164, 1281, 1292 and 1296 for

B. neuwiedi; and m/z 1009 and 1221 for B. alternatus. The ion at

m/z 1370 was observed for four out of five Bothrops species

(B. insularis, B. jararacussu, B. jararaca, and B. neuwiedi). Other

ions were detected in two or three different species, i.e., m/z

1095 for B. jararacussu and B. jararaca; m/z 1196 for B. insularis,

B. jararacussu, and B. jararaca; and m/z 1101 and 1299 for

B. jararaca andB. neuwiedi.The venom ofB. alternatus revealed

the most unique profile for this range, with a major ion at m/z

1221. This component was also present in B. jararaca but with

very low intensity. In addition, the characteristic m/z 1370 ion

was not observed for B. alternatus crude venom.

Interestingly, components in the m/z 7500 range were

observed only in the venoms of threeBothrops species (Fig. 2).

The spectrum of B. insularis revealed a major ion at m/z 7741,

and at least three other minor components (m/z 7355, 7579

and 7612). The B. jararaca crude venom showed a distinctive

ion at m/z 7732 and two that were less intense (m/z 7661 and

7869). The ions atm/z 7741 and 7732, found in bothB. insularis

and B. jararaca venoms, may correspond to similar molecules

since their mass difference falls within the uncertainty range

of �0.05 % (Figs. 2(a) and 2(b)). Similarly to what was found

in the lower mass range, B. alternatus venom once again

yielded a rather distinct and more complex ion profile,

containing at least seven different ions, i.e., m/z 7372, 7430,

7442, 7500, 7572, 7630 and 7702.

Figure 3 shows the mass spectra of Crotalus sp. crude

venoms, revealing quite different profiles for the three

species analyzed. The ions at m/z 4884 and 4886 shown in

Figs. 3(a) and 3(b), together with the corresponding doubly

charged ions, were the only common components present in

C. durissus terrificus and C. viridis venoms, respectively. C.

durissus terrificus had two additional ions (m/z 1255 and 4739)

and Crotalus viridis exhibited a more complex profile with

components in the regions of �1000 Da (m/z 1064, 1117 and

1166) and �4500 Da (m/z 4234, 4858, 4961, 4985 and 5170).
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Figure 1. MALDI-TOFMS spectra of Bothrops sp. crude

venoms using CHCA as matrix: (a) B. insularis; (b) B.

jararacussu; (c) B. jararaca; (d) B. neuwiedi; and (e) B.

alternatus.
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Figure 2. MALDI-TOFMS spectra of Bothrops sp. crude

venoms using SA as matrix: (a) B. insularis; (b) B. jararaca;

and (c) B. alternatus.
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Figure 3. MALDI-TOFMS spectra of Crotalus sp. crude

venoms using CHCA as matrix: (a) C. durissus terrificus;

(b) C. viridis; and (c) C. adamanteus. Mþ2Hþ indicates

doubly charged ions.
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Interestingly, the higher mass components were absent from

C. adamanteusvenom, which yielded ions only in the region of

�1000 Da (m/z 1062, 1201, 1217, 1276 and 1298).

In order to investigate possible differences between a pre-

fractionated sample and the whole venom of B. jararaca, this

venom was subjected to one step of purification (Fig. 4(a)).

The crude venom was purified by SEC. Two pools, A and B,

containing peptides with less than 10 000 Da, were formed

according to the elution profile. After this step, both pools

were analyzed by MALDI-TOFMS using the same para-

meters adopted for the crude venom (Fig. 4). The spectrum of

pool A was better resolved than that of the crude venom with

regard to the main isoforms, and some other peptides

appeared between m/z 7000 and 8000 (Fig. 4(b)). The analysis

of pool B, however, showed the same peptide profile as the

crude venom (Fig. 4(c)).

The peptides of �1000 Da from the venoms of the Bothrops

andCrotalus sp. were sequenced directly by MS/MS (Table 1).

