
INTEGRATION OF VEGETATION INVENTORY DATA AND THEMATIC MAPPER 
IMAGE FOR AMAZONIAN SUCCESSIONAL AND MATURE FOREST 

CLASSIFICATION 
 

Dengsheng Lu, Assistant Research Scientist 
Center for the Study of Institutions 

Population, and Environmental Change (CIPEC) 
Indiana University 

Bloomington, Indiana 
dlu@indiana.edu 

 
Mateus Batistella, Research Manager 

Brazilian Agricultural Research Corporation 
EMBRAPA Satellite Monitoring 

 Campinas, São Paulo, Brazil 
mb@cnpm.embrapa.br 

 
Emilio Moran, James H. Rudy Professor, Director of ACT and Co-Director of CIPEC 

Anthropological Center for Training and Research on Global Environmental Change (ACT)  
Indiana University 

Bloomington, Indiana 
moran@indiana.edu 

 
 
ABSTRACT 
 
Successional and mature forest classification is often difficult in moist tropical regions. This paper explores 
vegetation stand structures of successional and mature forests and their spectral characteristics. Canonical 
discriminant analysis (CDA) was used to identify important stand parameters for secondary succession and mature 
forest classification. Correlation coefficient was used to analyze different stand parameter relationships and 
associated TM spectral signatures. Transformed divergence was used to analyze the separability of succession stages 
and mature forest based on the resultant images from CDA and principal component analysis (PCA), respectively. 
This study indicates that five vegetation categories, i.e., initial succession, intermediate succession, advanced 
succession, small biomass mature forest, and large biomass mature forest, can be distinguished based on vegetation 
stand features using field measurements, but some of them are difficult to be classified using TM data. Tree 
diameter at breast height, tree height, aboveground biomass, and ratio of tree biomass to total aboveground biomass 
are the best stand parameters distinguishing vegetation classes. Bands TM 4 and TM 5 are best for distinguishing 
vegetation classes. The transformation using CDA improved separability of vegetation classes, but not using PCA. 
Two successional stages and one mature forest class are suitable in this study area. 
 
 

INTRODUCTION 
 
Many research projects involved in Amazon basin require accurate delineation of different secondary 

succession stages over large regions/subregions to delineate trajectory of land-use/land-cover change and carbon 
dynamics. For example, accurate estimation of carbon change rates following deforestation or afforestation requires 
successional stage information associated with biomass. In previous research different approaches have been used to 
identify successional stages. The most straightforward method is based on the vegetation age (Uhl et al., 1988; 
Saldarriaga et al., 1988). However, successional forest stands can be significantly influenced by land-use history 
(Uhl et al. 1988), soil fertility (Moran et al., 2000a; 2000b), original vegetation, and clearing size (Tucker et al., 
1998). Age alone cannot be used to predict successional stages since many factors can strongly affect structural 
characteristics within the same age class. Moran and Brondízio (1998) and Moran et al. (2000a) defined regrowth 
stages of Amazônian tropical forest based on the analysis of average stand height and basal area. They found that 
stand height was a significant discriminator of regrowth in initial (SS1), intermediate (SS2), and advanced (SS3) 
succession. Tucker et al. (1998) analyzed physiognomic characteristics in two different Amazônian sites to classify 
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successional stages. They found that the central discriminating factor was the contribution of saplings and trees to 
the total basal area of the successional forest. Sapling/tree basal area relations can help predict other structural 
features and effectively differentiate successional stages.  

