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Abstract: This article studies the creation of efficiency measurement structures of Decision-Making Units (DMUs) by 
using high-speed optimisation modules, inspired in the idea of an unconventional Artificial Neural Network 
(ANN) and numerical methods. In addition, the Linear Programming Problem (LPP) inherent in the Data 
Envelopment Analysis (DEA) methodology is transformed into an optimisation problem without 
constraints, by using a pseudo-cost function, including a penalty term, causing high cost every time one of 
the constraints is violated. The LPP is converted into a differential equations system. A non-standard ANN 
implements a numerical solution based on the gradient method. 

1 INTRODUCTION 

Data Envelopment Analysis (DEA) is a 
mathematical technique used to analyse the 
decision-making units (DMUs) performance. It also 
allows the evaluation of the relative operational 
efficiency of the (DMUs), comparing each DMU 
relatively to all others comprising the investigated 
DMUs group (Charnes et al., 1996). 

The DEA technique compares the DMU 
efficiencies by their abilities in transforming inputs 
in outputs, measuring the reached output relation in 
terms of the input resources.  

In the end of the analysis, the DEA technique is 
able to tell which units are relatively efficient and 
which ones are relatively inefficient. 

 
 
The above-mentioned technique uses Linear 

Programming (LP) methods to solve a group of 
interrelated linear programming problems LPPs, as 
many as the number of DMUs, with the purpose of 
determining the relative efficiency of each DMU. 
Optimisation modules called Neuro-LPs are used in 
the proposed neural model coined as Neuro-DEA, 
inspired by artificial neural network structures 
(Biondi, 2001). 

DEA models can either be input oriented or 
output oriented. DEA analysis initialisation involves 
the choice of outputs and the model orientation. The 
orientation to inputs indicates one wants to reduce 
the inputs, keeping the outputs unaffected. On the 
other hand, the orientation to outputs indicates that 
one wants to increase the outputs without affecting 
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the inputs. The most important models are the 
following: 

CCR – Model presented by Charnes et al. (1978) 
that builds a non parametrical surface, piecewise 
linear, over the data and determines the investigated 
DMUs technical efficiency over this surface. It was 
conceived as an input oriented model and it works 
with constant return of scale (CRS), which means 
that each variation in the inputs produces a 
proportional variation in the outputs. The problem 
consists in determining the uj and vi weight values to 
maximise the linear combination of the outputs 
divided by the linear combination of the inputs.  

The process is repeated for each of the n DMUs, 
yielding the relative value of each DMU efficiency. 
If u and v are the optimum solution vectors, for 
equation (1) then αu and αv will also be optimum 
solution vectors, and consequently the problem will 
present infinite solutions.  
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where:  
h0 – DMU 0 efficiency; 
r – total amount of inputs 
s – total amount of outputs 
n – total amount of DMUs 
Yjk – amount of output j to DMU k 
Xik – amount of input i to DMU k 
uj – weight to output j 
vi – weight to input i 

In order to solve this problem we introduce a 
linear transformation that allows transforming linear 
fractional problems into LPPs, creating the model 
called Multipliers, represented by equation (2).  
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It’s possible to derive the dual model to the 
multiplier model also known as the primal one. So, 

the dual model will present a smaller number of 
constraints ( 1+<+ nrs ), because the DEA model 
requires that the number of DMUs be greater than 
the number of variables. By the exposed reasons, the 
dual model, called Envelope, being easily solved, is 
preferred compared to the Multipliers model. In the 
Envelope model the objective is to determine the 
values of λk, minimising θ in equation (3). 
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BCC – Model developed by Banker et al. 
(1984), allows a variable return of scale (VRS) 
avoiding problems in imperfect competition 
situations, financial constraints etc. In this case, the 
VRS frontier considers increasing or decreasing 
returns in the efficient frontier. To do this job, a 
convexity constraint is introduced in the CRS mode 
making the λ sum equal to 1. Figure 1 compares the 
CRS with the VRS frontier, in a situation with 5 
DMUs, one input and one output. It is easy to see 
that DMUs 4 and 5 are not efficient. 