Figure 5 shows the interpretation of a representative MS/MS

spectrum for the BPP peptide (m/z 1196.76) found in B.

insularis crude venom. The precursor ion was subjected to

CID and the product ions were identified as internal

fragments and/or b-series ions. The deduced amino-acid

sequence and the identification of the pyroglutamic acid

residue formed from glutamine are indicated across the top

of the spectrum. All peptides shown in Table 1 were subjected

to the same kind of analysis.

All sequenced peptides belong to the family of bradykinin-

potentiating peptides (BPPs). Several of these sequences are

novel peptides, whereas others have already been

described (Table 1). The peptides with m/z 1059 and 1255

for B. jararaca and C. d. terrificus were readily visible in the

MALDI-TOF spectrum in Figs. 1(c) and 3(a), respectively.

On the other hand, these peptides can be detected and their

sequences determined by MALDI-TOF/TOF (Table 1). Ten

new BPP peptides were identified: m/z 1095 for B.

jararacussu; m/z 1059 for B. jararaca; m/z 1101 and 1299 for

B. neuwiedi; m/z 1221 for B. alternatus; m/z 1063, 1116 and

1165 for C. viridis; and m/z 1201 and 1276 for C. adamanteus.

The cDNA sequence of the precursor of three peptides (m/z

1189, 1196 and 1370) from B. jararacussu sequenced in this

work is deposited in the National Center Biotechnology

Information (NCBI) bank (AAP 83422), as well as the cDNA

sequence of a precursor for one peptide (m/z 1255) from

C. d. terrificus (AAL 09426).

DISCUSSION

The results presented in this work demonstrate that MALDI-

TOFMS is a very fast and efficient method for preliminary

studies of crude venom mixtures. Obviously, the utility of

this methodology is not restricted to investigations of veno-

mous snakes. It could easily be extended to other venomous

animals or even to other tissues or biological extracts.14,33–36

We describe here a methodological approach for detecting

and identifying a large number of peptides found in whole

snake venoms. Novel BPP-related peptides were found in six

out of eight crude venoms. Some of the identified peptides

were previously reported either from cDNA data or as

purified peptides. Some of the known toxins from these

venoms could be identified by their molecular masses, such

as BPPs. In all Bothrops and Crotalus species analyzed in this
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Figure 4. (a) Profile of B. jararaca crude venom separated

by size exclusion chromatography on Sephacryl S-200.

The protein elution was monitored at 280 nm and the

fractions corresponding to molecular masses less than

10 kDa were divided into two pools, A and B. A MALDI-

TOFMS spectrum of each pool is shown. (b) Ions detected in

pool A (m/z 7000–8000) using SA as matrix and (c) ions

detected in pool B (m/z 1000–1500) using CHCA as matrix.

Table 1. De novo sequencing of BPPs from snake venoms

Snakes species

Theoretical
mass

[MþHþ]

Experimental
mass

[MþHþ] Sequence obtained

B. insularis 1196.59 1196.41 ZNWPHPQIPP20

1279.72 1279.50 ZLGPPPRPQIPP20

1370.69 1370.81 ZGGWPRPGPEIPP20

B. jararacussu 1095.60 1095.66 ZGRPPGPPIPP*
1189.65 1189.71 ZARPPHPPIPP#

1196.59 1196.65 ZNWPHPQIPP#

1370.69 1370.75 ZGGWPRPGPEIPP#

B. jararaca 1059.53 1059.94 ZGGAGWPPIPP*
1101.30 1101.46 ZWPRPQIPP4,23,24

1196.59 1196.65 ZNWPHPQIPP4,21,23–25

1215.40 1215.49 ZNWPRPQIPP4,24

1299.50 1299.75 ZWPRPTPQIPP4,24

1370.69 1370.76 ZGGWPRPGPEIPP4,21

B. neuwiedi 1101.30 1101.72 ZWPRPQIPP*
1299.50 1299.85 ZWPRPTPQIPP*
1370.69 1370.85 ZGGWPRPGPEIPP22

B. alternatus 1221.54 1221.46 ZWPDPSSDIPP*
C.d. terrificus 1255.68 1255.36 ZRWPHLEIPP#

C. viridis 1063.51 1063.63 ZSAPGNEAIPP*
1116.55 1116.65 ZGGAPWNPIPP*
1165.61 1165.72 ZGPSPRHPIPP*

C. adamanteus 1201.61 1201.73 ZGGWPRNPIPP*
1276.62 1276.71 ZQWPPGHHIPP*

*New BPP sequenced in this work.
#BPPs deposited in NCBI bank (AAP 83422 and AAL 09426).
Z¼pyroglutamic acid.
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work we have found at least one peptide that belongs to this

