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ABSTRACT 
 

Linear spectral mixture analysis (LSMA) and multitemporal Thematic Mapper (TM) data were used to detect 
deforestation in Altamira and Machadinho, Brazilian Amazon. Standardized principal component analysis was used 
to transform TM data into uncorrelated principal components (PCs). Three endmembers were selected and an 
unconstrained least root-mean squared error solution was used to unmix the first four PCs into three fraction images. 
Mature forest classification was implemented using thresholds and deforestation detection using binary image 
overlay. This study indicates that LSMA is an effective method to identify mature forest and detect deforested areas 
with high accuracies.  

 
 

INTRODUCTION 
 
The Brazilian Amazon contains the largest continuous tropical rain forest in the world, representing a 

potentially large source of carbon/greenhouse gas emissions (Fearnside, 1998). In the Amazon basin the 
deforestation rates rose sharply during the 1970s and 1980s and more recently during the mid-1990s due to road 
building, colonization projects, logging, and agropastoral expansion associated with national political and economic 
policies (Moran et al., 1994; Skole et al., 1994; Alves, 2002). The estimated deforestation rate was 15,000–20,000 
km2 per year between 1978 and 1988 (Skole et al., 1994), approximately 17,000 km2 per year between 1988 and 
1996 (INPE, 1998), and approximately 18,000 km2 in 2000 (INPE, 2002). Previous research has shown that the loss 
of Amazonian forests corresponded to about 7% of the total carbon dioxide (CO2) emissions provoked by fossil fuel 
emission (Moran et al., 1994). Deforestation typically leads to tremendous effects on climate change, biological 
diversity, the hydrologic cycle, and soil erosion and degradation (Shukla et al., 1990; Houghton, 1991; Skole and 
Tucker, 1993). Therefore, accurately detecting deforestation area and rate has become an urgent task.  

Although many change detection methods have been developed (Singh, 1989; Mouat et al., 1993; Deer, 1995; 
Coppin and Bauer, 1996; Jensen, 1996; Jensen et al., 1997; Yuan et al., 1998; Serpico and Bruzzone, 1999), most of 
them can only provide change and non-change information but cannot accurately provide specific change 
information such as deforestation. Because of the important effects of mature forest deforestation on climate and 
ecosystems, accurate deforestation detection is valuable to better understand the relationships between deforestation 
and the components of atmosphere and ecosystem change. Thus, an effective method to digitally detect deforestation 
areas and rates is needed. Some previous research has indicated that linear spectral mixture analysis (LSMA) is a 
promising tool in land-cover classification and change detection for tropical regions (Adams et al., 1995; Roberts et 

ASPRS 2003 Annual Conference Proceedings 
May 2003  Anchorage, Alaska 



al., 1998; Lu et al., in press). This paper focuses on the detection of deforested areas and deforestation rates in two 
areas of the Brazilian Amazon using LSMA. 

 
 

STUDY AREAS 
 
Two colonization areas were selected for this study (Figure 1). The Altamira study area is located along the 

Transamazon Highway in the Brazilian State of Para. The city of Altamira and the Xingu River anchor the eastern 
edge of the study area. In the 1950s colonists were attracted from northeast Brazil and settled along streams as far as 
20 km from the city center. With the construction of the Transamazon Highway in 1970, this population and older 
caboclo settlers from the earlier rubber economic era claimed land along the new highway through the help of 
government-sponsored programs (Moran, 1976; 1981). Early settlement was driven by geopolitical goals and 
political economic policies that focused on occupying the region and establishing production areas of staples like 
rice, corn, and beans. This region has experienced a gradual shift to a more diverse set of land uses: pasture, cocoa, 
sugar cane, black pepper, in addition to staple crops. The dominant native vegetation types are mature moist forest 
and liana forest, but rates of deforestation and secondary succession associated with the implementation of 
agropastoral projects are high in the area.  