For BCC models adopting VRS, each DMU is 
compared to efficient DMUs that operate in the 
same scale. So, using the orientation to inputs, one 
verifies that the optimum projection of the DMU 4 
occurs in a point that reflects the convex linear 
combination of DMUs 1 and 2. Using the orientation 
to inputs, one also sees that the optimum projection 
of DMU 4 happens in a point that reflects the 
convex linear combination of DMUs 2 and 3. 
Moreover, for both orientation cases, the linear 
combination values are given by the λs. The 
Envelope model, oriented to input and the primal 
derived model or multipliers model are given by (4) 
and (5), respectively. 
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Artificial Neural Networks (ANNs), also 
known as connectionist systems, are structures 
inspired in the human brain (Haykin, 1994). ANNs 
are massively parallel structures, based on simple 
processing elements (PE), inspired in the biological 
neurone and densely interconnected. The main ANN 
characteristics are: 
- Parallel search and content addressing, as with 

the brain that neither has memory addresses nor 
processes information sequentially;  

- Learning capability, making the network able to 
learn and acquire knowledge through 
experience, without using any sort of explicit 
algorithms for the solution and execution of a 
job;  

- Association, allowing the network to associate 
different patterns;  

- Generalisation, enabling the network to deal 
with noise and distortion and correctly answer 
to a never seen input exploring similarity with 
other previously presented patterns;  

- Abstraction, endowing the network with the 
ability to abstract the essence of an input group;  

- Robustness, allowing, thanks to parallelism, that 
even with the loss of PEs, network operation is 
guaranteed. Through training, ANNs can learn 
by successive presentation of examples or 
patterns that are distributively stored in some 
way in the huge number of connections among 
the PEs, known as the neural network weights. 
In that way, knowledge is distributed all over 
the network. After training the neural network is 
said to be in the execution mode and that 
knowledge is ready to be used in many different 

application areas, as in the neural linear 
programming case (Haykin, 1994). 

A structure similar to an ANN is used in Neuro-
LP optimisation modules, which is part of the 
Neuro-DEA model, where the synaptic weights, 
obtained in the training mode, are basically formed 
by the coefficients of the problem constraint groups. 

The mostly used network architecture is the 
feedforward one. This arrangement is composed by 
a group of PEs, arranged in one or more layers that 
interconnect themselves in sequence. The most 
complete configuration presents one or more 
intermediate or hidden layers between the input and 
the output layer, and it is known as a multi layer 
network. Hidden layers allow better results for 
certain problems, as well as solutions for problems 
impossible to be solved with single layer networks 
(Haykin, 1994).  

Neural processing is accomplished in two main 
phases: Training and Execution. The training or 
learning phase is the updating process of the 
connection weights. Its goal is to acquire 
information and store it as a weight matrix (W). A 
Neuro LP, which is the main cell of the Neuro DEA 
model, skips the training phase once its weights are 
the LPP constraint coefficients. The execution or 
recall phase produces the ANNs output (Y) in terms 
of the injected stimulus in the input (X) and the 
weights. The goal of the training phase in the Neuro 
LP is to determine the optimum values for the LPP 
decision variables, which in Data Wrapping 
Analysis may represent the efficiency value of a 
DMU (Biondi, 2001). 

This can be done by solving of a differential 
equations system, obtained by the transformation of 
the original LPP in an optimisation problem without 
constraints. The numerical method used to solve the 
differential equation system is the dynamic gradient 
method, derived from the Newton method and  is 
very similar to the ANNs training method. 

The ANN architecture used in the Neuro LP 
model will be presented, as well as the development 
of the training algorithm based on the minimisation 
of the sum squared errors in the network output 
using the gradient method and its variations. In 

DMU1

CRS

VRS

DMU2

DMU3

DMU4

DMU5

X

Y

Figure 1: CRS and VRS frontiers.



SIMULATING DATA ENVELOPMENT ANALYSIS USING NEURAL NETWORKS 
 

 247 

Neuro LP, an ANN is used in the execution phase 
with the weights preset to the problem constraint 
coefficients. 

The LPP is transformed into an optimisation 
problem without constraints (Bazaraa et al., 1993) 
where function called pseudo-cost is adopted with a 
penalty term, causing high cost every time a 
constraint is violated. The new problem can be 
solved by the gradient method, turning it into a 
differential equations system, which can be 
numerically solved.  

Convergence speed can be increased, if the 
proposed modules are integrated in a VLSI (Very 
Large Scale Integration) or a CMOS 
(Complementary Metal-Oxide Semiconductor) chips 
and connected to a free slot in a personal computer. 

2 MATHEMATICAL BASICS 

Consider an optimisation problem without 
constraints where we wish to find the value x ∈ ℜn 
that minimises a scalar function E(x), called Pseudo-
cost, Energy or Objective function.  

According to Bazaraa et al. (1993), the point x* 
will be the global minimum of E(x) if E(x*) <= E(x) 
for all x ∈ ℜn and a local minimum if the 
relationship E(x*) <= E(x) is kept for a certain 
interval ε > 0. 

If the first and the second E(x) derivatives exist, 
the point x* will be a local minimum if the gradient 
∇E(x*)=0 and the Hessian matrix ∇2E(x*) > 0.  

The necessary and sufficient conditions for the 
existence of a local minimum are: For ∇2E(x) non 
singular for the point x*, E(x*) will be <= E(x) for all 
0 < || x - x* || < ε, ε > 0 if the gradient ∇E(x*) = 0 and 
the Hessian matrix is symmetric and positive, 
∇2E(x*) > 0. 