In the Amazon basin, remote-sensing technology also has been used to analyze land cover or secondary 
succession classification and deforestation detection for the past decade (Lucas et al., 1993; Mausel et al., 1993; 
Foody and Curran, 1994; Li et al., 1994; Moran et al., 1994a; 1994b; Brondizio et al., 1994; Adams et al., 1995; 
Brondizio et al., 1996; Foody et al., 1996; Steininger, 1996; Rignot et al., 1997; Saatchi et al., 1997; Yanasse et al., 
1997; Moran and Brondizio ,1998; Roberts et al., 1998; McCracken et al., 1999; Lu, 2001; Lu et al., 2002; Lucas et 
al., 2002). Much previous research focusing on moist tropical forest using remotely sensed data has not provided the 
successional subclass information due to the complexity of biophysical factors and landscape (Lucas et al. 1993; 
Foody and Curran, 1994; Adams et al., 1995; Foody et al., 1996; Steininger, 1996; Rignot et al., 1997; Roberts et al., 
1998; Lucas et al., 2002). Because of the importance in delineating succesional subclasses, our research group has 
explored to classify successional forests into three stages. For example, supported by abundant and accurate field 
measurements from all classes of interest, Mausel et al. (1993) analyzed Landsat Thematic Mapper (TM) spectral 
responses of different successional stages and classified the vegetation into SS1, SS2, SS3 and mature forest using 
an Extraction and Classification of Homogeneous Objects (ECHO) classifier. Similar studies were conducted by 
Moran et al. (1994a), Li et al. (1994), and Brondizio et al. (1996). However, the classification accuracy greatly 
depends on the availability and quality of a very large number of training data sets. Confusion often occurs between 
degraded pasture and SS1, between different successional stages, and between advanced successional and mature 
forests, since there is no clear distinction between vegetation growth stages. The canopy structure of advanced 
successional and mature forest can be very similar although they have significantly different ages and aboveground 
biomass.  

Although successful methods have been used to identify vegetation classes in the Amazon basin, the following 
problems have remained: (1) which vegetation stand parameters are most appropriate to identify vegetation types? 
Different authors and different study areas still use different methods to group successional stages, leading to 
difficulty in implementing comparative analysis among different areas; (2) what relationships exist between 
vegetation stand parameters and TM reflectance? Better understanding such relationships is conducive to finding 
appropriate TM bands for estimation of vegetation stand parameters or for vegetation classification; (3) can 
vegetation classes that are grouped based on field measurements be separated on TM imagery? This paper attempts 
to answer these questions through exploring vegetation characteristics and linking vegetation measurements with 
TM reflectance in the Rondônia region of the Brazilian Amazon. 

 
 

METHOD 
 
Description of the Study Area 

Rondônia has experienced high deforestation rates in the Brazilian Amazon during the past decade (INPE, 
2002). Following the national strategy of regional occupation and development, colonization projects initiated by the 
Brazilian government in the 1970s played a major role in this process (Moran, 1984; Schmink and Wood, 1992).  
Most colonization projects in the state were designed to settle landless migrants. The data used in this study were 
collected in Machadinho d’Oeste in northeastern Rondônia. Settlement began in this area in the mid-1980s, and the 
immigrants transformed the forested landscape into a patchwork of cultivated crops, pastures, and a vast area of 
fallow land. The terrain is undulated, ranging from 100 to 450 m above sea level. Settlers, rubber tappers, and 
loggers inhabit the area, transforming the landscape through their economic activities and use of resources. 

 
Field Data Collection 

Fieldwork was carried out during the dry seasons of 1999 and 2000. The procedure used for surveying 
vegetation was a multilevel technique adapted from methods used at the Center for the Study of Institutions, 
Population, and Environmental Change (CIPEC, 1998). The surveys were carried out in areas with relatively 
homogeneous ecological conditions (i.e., topography, distance from water, and land use) and uniform physiognomic 
characteristics. After defining the area to be surveyed (plot sample), three subplots (1 m2, 9 m2, and 100 m2) were 
randomly installed to cover the variability within the plot sample.  The center of each subplot was randomly 
selected. Seedlings were defined as young trees or shrubs with a stem diameter smaller than 2 cm. Saplings were 
defined as young trees with a stem diameter greater than 2 cm and DBH smaller than 10 cm. Trees were defined as 
woody plants with a DBH greater than or equal to 10 cm. Height, stem height, and DBH were measured for all trees 
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in the 100 m2 area. Height and DBH were measured for all saplings in the 9 m2 area. Ground-cover estimation and 
individual counting were carried out for seedlings and herbaceous vegetation in the 1 m2 area. Every plot was 
registered with a Global Positioning System (GPS) to allow further integration with spatial data in Geographic 
Information Systems (GIS) and image processing systems. Forty sample plots and 120 subplots were inventoried, 
covering successional and mature forests. 