The second study area is Machadinho in northeastern Rondônia. Rondônia had high deforestation rates in the 
Brazilian Amazon during the last twenty years (INPE, 2002). Following the national strategy of regional occupation 
and development, colonization projects initiated by the Brazilian government in the 1970s played a major role in this 
process (Moran, 1981; Schmink and Wood, 1992). Most colonization projects in Rondônia were designed to settle 
landless migrants. Settlement began in this area in the mid-1980s, and the immigrants transformed the forested 
landscape into a patchwork of cultivated crops, pastures, and a vast area of fallow land. The dominant pristine 
vegetation is tropical moist forest, with some bamboo and palms.  

 
 

 

Altamira 
study area Legend 

Machadinho 
study area 

N 

 
Figure 1. Locations of the Study Areas 
 
 

METHOD 
 
Image Preprocessing 

Five dates of Thematic Mapper (TM) images and two scenes of IKONOS data in Altamira and three dates of 
TM images and one scene of IKONOS data in Machadinho were collected (Table 1). Of the various elements of 
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preprocessing for change detection, multi-date image registration and radiometric and atmospheric corrections are 
the most important. Accurate spatial registration of the multi-date imageries is obviously important for change 
detection because largely spurious results of change detection will be produced when misregistration between multi-
date images occurs (Townshend et al., 1992; Dai and Khorram, 1998; Stow, 1999; Verbyla and Boles, 2000; Stow 
and Chen, 2002). The images were geometrically rectified into UTM projection using control points taken from 
topographic maps at 1:100,000 scale. The nearest-neighbor resampling technique was used and a root-mean squared 
error (RMSE) with less than 0.5 pixel was obtained. In Altamira, the 1991 TM image was first geometrically 
rectified, then other images were registered to it. In Machadinho, the 1998 TM image was first rectified, then other 
images were registered to the same projection as the 1998 TM image.  

 
Table 1. Image Data and Field Data Used in Research 

 
Study Areas Altamira Machadinho 
Path/Row 226/62 231/67 

TM acquisition dates August 4, 1985 
July 11, 1988 
July 20, 1991 
May 26, 1996 
July 4, 2000 (ETM+) 

Jul. 28, 1988 
Jul. 15, 1994 
Jun. 18, 1998 

IKONOS data October 14, 2000 (2 scenes) May 28, 2001 
Date to collect field data 1992, 1993, 1997, 1998 1999, 2000 
Ancillary data Topographic maps, DEM data, road vector layer 

 
Different image acquisition dates, sun elevation angles, and atmospheric conditions affect the remote sensing 

digital number (DN) values that are captured by satellite sensors. Accurately eliminating these impacts is necessary 
before the images are used for change detection analysis. A variety of methods have been developed for radiometric 
and atmospheric normalization or correction (Markham and Barker, 1987; Gilabert et al., 1994; Chavez, 1996; 
Stefan and Itten, 1997; Vermote et al., 1997; Heo and FitzHugh, 2000; Yang and Lo, 2000; Song et al., 2001; Lu et 
al., 2002; McGovern et al., 2002). Different models, such as relative normalization, dark object subtraction (DOS), 
and 6S, have their own characteristics and requirements for the input parameters. In this study, due to the lack of 
atmospheric data for the historical images, some advanced calibration models such as 6S were difficult to use. 
However, the image-based DOS model proved valuable for atmospheric correction when atmospheric data were not 
available (Lu et al., 2002). Hence, all TM data were calibrated into apparent reflectance using an image-based DOS 
model. The path radiance was identified based on clear water for each band. 

 
Endmember Selection and Spectral Mixture Analysis  

LSMA is regarded as a physically based image processing tool. It assumes that the spectrum measured by a 
sensor is a linear combination of the spectra of all components within the pixel (Adams et al., 1995; Roberts et al., 
1998; Ustin et al., 1998; Petrou, 1999). It supports repeatable and accurate extraction of quantitative subpixel 
information (Smith et al., 1990; Roberts et al., 1998). The fractions derived from LSMA represent area proportions 
of the endmembers within the pixel. In remote-sensing data applications, the LSMA approach has been used for 
land-use/land-cover classification (Ustin et al., 1996; Cochrane and Souza, 1998; Ustin et al., 1999; Aguiar et al., 
1999; DeFries et al., 2000; Theseira et al., 2002) and change detection (Adams et al., 1995; Roberts et al., 1997; 
Roberts et al., 1998; Shimabukuro et al., 1998; Ustin et al., 1998; Elmore et al., 2000; Rogan et al., 2002). In 
general, classification using LSMA involves four main steps: (1) image preprocessing, (2) endmember selection, (3) 
unmixing solution, and (4) analysis of fraction image.  