The Dynamic Gradient Method is the most 
popular method inspired in the Steepest Descent 
technique and the Newton Method (Bazaraa et al., 
1993). It is based in the transformation of the 
optimisation problem without constraints in a first 
order ordinary differential equations system, 
represented as in (6). 
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So, to find the value x* that minimises E(x), it is 
necessary to solve or simulate the solution of a 
differential equation system subjected to initial 
conditions. One can conclude that x* can be 

determined by the “solution path or trajectory curve” 
of the proposed system (7). 

∞→

=
t

txx )(lim*     (7) 

3 MODELLING 

A LPP can be interpreted as an optimisation problem 
with constraints. In order to solve it using ANN 
techniques, it is necessary to build a new function 
called pseudo-cost or energy function E(x), which 
global minimum is the optimum solution of the LPP. 

In order to build the new function E(x), a penalty 
term Pi[Ri(x)] is incorporated to the original 
objective function (Chen et al., 1992; Cichocki et al., 
1996; Zhu et al., 1992). This penalty term causes 
high cost to that new function every time a 
constraint is violated and zero cost if a constraint is 
satisfied. 

So the LPP is transformed into an optimisation 
problem without constraint, where its desirable to 
find x* ∈ ℜn that minimises the new function E(x). 
The penalty term penalises the objective function for 
feasible solutions and inhibits it for feasible LPP 
solutions (Dennis and Schnabel, 1996; Rheinboldt, 
1998).  

The optimisation problem without constraints 
with penalty term can be solved similarly to the 
ANN training phase, applying the decreasing 
gradient method. The problem is written as an 
ordinary differential equations system and solved 
numerically. In that case, the solution of the path 
equation xj(k+1) = xj(k) + ∆(xj), j=1...n, produces in 
the convergence the value of the problem decision 
variables. n is the number of variables and is ∆(xj) 
the product of the cost function gradient in relation 
to xj by a constant factor related to the convergence 
speed and the stability of the method). 

To ensure accuracy of the method, the penalty 
parameter p must be very large. However, practice 
shows that very large values for p are not convenient 
from a computing point of view. Cichocki and 
Unbehauen (1996) show that, with careful choice of 
p values, the minimum of the pseudo-cost function 
E(x, p) is equivalent to the optimum solution of the 
original LPP. The same authors say that a good 
choice is to consider the pseudo-cost function (8). 
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Considering P DMUs, R inputs, S outputs, the ith 
DMU representation by a column vector of inputs Xi 
and outputs Yi , the relationship involving all inputs 
and outputs can be obtained for each DMU as 
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uYi/vXi , where u and v are output weight vectors 
and input weight vectors, respectively. The optimum 
values for these weights are obtained solving a LPP 
for each DMU (Kallrath, 1997). 

The Neuro-DEA architecture model is totally 
based in the Neuro-LP model as shown in Figure 2 
(Biondi, 2001). So, for P DMUs, we will have P 
Neuro-LP modules.  

Each LPP of the Neuro-DEA model will 
represent a LPP in the Neuro-LP model and will be 
able to determine the relative efficiency of one 
DMU among P DMUs comprising the system. 
Figure 3 shows the proposed block diagram of the 
Neuro-DEA module. 

4 IMPLEMENTATION AND 
RESULTS 

The implementation was done using the input 
oriented CRS Envelope model. The choice of the 
model is due to the reduction the number of 
constraints since in the envelope model there is only 
one constraint for each input/output. 

An example involving 5 DMUs with two inputs 
and one output is shown in Table 1. Table 2 shows 
the results according to Neuro-DEA, using two 
commercial softwares (Lindo and Frontier Analyst), 

in terms of the error percentage. 

5 CONCLUSIONS 

The example shown in section 4 was selected among 
several others indicating the consistency the method. 
The results obtained with our prototype were 
validated comparing them with those produced by 
softwares such as Lindo, to separately solve the 
LPPs referring to the DMUs and the Frontier to 
directly solve the DEA. In that case, the observed 
error was never over 0.5%. Presently, a study using 
Lagrange Multipliers is being developed in order to 
optimise the step function.   

The solution method for the ordinary differential 
equation system used in the Neuro-LP model is 
similar to the technique used in ANN training phase 
because they use the gradient method. The evolution 
of the solution method for the differential equations 
system, represented by the solution path curve, 
indicates in the convergence, the value of the 
decision variables for the problem. 

Finally, its important to highlight that 
convergence speed can increase, if the proposed 
modules are integrated in a chip and connected to a 
free slot in a personal computer. 

          Figure 2: Model up to 5 variables. 
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Figure 3: Model block diagram.

Table 1 - Database.         Table 2 - DMU’s efficiency. 