 
 Data Analysis 

A database was built to integrate all vegetation data collected during fieldwork. Vegetation stand parameters—
tree/sapling DBH, tree/sapling height, tree/sapling basal area, tree/sapling density, tree/sapling biomass, total basal 
area, total biomass, ratio of tree biomass to total biomass (RTB), and ratio of tree basal area to total basal area 
(RTBA)—were calculated for each plot. The individual vegetation biomass was calculated using Equ. [1] for trees 
(DBH ≥ 10 cm) (Brown et al., 1995) and Equ. [2] for saplings (2 cm ≤ DBH < 10 cm) (Honzák et al., 1996).  

 
 
YT = 0.0326 · (DT)2 · H    and                                                                                                              [1] 
 
 
YS = exp[-3.068 + 0.957 ln (DS2 · H)],                                                                                                [2]  
 
 

where DT and DS are the tree DBH and sapling diameter in centimeters, respectively; H is the total tree or sapling 
height in meters; and YT and YS are the individual tree and sapling biomass in kilograms, respectively. Above-
ground biomass (AGB) is then calculated through Equ. [3]. 
 
 

AGB = /AT + /AS,                                                                                                     [3] ∑
=

m

i
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1
∑
=
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where m is the total tree number in the sample plot, and n is the total sapling number in the subplot. AT and AS are 
the areas of sample plot and subplot in square meters, respectively, and AGB is the above-ground biomass (kg/m2). 

Caution should be taken when analyzing above-ground biomass estimations as they are dependent on several 
variables such as hollowness, wood density for every species, bark, presence of palms, vines, and dead biomass 
(Fearnside, 1992). For large trees with DBH greater than 60 cm, a correction factor based on an average wood 
density was adopted (Fearnside, 1997).  

As a preliminary baseline, maximum heights of 8, 10, and 12 m, and maximum ages of 5, 10, and 15 years were 
suggested for SS1, SS2, and SS3, respectively. These numbers were assigned by approximation to designate the 
stands to be surveyed, not necessarily indicating real boundaries between regrowth stages. The mature forest 
consisted of small biomass mature forest (SMF) and large biomass mature forest (LMF) based on AGB. The 
vegetation category (SS1, SS2, SS3, SMF, or LMF) is selected as a dependent variable and vegetation stand 
parameters (e.g., tree DBH, tree height, tree biomass, etc.) as independent variables. Canonical Discriminant 
Analysis (CDA) is used to refine vegetation classification results and to identify important stand parameters that can 
be effectively used to distinguish vegetation classes. The implementation of CDA provides some important 
information for classifying sample plots and identifying important parameters (Huberty, 1994; Markin, 1996). For 
example, the eigenvalues show how much of the variance in the dependent variables is accounted for by each 
function. Relative percent of variance indicates how many functions are important. Wilks’ Lambda is used to test the 
significance of each discriminant function, specifically the significance of the eigenvalue for a given function. It 
measures the difference between groups of the centroid (vector) of means on the independent variable. The smaller 
the Wilks’ Lambda, the greater the difference, and the more important the independent variable is to the 
discriminant function. Canonical correlation (R) measures the association between the groups formed by the 
dependent variable and the given discriminant function. Larger R value indicates high correlation between the 
discriminant function and the groups (McGarigal et al., 2000). The application of CDA in this research is to identify 
the important vegetation parameters for delineation of successional and mature forests. 

TM data (the acquisition date was on June 18, 1998) were radiometrically calibrated and atmospherically 
corrected into apparent reflectance using an image-based dark object subtraction (DOS) model (Chavez, 1996; Lu et 
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al., 2002). The path radiance was identified based on clear water for each band. The image was geometrically 
rectified using control points taken from topographic maps at 1:100,000 scale (UTM, south 20 zone). Nearest-
neighbor resampling technique was used and a root mean squared error (RMSE) of smaller than 0.5 pixel was 
obtained. Because each sample plot has UTM coordinates provided by GPS devices during fieldwork, it can be 
accurately linked to TM imagery. Therefore, TM reflectance of each plot can be retrieved and related to vegetation 
stand parameters. A 3x3 window size was used to extract the mean value of image data for each plot. In addition to 
the forty plots used for vegetation measurements, there are also lots of sites covering different successional and 
mature forests were identified during the field work. All these plots were linked to TM image to extract the image 
data. In order to compare the performance of CDA method in improving successional forest classification, PCA and 
original TM data were also tested. Pearson’s correlation coefficient was used to explore the relationships between 
vegetation stand parameters and TM reflectance. Reflectance curves were used to explore the spectral characteristics 
of successional and mature forests. Transformed divergence (TD) was used to analyze the separability among 
different vegetation classes.  