Before using LSMA, it is necessary to reduce the high correlations that exist between visible TM bands. 
Standardized principal component analysis (SPCA) was used to transform the atmospherically calibrated TM 
imageries into principal components (PCs). The last two PCs were discarded due to their very limited information. 
Therefore, only the first four PCs were used for the LSMA approach to convert the images into physically based 
fractions. 

 Selecting suitable endmembers is the prerequisite to develop high quality fraction images. Different methods 
have been used for selecting endmembers (Adams et al., 1993; Settle and Drake, 1993; Boardman et al., 1995; 
Bateson and Curtiss, 1996; Tompkins et al., 1997; Mustard and Sunshine, 1999). For many remote-sensing 
applications using LSMA, the image-based endmember selection method is often used because endmembers can be 
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obtained easily, representing spectra measured at the same scale as the image data (Roberts et al., 1998). The 
endmembers are regarded as the extremes of the triangles of an image scattergram. Thus, the image endmembers are 
derived from the extremes of the image feature space, assuming they represent the purest pixels in the images 
(Mustard and Sunshine, 1999). In this study, three endmembers (shade, soil, and green vegetation or GV) were 
identified from the scattergram of the first two PCs derived from SPCA. An average of 30 to 50 pixels of these 
vertices was calculated. When selecting the endmembers, caution must be taken to identify outliers. Appropriate 
selection of image endmembers is often an iterative process. Checking fraction imageries and the RMSE image is a 
feasible way to assess whether the selected endmembers are appropriate or not (Lu et al., in press).  

After selection of endmembers, an unconstrained least RMSE solution was used to unmix the first four PCs into 
three endmember fraction images. Detailed descriptions about LSMA and its applications can be found in Adams et 
al. (1995), Roberts et al. (1998), and Mustard and Sunshine (1999). Because the fractions represent the biophysical 
characteristics, different vegetation stand structures and land-cover types will have different proportion 
compositions. Hence, in this paper, the fraction images were used to identify mature forests and to analyze 
deforestation in the Brazilian Amazon through a change detection approach. 

 
Change Detection and Accuracy Assessment 

The use of LSMA to improve forest classifications is based on the fact that mature forest can be differentiated 
from other land-cover types through the analysis of fraction images. For example, mature forest has higher shade 
fraction but lower GV fraction than those of successional forests, pastures, and agricultural lands and has lower soil 
fraction than those of pasture, agricultural lands, and bare soil. From the soil fraction, mature forest and successional 
forest can be separated from pasture, agricultural land, bare soil, and urban areas. From the GV fraction, mature 
forest can be separated from successional forest, and from the shade fraction it can be separated from water bodies. 
Therefore, mature forest can be identified when the following conditions are satisfied: 

  
(fsoil < Tsoil_max)  and (fGV < TGV_max) and (Tshade_min < fshade < Tshade_max), 
 

where fsoil, fGV, and fshade are fraction values of soil, GV, and shade, respectively. Tsoil_max, TGV_max, Tshade_min, and 
Tshade_max are thresholds of mature forest at each fraction image. The thresholds Tsoil_max, TGV_max, Tshade_min, and 
Tshade_max can be developed using sample plots of mature forest. A detailed description of threshold definition based 
on field data and fraction images can be found in Lu et al. (in press). A total of 25 sample plots of mature forest 
were identified, and descriptive statistics were produced. The statistical parameters include minimum, maximum, 
mean, and standard deviation. So, the threshold of mature forest in each fraction is defined as: 

 
Tsoil_max = Tsoil_u + γ * σsoil , 
 
TGV_max = TGV_u + γ * σGV , 
 
Tshade_min =  Tshade_u – γ * σshade , and 
 
Tshade_max =  Tshade_u + γ * σshade , 

 
where Tsoil_u, TGV_u, and Tshade_u  are mean values and σsoil, σGV, and σshade are standard deviations, which are derived 
from the sample plots of soil, GV, and shade fraction images, respectively. γ is a constant. Different constants were 
tested, ranging from 2.5 to 3.5, in order to find a best constant for the identification of mature forest. 