family. These peptides were discovered and characterized

previously in venoms fromB. jararaca,B. insularis,B. neuwiedi,

and B. jararacussu.3,15–22 A precursor of BPP (AAL 09426),

originating from Crotalus d. terrificus venom gland cDNA, is

deposited in the NCBI bank (unpublished) and contains the

same peptide sequence shown here. Thus, by this simple

analysis, we were able to confirm the presence of this putative

molecule in crude venom.

In spite of the fact that many BPPs for these species have

already been described, we demonstrate here the presence of

many new versions. For instance, a powerful hypotensive

effect has been described for C. viridis envenomation and we

show here, for the first time to our knowledge, the presence of

BPPs in C. viridis and also in C. adamanteus and B. alternatus

venoms.23,24 All the BPPs shown in Table 1 possess a short

motif IIe-Pro-Pro (IPP) at the C-terminus and a post-

translational modification at the N-terminus that transforms

glutamine into pyroglutamic acid. These peptides are rich in

proline residues, containing from three to six Pro residues.

The molecular and pharmacological features of the BPPs

make them leading candidates for the development of novel

molecules for use in the treatment of high blood pressure.23,25

The pharmacological activities of these newly identified

peptides have yet to be described. Nevertheless, the descrip-

tion of new compounds is important since comparisons

among the activities of these peptides can contribute to the

rational design of new drugs.

The results presented in Fig. 2 indicate that B. insularis and

B. jararaca possess the same profile in the m/z 7000–8000

range, confirming that these two species are closely related.

As expected, their more distant relativeB. alternatus showed a

very different profile (Fig. 2(c)). The occurrence of multiple

isoforms has already been described for the venom compo-

nents of many snake species, that probably occur for the

peptides in the range m/z 7000–8000.12,26,27

After the pre-fractionation of B. jararaca venom, the

spectrum of pool A (Fig. 4(a)) exhibited an improvement in

resolution when compared with that of crude venom in the

same range. On the other hand, pool B (Fig. 4(b)) from B.

jararaca exhibited the same profile as that of the crude venom

in the MALDI-TOF analysis. These results suggest that, at

least for samples with mass below 2000 Da, a pre-fractiona-

tion step is not necessary, and that, for masses above 7000 Da,

this step provides a better resolution of many isoforms.

Crotalus d. terrificus venom exhibited two components

around m/z 4800 (Fig. 3(a)), previously characterized as

isoforms of crotamine.28–30 Crotalus viridis has a number of

isoforms of this myotoxin (Fig. 3(b)), including peptides of

m/z 4886, 4985 and 5171. Myotoxin isoforms of this size have

already been described for C. d. terrificus, C. v. helleri and C. v.

viridis.10,30,31 Other ions observed in this same region have not

yet been described and may correspond to isoforms of novel

myotoxins.

Some of the observed ions could not be assigned to known

compounds. This illustrates the fact that snake venoms are

complex and contain many compounds that have not yet

been described. The use of MS/MS to analyze crude extracts

should facilitate the classification and understanding of the

biological activity of unknown compounds, and may be of

help in the search for new families of bioactive compounds

with or without toxic activities. Mass spectrometry will

certainly play an essential role in such investigations, as it is

not restricted to molecular mass assessment, but can also

detect post-translational modifications.

Finally, the technique of toxin mass fingerprinting can also

be extremely useful for quality control of crude venom

batches, which is essential in venom and antivenom produc-

tion and for eliciting structural information on individual

toxins.
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(CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de

Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior (CAPES), Laboratório Nacional
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