 
 

RESULTS 
 
Analysis of Vegetation Stand Structure 

As indicated in previous section, preliminary three successional stages (i.e., SS1, SS2, and SS3) were assigned 
based on vegetation age and two mature forest classes (i.e., SMF and LMF) based on AGB. The results from CDA 
indicated that misclassification occurred in some successional subclasses based on age due to the impacts of soil 
conditions and land use history. However, the misclassified classes can be adjusted through the CDA projection, 
until all plots were assigned a suitable successional subclass. Then the CDA results were used to identify the 
independent variables that most effectively distinguished vegetation classes. Table 1 shows that total/tree biomass, 
total/tree basal area, RTB, RTBA, tree DBH, and tree height are the best stand parameters because they have small 
Wilks’ Lambda values. The correlation coefficient between a given independent variable and the discriminant score 
associated with a given discriminant function indicates that total/tree biomass, total/tree basal area, tree DBH, and 
tree height have high correlation with CDA function 1. The RTB and RTBA have high correlation with CDA 
function 2. However, not all the important parameters mentioned above are necessary for distinguishing vegetation 
classes because some parameters are strongly related to each other. For example, AGB is strongly related to tree 
biomass (0.83) and total basal area (0.80). Total basal area is strongly related to tree basal area (0.81). The RTB is 
strongly related to RTBA (0.98), sapling basal area (-0.90), sapling biomass (-0.88), and sapling density (-0.81). The 
RTBA is also strongly related to sapling basal area (-0.91), sapling biomass (-0.88), and sapling density (-0.83). This 
indicates that RTB or RTBA is sensitive to sapling characteristics. Analysis of correlation coefficients between 
discriminating variables and discriminant functions and between the vegetation stand parameters indicates that CDA 
function 1 provides the tree or canopy information and CDA function 2 provides sapling or understory information. 
Tree DBH, tree height, AGB, and RTB are the best stand parameters; however, sapling stand parameters are less 
important in distinguishing vegetation classes. 
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Table 1. Wilks’ Lambda and Correlation Coefficients between Discriminating Variables and Discriminant Functions   
 

Correlation coefficient 
 Variables F1 F2   F3   F4 

Wilks’ 
Lambda 

Above-ground biomass (AGB) 
Tree DBH (T_DBH) 
Tree density (T_Dens) 
Total basal area (TO_BA) 
Tree biomass (T_Bio) 
Sapling density (S_Dens) 
Tree basal area (T_BA) 
Sapling biomass (S_Bio) 
Sapling basal area (S_BA) 
Ratio of T_BA to TO_BA (RTBA) 
Ratio of T_Bio to AGB (RTB) 
Sapling height (S_H) 
Tree height (T_H) 
Sapling DBH (S_DBH) 

.632

.257

.103

.323

.545
-.104
.344

-.025
-.066
.242
.245
.074
.252
.020

-.184
.123
.170

-.073
-.139
-.142
-.028
-.028
-.067
.281
.315
.029
.173
.085

-.103
.246

-.434
-.341
-.037
-.240
-.214
-.091
-.179
.059
.045
.074
.220
.129

-.424
.090

-.407
-.293
-.601
.592

-.530
.443
.422

-.378
-.357
.356

-.292
-.168

0.074
0.313
0.569
0.232
0.098
0.617
0.214
0.941
0.817
0.279
0.262
0.836
0.306
0.910

 
 
Implementation of CDA based on sample plots indicates that significant separability exists between different SS 

stages, SMF, and LMF, although the process of vegetation growth is continuous. Figures 1, 2, and 3 illustrate the 
characteristics of vegetation stand parameters (i.e. DBH, height, density, and biomass). Basal area and RTB (or 
RTBA) are ignored, because basal area is strongly related to biomass and RTB (or RTBA) is strongly related to 
sapling parameters such as biomass, basal area, and density. 