After selection of appropriate thresholds for each fraction image, the thresholds were then used for the entire 
study area to produce a binary image, indicating mature forest and non-forest (1 as mature forest and 0 as non-
forest). The same procedure was implemented for all TM images in both study areas listed in Table 1, beginning 
from SPCA, endmember selection, development of fractions, and until identification of mature forest. After 
finishing classification of mature forest and non-forest for all TM images, the binary thematic images were added to 
produce a new thematic image for each study area for change detection. For example, in the Machadinho study area, 
TM images from 1988, 1994, and 1998 were used, and three corresponding binary images were produced using 
LSMA and thresholds. Adding the three binary images produces a thematic image with pixel values ranging from 0 
to 3. Thus, the following change information can be inferred:  

0 – unchanged non-forest areas, 
1 – deforestation, converting mature forest in 1988 to non-forest in 1994, 
2 – deforestation, converting mature forest in 1994 to non-forest in 1998, 
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3 – unchanged mature forest. 
To test the validity of the procedure, accuracy assessment is an important part in both classification and change 

detection routines. A common method for accuracy assessment is through the use of an error matrix. Previous 
literature has provided the meanings and calculation methods for overall accuracy, producer’s accuracy, user’s 
accuracy, and kappa coefficient (Congalton et al., 1983; Hudson and Ramm, 1987; Congalton, 1991; Janssen and 
van der Wel, 1994; Kalkhan et al., 1997; Khorram, 1999; Smits et al., 1999). In this paper, overall accuracy was 
calculated for each classification and change detection result. A total of 240 sample plots were randomly allocated 
and examined through visual interpretation assisted by field data and IKONOS data for analyses of classification 
and change detection accuracies. 

 
 

RESULTS AND DISCUSSION 
 
The LSMA approach was used to develop fraction images for all dates of TM images for both study areas, 

respectively. Figure 2 provides an example of fraction images in Altamira (2000 ETM+ image) and Machadinho 
(1998 TM image). Mature forest in the soil fraction image appears dark grey due to its very low soil fraction. It 
appears grey in the GV fraction and bright grey in the shade fraction. Thus, mature forest has different 
characteristics in each fraction image and can be distinguished from non-forest vegetation based on these fraction 
images.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2. Fraction Images in Altamira (AL, 2000 ETM+) and Machadinho, Rondônia (RO, 1998 TM) 
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Figure 3 gives a comparison of fraction values of main land-cover types and illustrates the physical features of 

different land-cover types in these fraction images.  It indicates that mature forest and secondary successional forests 
have significantly lower soil fractions than those of pasture, agricultural lands, and bare lands. Mature forest has 
lower fractions in the GV fraction image but has higher fractions in the shade fraction image than those of 
successional forests, pastures, and agricultural lands. This characteristic of mature forest in different fraction images 
enables us to accurately distinguish non-forest types and yields better results when thresholds are appropriately 
selected on each fraction image. 

Land Cover Classes in Altamira
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Land Cover Classes in Rondonia
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Figure 3. Comparison of Fractions among Typical Land-cover Classes in Altamira (AL, 2000 ETM+) and  
Machadinho, Rondônia (RO, 1998 TM) 
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Figure 4 illustrates the deforestation area distribution using five dates of TM images in Altamira and three dates 

of TM images in Machadinho. A road vector layer was overlaid on the change detection image to show the spatial 
relationship between deforestation and road configuration. The deforestation process is closely related to the road 
construction. For example, mature forest was often deforested along both sides of the roads, then extended to wide 
areas. Most deforestation in the Altamira study area occurred in the 1970s and early 1980s, and very limited mature 
forest remained until 2000. In the Machadinho study area, most of the terrain was still occupied by mature forest 
because of the presence of large patches of forest preserved in extractive reserves (Batistella, 2001). However, 
deforestation is obvious along the sides of the roads. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Deforestation Area Distribution in Altamira and Machadinho 
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The deforested area and deforestation rate were calculated for each change detection period for both study 