Tree DBH and tree height increased rapidly from SS1 to SS3 (Figure 1). The tree height and tree DBH between 
SMF and LMF were somewhat overlapped although their biomass amounts varied. There were also some overlaps 
of tree height between SS3 and SMF. Sapling DBH did not change significantly, but sapling height increased 
slightly from SS1 to SS3. The sapling DBH and height slightly increased from SMF to LMF, but they are very 
similar between SS3 and SMF. 
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Figure 1.  Vegetation DBH and Height Characteristics of Different Vegetation Growth Stages  
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Tree density increases rapidly from SS1 to SS2 (Figure 2) but stays relatively stable after SS2. Sapling density 

decreases rapidly from SS1 to SS3. The tree and sapling density in SMF were smaller than in LMF. As vegetation 
grows, trees increase in density and start to dominate the canopy after SS2 stage. The understory (mainly saplings 
and seedlings) decreases due to vegetation competition for sun energy, soil nutrients, water, etc. This usually occurs 
from SS1 to SS2. After entering SS3, vegetation forms different layers of stand structures, from canopy to 
understory. A special microenvironment is formed that is more suitable for interaction between soil nutrients and 
vegetation biomass after entering the SS3 stage. Therefore, after SS3, vegetation density stays relatively stable 
although vegetation still grows. 

Biomass is related to vegetation stand DBH, height, and density. The above-ground tree biomass and total 
biomass have similar trends, i.e., they increase constantly from SS1 to SS3 and reach the highest levels in mature 
forest (Figure 3). The higher variability of biomass in mature forest is related to its larger range in DBH and height 
in this stage than in stages of regrowth. Sapling biomass decreases from SS1 to SS3, especially from SS2 to SS3. 
From SS3 to mature forest, sapling biomass does not change significantly. 

Biomass change during the progression through successional stages is significantly related to the change of 
vegetation density. At the successional stages, biomass is more strongly related to the sapling parameter change, 
while among SS3, SMF, and LMF, biomass change is weakly associated with vegetation density, but strongly 
related to tree DBH and tree height growth. So, at the advanced successional stage and mature forest, biomass 
change is more strongly related to changes in tree parameters.  
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Figure 2.  Vegetation Density Characteristics of Different Vegetation Growth Stages  
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Figure 3.  Biomass Characteristics of Different Vegetation Growth Stages  
 
Characteristics of Successional Stages and Mature Forest 

The first two years of SS1 are characterized by overall dominance of grasses, herbaceous plants, vines, and 
saplings. This dense ground structure is progressively usurped by saplings during and after the second year. In SS1, 
herbaceous plants, seedlings, and saplings together are responsible for over 90 percent of total biomass, with a 
vertical structure characterized by a full profile of saplings and herbaceous plants. Few trees can reach 10 cm DBH 
at this stage. Saplings are the main structure element and represent the majority of the above-ground biomass. The 
biomass is less than 5 kg/m2   with age ranging from 1 to 5 years.  

Saplings still account for most of the biomass in SS2, which ranges from 6 to 10 kg/m2. Tree DBH can reach 15 
cm, and tree height can reach 10 m. The age can be between 4 and 10 years, depending on land-use history and soil 
fertility at the site. Vegetation structure provides a mix of dense ground cover of saplings and young trees with 
higher canopy than SS1 and very small internal difference between canopy and understory individuals. SS2 is 
characterized by a lack of stratification between canopy and understory. 

Trees occupy the canopy and present obvious stratification of forest stand structure in SS3. Sapling and seedling 
biomass greatly declines because the tree canopy leads to reduced growth of saplings and seedlings. The biomass 
ranges from 10 to 17 kg/m2, tree DBH ranges from 15 to 19 cm, tree height ranges from 10 to 15 m, and age is over 
8 years. In this stage, there is a major shift in structure that differentiates understory from canopy individuals; that is, 
the presence of saplings is less significant than that of trees. One can find differences between the canopy and 
understory in terms of height and density of individuals at both levels. SS3 presents a less continuous vertical profile 
and a clear distinction between dominant trees and less dense saplings. 

In the mature forest, above-ground biomass and vegetation density can be different depending on soil 
conditions, species composition, and topography at the site. Some mature forests have tree DBH, tree height, and 
above-ground biomass similar to SS3. In this study we call such a mature forest SMF to separate it from LMF. In 
SMF, biomass ranges from 12 to 19 kg/m2, average tree DBH ranges from 17 to 24 cm, and average tree height 
ranges from 11 to 15 m. In a typical mature forest, trees account for the majority of above-ground biomass, reaching 
over 90 percent.  Biomass is greater than 20 kg/m2, some even as high as 50 kg/m2. In this stage, large trees occupy 
the canopy. Trees with DBH of 25 to 30 cm dominate, and a considerable number of individuals have a DBH over 
40 cm. Many tree individuals are taller than 17 m, and some between 25 and 30 m are present, followed by a few 
scattered individuals over 35 m tall or emergent.  
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Linking Vegetation Stand Parameters and TM Reflectance 
TM reflectance mainly captures vegetation canopy information. The reflectance values can be significantly 

altered by different vegetation stand structures. Such structural allocation is related to different stand parameters 
such as DBH, height, biomass, and density. So what relationships exist between vegetation stand parameters and 
TM reflectance? The correlation coefficients between stand parameters and TM refelctane (Table 2) indicate that: 

(1) TM reflectance is more strongly related to tree stand parameters (such as tree DBH, tree height, tree 
biomass) than to sapling stand parameters, except for sapling vegetation density. This means that TM reflectance 
mainly responds to tree stand information or canopy information but weakly to sapling information. 

(2) Bands TM 4 and TM 5 are better related to vegetation stand parameters than the other TM bands because 
TM 4 and TM 5 have higher vegetation reflectance and larger standard deviations than the other TM bands have.  

(3) TM reflectance is negatively related to tree stand parameters but positively related to sapling basal area and 
sapling density. This is because the impact of canopy shadows on the TM reflectance increases as vegetation growth 
leads to complex stand structure.  

(4) TM 4 is more strongly related to tree stand parameters such as tree DBH and tree height, but TM 5 is more 
strongly related to comprehensive vegetation stand parameters such as total vegetation biomass and total basal area. 
This indicates that TM 4 is possibly more suitable for tree DBH and tree height estimation, while TM 5 is more 
suitable for biomass and basal area estimation. 

(5) RTB and RTBA are strongly related to TM reflectance, especially with TM 4 and TM 5. Therefore, some 
sapling information can be indirectly derived from this relationship because RTB or RTBA is strongly related to 
sapling density and sapling biomass. 
 
 
Table 2.  Correlation between Vegetation Stand Parameters and TM Bands 
 
Band T_DBH T_H T_BA T_Bio  S_DBH S_H  S_BA S_Bio  TO_BA  AGB RTBA RTB T_dens  S_dens
TM 
1 -.523* -.428* -.289 -.424* -.049-.397† .102 -.065-.286 -.455*-.258 -.25  .190 .151 
TM 
2 -.780* -.647* -.562* -.597* -.091-.212 .425* .235-.482* -.580*-.623* -.615* -.110 .510* 
TM 
3 -.726* -.640* -.513* -.543* -.003-.261 .465* .251-.415† -.521*-.593* -.569* -.066 .517* 
TM 
4 -.870* -.745* -.668* -.740* -.067-.274 .447* .243-.593* -.728*-.692* -.680* -.130 .548* 
TM 
5 -.810* -.740* -.694* -.755* -.044-.283 .425* .221-.628* -.748*-.670* -.660* -.195 .504* 
TM 
7 -.707* -.642* -.663* -.681* -.006-.201 .459* .267-.583* -.663*-.659* -.642* -.273 .514* 
*Correlation is significant at the 0.01 level; † Correlation is significant at the 0.05 level. 
 