areas. Table 2 provides the results in selected detection periods in Altamira and Machadinho. In Altamira, the 
deforestation rate is decreasing because the remaining mature forest area is very limited and most of the mature 
forest already has been cut. In Machadinho, the deforestation rate is increasing because colonization began in the 
middle 1980s. However, mature forest still occupies the majority of the study area. In Altamira, the deforested 
mature forest accounts for 26.18% of the total study area during the 15-year period between 1985 and 2000. Higher 
deforestation rates occurred during the 1970s and early 1980s. In the Machadinho study area, the deforested mature 
forest accounts for 27.32% of the total study area during the 10-year period between 1988 and 1998. 

 
Table 2. Mature Forest Change Detection Results 

 
Altamira Study Area 

Mature Forest Deforestation Others 

 1985-88 1988-91 1991-96 
1996-
00 

NF_unch
g F_unchg 

NF_to_
F 

Total Area 

Def. area 
(ha) 

11054.7
0 6517.89 7598.16 

3652.5
6 56569.77 14415.48 

10249.9
2 110058.48 

Def. rate (%) 10.04 5.92 6.90 3.32     
Avg. def rate 3.35 1.97 1.38 0.83     

Machadinho, Rondônia, Study Area 
 Mature Forest Deforestation Others  

  1988-94 1994-98  
NF_unch
g F_unchg  

Total Area 

Def. area 
(ha)  14389.38 12767.76  14350.14 57896.64  99403.92 
Def. rate (%)  14.48 12.84      
Avg Def. 
rate   2.41 3.21      

Note:   Def. Rate (%) = deforestation area/total study area *100.  
Avg Def. rate (%/yr) = def. rate/change-detection-period. 
NF_unchg: unchanged non-forest.  
F_unchg: unchanged forest. 
NF_to_F: non-forest in previous date change to forest in late date. 
 

Many test sample data were collected and used for classification and change detection accuracy assessment. An 
error matrix for each classification and change detection result was produced and overall accuracy was provided. 
Table 3 provides the overall classification and change detection accuracies in Altamira and Machadinho. The 
classification accuracy of mature forest is very high, reaching over 98.7%, and the change detection accuracy 
reaches over 96% in both study areas. These results indicated that deforestation detection using LSMA is reliable 
and successful. 

 
Table 3. Classification and Change Detection Accuracies 
 

Study Area Classification Accuracy Change Detection Accuracy 
Altamira 1991 

98.7% 
1996 
99.3% 

2000 
99.3% 

1991–1996 
98.0% 

1996–2000 
96.0% 

Machadinho 1994 
98.7% 

1998 
98.7% 

 1994-1998 
96.7% 

 

 
Analysis of the classification and change detection results found that the errors were mainly from (1) clouds and 

cast shadows, especially thin clouds and cast shadows; and (2) complex landscape and environmental conditions, 
such as mature forests in wetland sites. The thin clouds and their cast shadows and the significantly different 
moisture conditions in the sites of mature forest affect the fraction values developed using LSMA. One possible 
solution is to stratify the entire image into some subset images with similar environmental conditions within the 
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subset image. Then selecting endmembers and unmixing TM images could be carried out in the subset images 
respectively. Caution needs to be taken to separate the true reflectance of endmembers and outliers, for example, 
clouds. 

After development of fraction images using LSMA, the classification and change detection accuracies are 
greatly dependent on the definition of thresholds. In this paper, different standard deviations were tested and the 
results were analyzed. This experiment indicated that three standard deviations provided the best threshold ranges 
for the mature forest classification.  

 
 

CONCLUSION 
 
The LSMA approach has been successfully used in this paper for mature forest classification and deforestation 

detection. The classification accuracies of mature forest reached over 98.7% and the change detection accuracies 
reached over 96% for TM images of different dates for both study areas in the Brazilian Amazon. When using 
LSMA, selection of appropriate endmembers is very important to develop high-quality fraction images. SPCA is an 
effective transformation method in reducing correlation coefficients between images used, thus, improving the 
fraction images. Definition of thresholds for mature forest is critical to produce highly accurate classification and 
change detection results.  
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