Previous analysis indicates that tree stand parameters are strongly associated with TM bands, and five 
vegetation categories can be grouped based on these parameters. Can these named categories be separated using TM 
imagery? Figure 4 illustrates the reflectance curves of different vegetation categories. SMF has different reflectance 
from SS3, especially in TM 4 and TM 5. The main difference between SS3 and SMF is in vegetation density and 
species composition. However, SMF has reflectance similar to that of LMF despite their differences in vegetation 
biomass. This is because SMF and LMF have similar vegetation stand structure, leading to similar reflectance in TM 
data. Another reason is the reflectance saturation due to limited radiometric resolution. On the other hand, SS1 has a 
similar reflectance curve to that of SS2 because SS1 and SS2 do not have clear stratification of vegetation stand 
structure. The reflectance in SS3, SMF, and LMF can be reduced due to the canopy shadows caused by complex 
vegetation stand structure. In general, SS1 has the highest reflectance and LMF has the lowest reflectance in each 
TM band. The vegetation reflectance decreases as vegetation growth results in increasing canopy shadow effects.  
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     Figure 4.  TM reflectance Characteristics of Vegetation Growth Stages  
 
Spectral Characteristics of Vegetation Classes 

CDA is one of the linear transform methods that can specifically extract vegetation information based on the 
separability of sampled classes. The sampled reflectance values of different TM bands are selected as independent 
variables, the vegetation category—SS1, SS2, SS3, SMF, and LMF —is selected as a dependent variable, and the 
CDA algorithm is implemented. The first CDA function accounts for 97.4 percent of the total variance and has 
strong correlation with the dependent variable (R = 0.99). Table 3 indicates that bands TM 4 and TM 5 are the two 
most important bands in differentiating vegetation classes because they have the smallest Wilks’ Lambda (0.043 and 
0.087, respectively) and highest correlation coefficients (0.532 and 0.371, respectively) with the first CDA function. 
Band TM 2 has smaller Wilks’ Lambda value than those of bands TM 1, TM 3, and TM 7. Band TM 4 and TM 2 are 
significantly correlated to CDA function 2. The correlations between TM bands and CDA functions indicate that 
bands TM 1, TM 3, and TM 7 are least important because they have high Wilks’ Lambda values and are weakly 
related to the first and second CDA functions, TM 4, TM 5, and TM 2 are important bands for the separability of 
vegetation classes.  

The coefficients and constant used for the linear transform of TM bands based on CDA indicate that CDA 
function 1 is the difference between high vegetation reflectance bands (TM 4, TM 5, and TM 2) and lower 
vegetation reflectance bands (TM 1, TM 3, and TM 7). The CDA function 1 extracts more vegetation information 
from TM 4, TM 5, and TM 2. It has the potential to improve the separability between vegetation classes because it 
enhances the difference of vegetation through linear transform of TM bands.  
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Table 3.  Wilks’ Lambda, Correlation Coefficients, and Discriminant Function Coefficients 
 

 Correlation Coefficients Discriminant Function Coefficients 

TM F1 F2 F3 

Wilks’ 
Lambda F1 F2 F3 

TM 1 0.093 0.290 0.318 0.543 -5.702 2.747 0.538 
TM 2 0.211 -0.365 0.811 0.206 7.747 -6.046 -0.707 
TM 3 0.141 -0.010 0.967 0.343 -3.865 3.821 3.972 
TM 4 0.532 0.745 -0.043 0.043 0.461 0.297 -0.046 
TM 5 0.371 0.212 0.060 0.087 3.018 -0.443 -0.323 
TM 7 0.204 -0.105 0.113 0.240 -4.383 0.150 -0.141 

Constant for Discriminant Functions -54.014 2.683 -2.355 
 

 
Table 4 provides the transformed divergence values between the vegetation classes. It indicates that CDA 

method improved the separability of vegetation classes compared to the original TM bands. PCA has limited 
improvement in their separability. CDA mainly improved the separability between successional stages and between 
advanced successional and mature forest. However, the distinction between SS1 and SS2, between SMF and LMF is 
still difficult although CDA method can improve the classification performance. It is suitable to merge the SS1 and 
SS2 into one class, and SMF and LMF as one class.  
 
 
Table 4. Comparison of Transformed Divergence among Different Image Processing Methods. 

Class pairs Data 
sets 

Avg 
TD 1:2 1:3 1:4 1:5 2:3 2:4 2:5 3:4 3:5 4:5 

CDA  1451 568 1531 1984 1998 887 1878 1974 1256 1730 708 
PCA 1394 361 1497 1996 1998 965 1965 1985 1358 1621 191 
TM 1349 431 1410 1941 1988 884 1761 1938 1093 1563 482 

Note:  In class pairs, 1 – SS1; 2 – SS2; 3 – SS3; 4 – SMF; 5 – LMF 
 
 

DISCUSSION 
 

In our study, the sample variability allowed the comparison of vegetation structure and spectral responses 
within and across classes. In general, tree DBH, tree height, biomass, and RTB are good indicators of vegetation 
regrowth stages. SS1, SS2, SS3, SMF, and LMF can be classified based on field measurements. It is important to 
mention that many of these parameters are significantly correlated, indicating that less sampling effort would be 
needed to depict different classes of succession in studies at the regional scale. As other studies have shown, height 
or DBH of trees could be chosen in this case to represent stages of regrowth (Moran et al. 2000b). The advantage of 
choosing these parameters instead of basal area or biomass is the relative simplicity of directly measuring them 
during fieldwork and indirectly, in the near future, by the use of LIDAR. 

 Despite the clear separation among the classes of succession and forest, when graphed against mean reflectance 
in TM bands, just three clusters of samples were well differentiated: SS1 and SS2 together, SS3, and SMF and LMF 
together. These results indicate that three vegetation types are appropriate when only original TM imagery is used 
for classification. However, selection of a proper linear transform of TM bands can improve the separability 
between vegetation classes. This study implies that linear transforms, for which the transform coefficients are 
specifically derived from the integration of field measurements and TM spectral data, have the potential to improve 
classification accuracy. 

TM reflectance mainly represents canopy information. Different vegetation stand structure will influence the 
reflectance values. SS1 and SS2 have similar reflectance because the vegetation in these stages does not have clear 
stratification of vegetation structures, while SS3, SMF, and LMF have clear stratification. Canopy shadows can 
reduce the vegetation reflectance significantly. In particular, the complexity of vegetation stand structure in SMF 
and LMF results in similar reflectance values. Vegetation growth increases the effects of canopy shadows on a TM 
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image. When vegetation grows to a certain age or vegetation stand reaches a certain structure, TM reflectance is 
possibly saturated although biomass may still be increasing. This is especially obvious in SMF and LMF. This 
problem induces difficulty in accurately estimating vegetation stand parameters (e.g., biomass) when TM imagery is 
used for estimating advanced successional or mature forest stand parameters. This problem can also reduce 
classification accuracy because of the reflectance similarity between SS3 and mature forest. In this case, other 
sensor data such as radar image will be helpful because it can penetrate and capture more information from below 
the canopy. Hyperspectral data will probably provide a good link between vegetation stand parameters and spectral 
features and more accurate vegetation classification, because narrow-wavelength multispectral bands (such as 
AVIRIS) provide more potential capability in detecting vegetation classes than wide-wavelength sensors (such as 
TM imagery) and allow the researcher to choose particular bands for the successional and mature forest 
classifications. 

 
 

CONCLUSION 
 
This study indicates that Amazônian vegetation can be grouped into five categories—SS1, SS2, SS3, SMF, and 

LMF—according to vegetation stand characteristics. Tree DBH, tree height, biomass, and RTB are the most useful 
stand parameters for identification of vegetation categories.  

TM reflectance is better related to tree stand parameters than understory parameters. TM 4 and TM 5 are the 
best bands for differentiation of successional stages and mature forest, but TM reflectance is difficult to distinguish 
SS1 from SS2 and SMF from LMF. Two successional stages and one mature forest class are suitable in this study 
area. CDA transform has the potential to improve separability of successional stages. 

The results of this research can be helpful in (1) identifying successional stages based on tree DBH, tree height, 
biomass, and RTB individually or in combination; (2) determining how many classes of successional vegetation can 
be distinguished in the Amazon basin using remote-sensing data; (3) selecting appropriate TM bands for estimation 
of vegetation stand parameters (e.g., DBH, height, biomass) using TM imagery; and (4) improving classification 
accuracy through linear transform of TM bands based on CDA. 
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